Magnetic anisotropy and phase transitions in single-crystal Tb5(Si2.2Ge1.8)

M. Han
Iowa State University

J. E. Snyder
Iowa State University

W. Tang
Iowa State University

Thomas A. Lograsso
Iowa State University, lograsso@ameslab.gov

Deborah L. Schlagel
Iowa State University, schlagel@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_conf

Part of the Condensed Matter Physics Commons, Electrical and Computer Engineering Commons, and the Metallurgy Commons

Recommended Citation
Han, M.; Snyder, J. E.; Tang, W.; Lograsso, Thomas A.; Schlagel, Deborah L.; and Jiles, David C., "Magnetic anisotropy and phase transitions in single-crystal Tb5(Si2.2Ge1.8)" (2005). Ames Laboratory Conference Papers, Posters, and Presentations. Paper 22.
http://lib.dr.iastate.edu/ameslab_conf/22

This Conference Proceeding is brought to you for free and open access by the Ames Laboratory at Digital Repository @ Iowa State University. It has been accepted for inclusion in Ames Laboratory Conference Papers, Posters, and Presentations by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact digirep@iastate.edu.
Authors
M. Han, J. E. Snyder, W. Tang, Thomas A. Lograsso, Deborah L. Schlagel, and David C. Jiles

This conference proceeding is available at Digital Repository @ Iowa State University: http://lib.dr.iastate.edu/ameslab_conf/22
Magnetic anisotropy and phase transitions in single-crystal Tb$_5$(Si$_{2.2}$Ge$_{1.8}$)

M. Han and J. E. Snyder
Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011 and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

W. Tang
Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011

T. A. Lograsso
Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011 and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

D. L. Schlager
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011

D. C. Jiles
Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011 and Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011

(Submitted on 9 November 2004; published online 16 May 2005)

The Tb$_5$(Si$_{2.2}$Ge$_{1.8}$) alloy system has many features in common with the Gd$_5$(Si$_{4-x}$Ge$_x$) system although it has a more complex magnetic and structural phase diagram. This paper reports on the magnetic anisotropy and magnetic phase transition of single-crystal Tb$_5$(Si$_{2.2}$Ge$_{1.8}$) which has been investigated by the measurements of M-H and M-T along the a, b, and c axes. The variation of $1/T$ indicates that there is a transition from paramagnetic to ferromagnetic at $T_c=110$ K. Below this transition temperature M-H curves show very strong anisotropy, and it is believed that this is due to the complex spin configuration. M-H measurements at $T=110$ K show that the a axis is the easy axis, and that the saturation magnetization is 200 emu/g. The b axis is the hard axis, which needs an external magnetic field much higher than 2 T to saturate the magnetization in that direction, indicating a high magnetocrystalline anisotropy. The c axis is intermediate hardness. The magnetic properties of this material are therefore very different from those of the related Gd$_5$Si$_x$Ge$_{4-x}$ system, in which the b axis was found to be the easy axis and the magnitude of the anisotropy was smaller. © 2005 American Institute of Physics. [DOI: 10.1063/1.1855196]

INTRODUCTION

A number of pseudobinary compounds R_5(Si$_{4-x}$Ge$_x$), where R is La, Lu, Gd, Nd, or Dy, have been investigated by Gschneidner et al.1 The alloy Gd$_5$(Si$_{4-x}$Ge$_x$)4 which has received much attention recently has several unique properties including a giant magnetocaloric effect,2 giant magneto resistance,3 and giant magnetostriction.3 Morellon et al.5,6 have investigated phase transitions and the magnetocaloric effect in the alloys with R=Tb and Thuy et al.7 have studied both magnetic properties and magnetocaloric effect in polycrystalline samples with specific compositions Tb$_5$(Si$_{2.2}$Ge$_{1.8}$) and Tb$_5$(Si$_{2.2}$Ge)4. Although Tb$_5$(Si$_{2.2}$Ge$_{1.8}$)4 has many similarities with Gd$_5$(Si$_{4-x}$Ge$_x$)4, it shows a more complicated magnetocrystallographic transformation according to Ritter et al.8 Spichkin et al.7 have found that the magnetic ordering temperatures of these alloys range from a Curie temperature of $T_c=225$ K in Tb$_5$Si$_4$, to a Néel temperature T_N of 91 K in Tb$_5$Ge$_4$. This paper reports on the magnetic anisotropy and magnetic phase transition of single crystal Tb$_5$(Si$_{1.7}$Ge$_{3.3}$)$_x$, where $x=0.55$, which has been investigated by superconducting quantum interference device (SQUID) measurements of M-H and M-T characteristics along the a, b, and c axes.

EXPERIMENTAL DETAILS

Appropriate quantities of terbium 99.98% (metals basis, wt. %), silicon (99.9999%), and germanium (99.999%) were cleaned and arc-melted several times under an argon atmosphere. The buttons were then remelted to ensure compositional homogeneity throughout the ingot and the alloy was drop cast into a copper chill cast mold. The as-cast ingot was electron-beam welded in a tungsten Bridgman style crucible for crystal growth. The ingot was heated in a tungsten mesh resistance furnace under a pressure of 8.8×10^{-5} Pa up to 1700 °C to degas the crucible and charge. The chamber was then backfilled to a pressure of 3.4×10^4 Pa with high-purity argon. This overpressurization was used in order to equalize the pressure inside and outside of the crucible at the final temperature. The ingot was then heated to 2050 °C after which it was withdrawn from the heat zone at a rate of...
The as-grown crystal was oriented by back-reflection Laue and the crystallographic directions assigned using x-ray diffraction two-theta scans of the single crystal. The sample was cut by electrical discharge machining (EDM) and the oriented faces were prepared using standard metallographic techniques to yield flat, parallel faces.

Magnetization versus temperature measurements were conducted with magnetic field applied along the three principal crystal axes in an MPMS-5S SQUID magnetometer. Measurements were made over the range from room temperature to $T = 15$ K. In order to investigate the effect of magnetic field on the transition temperature, two different magnitudes of the magnetic fields were applied: 10 kOe was applied along the a, b, and c axes, and 20 kOe was applied also along the a axis. Magnetization versus field measurements were then made at a fixed temperature of 110 K.

RESULTS AND DISCUSSION

The variation of magnetization with temperature under a field of 10 kOe along the a axis is shown in Fig. 1(a), and similarly along the b and c axes in Figs. 1(b) and 1(c), respectively. From these results, particularly the rapid change in magnetization along the a axis with temperature, the lambda anomaly along the b axis, and the discontinuity in slope along the c axis, it is clear that a phase transition occurs at a temperature of 110 K. The magnetization is strongly dependent on the crystallographic direction along which the field is applied, which indicates a strong magnetocrystalline anisotropy. In addition, it is interesting to find that, unlike the Gd$_5$(Si$_{1.95}$Ge$_{2.05}$)$_2$, the transition temperature in Tb$_5$(Si$_{2.2}$Ge$_{1.8}$)$_2$ does not show a dependence on the magnetic field. This finding is consistent with the results reported for polycrystalline Tb$_5$(Si$_2$Ge$_2$)$_6$.

The variation of reciprocal susceptibility $1/\chi$ with temperature along the a axis under a field of 20 kOe is shown in Fig. 2. For temperatures above 110 K the behavior is Curie–Weiss like which is indicative of a paramagnetic state with weak interactions between localized magnetic moments. This can be compared with the magnetic order/disorder transition temperature of 268 K in Gd$_5$Si$_2$Ge$_2$. According to Ritter et al., the transition observed here is a first-order transition from a higher-temperature phase, which is paramagnetic and monoclinic (space group $P11_2_1/a$), into a lower-temperature phase, which is ferromagnetic and orthorhombic (space group $Pnma$). However, according to Morellon et al., unlike Gd$_5$(Si$_2$Ge$_2$)$_2$, the magnetic and structural transitions observed in Tb$_5$Si$_2$Ge$_2$ do not occur together, but rather appear to be separated by a temperature difference of about 8 K. The magnetic behavior that we observe below the transition temperature in Fig. 1 is believed to be due to the separation of the magnetic and structural phase transitions, and the more complex magnetic structure of Tb$_5$(Si$_2$Ge$_2$)$_2$ below the Curie temperature, which has been discussed in detail by Morellon et al. and Ritter et al.

M–H measurements have been conducted along the a, b, and c axes at 110 K, as shown in Fig. 3. These results show that the a axis is the easy axis, the c axis is of intermediate

8 mm/h. The as-grown crystal was oriented by back-reflection Laue and the crystallographic directions assigned using x-ray diffraction two-theta scans of the single crystal. The sample was cut by electrical discharge machining (EDM) and the oriented faces were prepared using standard metallographic techniques to yield flat, parallel faces.

Magnetization versus temperature measurements were conducted with magnetic field applied along the three principal crystal axes in an MPMS-5S SQUID magnetometer. Measurements were made over the range from room temperature to $T = 15$ K. In order to investigate the effect of magnetic field on the transition temperature, two different magnitudes of the magnetic fields were applied: 10 kOe was applied along the a, b, and c axes, and 20 kOe was applied also along the a axis. Magnetization versus field measurements were then made at a fixed temperature of 110 K.

RESULTS AND DISCUSSION

The variation of magnetization with temperature under a field of 10 kOe along the a axis is shown in Fig. 1(a), and similarly along the b and c axes in Figs. 1(b) and 1(c), respectively. From these results, particularly the rapid change in magnetization along the a axis with temperature, the lambda anomaly along the b axis, and the discontinuity in slope along the c axis, it is clear that a phase transition occurs at a temperature of 110 K. The magnetization is strongly dependent on the crystallographic direction along which the field is applied, which indicates a strong magnetocrystalline anisotropy. In addition, it is interesting to find that, unlike the Gd$_5$(Si$_{1.95}$Ge$_{2.05}$)$_2$, the transition temperature in Tb$_5$(Si$_{2.2}$Ge$_{1.8}$)$_2$ does not show a dependence on the magnetic field. This finding is consistent with the results reported for polycrystalline Tb$_5$(Si$_2$Ge$_2$)$_6$.

The variation of reciprocal susceptibility $1/\chi$ with temperature along the a axis under a field of 20 kOe is shown in Fig. 2. For temperatures above 110 K the behavior is Curie–Weiss like which is indicative of a paramagnetic state with weak interactions between localized magnetic moments. This can be compared with the magnetic order/disorder transition temperature of 268 K in Gd$_5$Si$_2$Ge$_2$. According to Ritter et al., the transition observed here is a first-order transition from a higher-temperature phase, which is paramagnetic and monoclinic (space group $P11_2_1/a$), into a lower-temperature phase, which is ferromagnetic and orthorhombic (space group $Pnma$). However, according to Morellon et al., unlike Gd$_5$(Si$_2$Ge$_2$)$_2$, the magnetic and structural transitions observed in Tb$_5$Si$_2$Ge$_2$ do not occur together, but rather appear to be separated by a temperature difference of about 8 K. The magnetic behavior that we observe below the transition temperature in Fig. 1 is believed to be due to the separation of the magnetic and structural phase transitions, and the more complex magnetic structure of Tb$_5$(Si$_2$Ge$_2$)$_2$ below the Curie temperature, which has been discussed in detail by Morellon et al. and Ritter et al.

M–H measurements have been conducted along the a, b, and c axes at 110 K, as shown in Fig. 3. These results show that the a axis is the easy axis, the c axis is of intermediate
hardness, and the b axis is the hard axis. The saturation magnetization is 200 emu/g. The calculation of the magnetic anisotropy from these magnetization curves gave a value of approximately $8.8 \times 10^7 \text{ J/m}^3$ (8.8 $\times 10^8 \text{ emu/cm}^3$), which is the same order of magnitude as single-crystal pure Tb metal, which is about $6 \times 10^8 \text{ emu/cm}^3$, although the anisotropy in pure Tb metal is planar rather than axial. For comparison, measurements on Gd$_3$Si$_2$Ge$_2$ at 260 K, which is 9 K below its magnetic structural transition temperature, showed that the b axis is the easy axis, with a saturation magnetization of $M_s = 0.6 \times 10^6 \text{ A/m}$ (600 emu/cm3) and a magnetic anisotropy of $K = 4.1 \times 10^4 \text{ J/m}^3$. This compares with Gd$_3Si_2Ge_2$ which has the b axis as the easy axis with a lower anisotropy of $4.1 \times 10^4 \text{ J/m}^3$ and a saturation magnetization of $M_s = 0.6 \times 10^6 \text{ A/m} (600 \text{ emu/cm}^3)$.

CONCLUSIONS

Magnetic property measurements have been made on single-crystal Tb$_2$Si$_2$Ge$_{1.8}$ and have been found to be significantly different from the magnetic properties of the related Gd$_3$Si$_2$Ge$_2$ system which was studied previously. The variation of magnetization with temperature has shown that in this alloy the Curie point occurs at 110 K compared with 268 K in Gd$_3$Si$_2$Ge$_2$. The variation of magnetization as a function of magnetic field shows that the a axis is the magnetic easy axis, with a magnetocrystalline anisotropy of approximately $8.8 \times 10^7 \text{ J/m}^3$ and a saturation magnetization of $M_s = 200 \text{ emu/g}$ (which with a density of 7.6 gm/cm3 gives $M_s = 1520 \text{ emu/cm}^3$, or $1.52 \times 10^6 \text{ A/m}$). This compares with Gd$_3Si_2Ge_2$ which has the b axis as the easy axis with a lower anisotropy of $4.1 \times 10^4 \text{ J/m}^3$ and a saturation magnetization of $M_s = 0.6 \times 10^6 \text{ A/m} (600 \text{ emu/cm}^3)$.

ACKNOWLEDGMENTS

This research was supported by the U.S. Department of Energy, Office of Science (OS), Office of Basic Energy Sciences (BES), and Materials Sciences Division. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-ENG-82.