Controlling the Activity of the Tec Kinase Itk by Mutation of the Phenylalanine Gatekeeper Residue

Raji E. Joseph
Iowa State University, jraji@iastate.edu

Amy H. Andreotti
Iowa State University, amyand@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/bbmb_ag_pubs

Part of the [Molecular Biology Commons](http://lib.dr.iastate.edu/bbmb_ag_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/bbmb_ag_pubs/20. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Controlling the Activity of the Tec Kinase Itk by Mutation of the Phenylalanine Gatekeeper Residue

Abstract
The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2–kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2–kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2–kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.

Disciplines
Biochemistry, Biophysics, and Structural Biology | Molecular Biology

Comments
Reprinted (adapted) with permission from Biochemistry 50 (2011): 221, doi:10.1021/bi101379m. Copyright 2011 American Chemical Society.

Rights
One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.
Controlling the Activity of the Tec Kinase Itk by Mutation of the Phenylalanine Gatekeeper Residue†

Raji E. Joseph and Amy H. Andreotti*

Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States

Received August 26, 2010; Revised Manuscript Received December 7, 2010

ABSTRACT: The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2—kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2—kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2—kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.

Protein kinases are enzymes that control key processes in the cell by catalyzing the transfer of a phosphate group from ATP to the hydroxyl moiety of Ser/Thr or Tyr (1, 2). The Tec family kinases (Itk, Btk, Tec, Txk, and Bmx) are nonreceptor tyrosine kinases that are expressed predominantly in hematopoietic cells and function downstream of important immune receptors (3–6). The domain architecture of the Tec kinases is similar to that of the Src family kinases; both kinase families are characterized by a SH2—SH3—kinase linker domain arrangement (7). In addition, the Tec kinases (with the exception of Txk) also contain a PH domain at the amino terminus making the overall domain architecture distinct from that of the Src kinases (7–10). While extensive biochemical and structural analyses of full-length Src kinases have provided a mechanistic understanding of how the catalytic activity of this kinase family is regulated (11, 12), an understanding of Tec kinase regulation lags significantly behind in large part because of the lack of a high-resolution structure for any of the full-length Tec kinases.

Despite the relative dearth of structural information for the Tec kinase family, biochemical analyses have shown that the regulation of the Tec kinases differs considerably from that of Src kinases (10). One of the most notable differences lies in the fact that the isolated kinase domains of the Src family kinases are catalytically inert (9, 10, 13). The catalytic activity of the Src kinases is negatively controlled by the amino-terminal domains (14, 15). In contrast, the catalytic activity of the Tec kinases is positively dependent on the presence of the amino-terminal regulatory domains, more specifically the 17-residue linker region between the SH2 domain and the kinase domain (10). A conserved tryptophan residue (Itk W355) in the linker between the SH2 and kinase domains of the Tec kinases, along with a conserved methionine residue (Itk M410) within helix C of the kinase domain, plays a critical role in stabilizing the active state of Tec kinases (10, 16). Like other kinase families, the activity of the Tec kinases is also positively regulated by phosphorylation on a conserved tyrosine (Itk Y511 or Btk Y551) within a large flexible loop within the kinase domain called the activation loop (17).

Recently, a conserved structure called the “regulatory spine” has been identified as a key component in controlling the activity of kinases (18, 19). The regulatory spine consists of a set of residues that span the three-dimensional structure of the kinase domain from the carboxy-terminal lobe to the amino-terminal lobe. The regulatory spine residues are organized into an assembled structure in active kinases and are disrupted in inactive kinases (18). We have previously identified the regulatory spine residues within the Tec family kinases (20). In that work, we demonstrated that, in addition to the core regulatory spine residues present within the kinase domain itself, the Tec kinases contain an extended regulatory spine that includes the conserved tryptophan (Itk W355) from within the SH2—kinase linker and the conserved methionine (Itk M410) on helix C of the kinase domain.
Mutation of the residues that constitute the extended regulatory spine in the context of full-length Itk results in a drastic reduction in the activity of the kinase (20). Moreover, the presence of the SH2–kinase linker is critical for the assembly of a stable regulatory spine in Tec kinases. In fact, the crystal structures of the isolated kinase domain of Itk (without the SH2–kinase linker) in the “active” (Y511 phosphorylated) and “inactive” (Y511 unphosphorylated) states are identical (8). In both structures, the distance between the crucial ion pair (Itk K390 and E405) is ~3 Å, significantly greater than the distance of 3–4 Å that is typically observed in structures of the active states of kinases. Thus, in the absence of the SH2–kinase linker, the regulatory spine of Tec kinases fails to assemble despite activation loop phosphorylation (20). The extended regulatory spine within Tec kinases therefore defines an allosteric mechanism by which the regulatory SH2–kinase linker region impinges on the kinase domain in a positive manner and stabilizes the active conformation of the kinase domain.

In addition to the regulatory spine and noncatalytic regulatory domains and/or regions, there are other features that modulate the activity of kinases. These include the gatekeeper residue, a key residue within the amino-terminal lobe of the kinase that controls access to a deep pocket within the kinase domain. Structural studies have shown that the gatekeeper residue lies at the edge of the regulatory spine, and introduction of a bulky hydrophobic residue such as isoleucine or methionine at the gatekeeper position has been demonstrated to stabilize the regulatory spine and activate Src, Abl, and EGFR kinases (21).

In this paper, we explore the interplay between the regulatory spine and the gatekeeper residue in the Tec family kinases. The data demonstrate that mutation of the Itk gatekeeper residue F434 to alanine or glycine inactivates full-length Itk. In the context of this result, we identify a secondary mutation that activates the Itk F434A mutant. Introduction of a β-branched hydrophobic residue at position 432 (L432I) rescues the activity of the Itk F434A mutant. We suggest that the β-branched isoleucine at position 432 potentially compensates for the loss of hydrophobicity of the F434A mutation and rescues the activity of Itk by promoting the assembly of the regulatory spine. Furthermore, we show that the isolated kinase domains of Itk and Btk can be activated (regulatory spine assembled) in the absence of the amino-terminal regulatory domains by mutation of the gatekeeper residue to methionine. Thus, the gatekeeper residue and the regulatory spine are key modulators of Tec kinase activity.

RESULTS

The Itk F434A Gatekeeper Mutation Inactivates Full-Length Itk. There is ample precedence for the activation of kinase activity by mutation of the gatekeeper residue to a bulky hydrophobic residue (21). In all kinases, the gatekeeper residue is located on the β5 strand at the edge of the regulatory spine within the N-terminal lobe of kinases, and introduction of a large hydrophobic side chain is thought to promote kinase activity by favoring the active, assembled conformation of the regulatory spine (21). Interestingly, alignment of the β5 strand of the Itk kinase domain with other members of the Tec kinase family shows that Itk is unique within the Tec family of kinases as its gatekeeper residue is a phenylalanine instead of the threonine that is present in other Tec kinases (Figure 1a). Thus, for wild-type Itk, the gatekeeper residue (F434) is already large and hydrophobic, and inspection of the available Itk structures suggests that F434 is adjacent to the spine and therefore might be expected to favor assembly of the regulatory spine (Figure 1b).

Given the bulky, hydrophobic nature of the Itk gatekeeper residue, we first tested the prediction that mutation of the Itk gatekeeper residue to a smaller alanine or glycine residue would shift the conformational equilibrium to the disassembled state of the regulatory spine and result in inactive Itk. Indeed, mutation of the bulky Itk gatekeeper residue F434 in full-length Itk to either alanine or glycine leads to a dramatic loss of activity (Figure 1c and Table 1). The Itk F434A mutant reduces the activity to that of the kinase inactive K390R mutant of Itk.

EXPERIMENTAL PROCEDURES

Constructs. The baculoviral expression constructs for full-length (mouse) Itk have been described previously (10). The bacterial expression constructs for the Itk kinase domain have been described elsewhere (22). The mouse wild-type Btk kinase domain (residues 396–659) was amplified via polymerase chain reaction (PCR) and cloned into the pET 28b (Novagen) vector to create the His-tagged Btk kinase domain. All mutations were introduced by using the site-directed mutagenesis (SDM) kit (Stratagene). All constructs were verified by sequencing at the Iowa State University DNA synthesis and sequencing facility.

Protein Expression and Purification. Baculoviral constructs were expressed and purified from S/O cells as described previously (10). The bacterial expression constructs for the His-tagged Itk or Btk kinase domains were expressed and purified from ArcticExpress cells (Stratagene) as described previously (22). Briefly, the Itk or Btk kinase domains were expressed in ArcticExpress bacteria at 12 °C for 23 h. The cell pellets were resuspended in lysis buffer [0.5 mg/mL lysozyme, 50 mM KH2PO4 (pH 8.0), 150 mM NaCl, and 20 mM imidazole] and stored overnight at −80 °C. The cell pellets were thawed after the addition of 1 mM PMFS and 3000 units of DNase I (Sigma). The lysate was spun at 14K for 1 h at 4 °C. The supernatant was incubated with nickel NTA resin (Qiagen). The resin was washed with wash buffer [50 mM Hepes (pH 7.5), 150 mM NaCl, and 40 mM imidazole] and then eluted with elution buffer [50 mM Hepes (pH 7.5), 150 mM NaCl, 250 mM imidazole, and 10% glycerol]. The proteins were aliquoted, flash-frozen with liquid nitrogen, and stored at −80 °C.

Kinase Assays and Western Blotting. In vitro kinase assays were performed via incubation of the isolated kinase domain of Itk or Btk in a kinase assay buffer [50 mM Hepes (pH 7.0), 10 mM MgCl2, 1 mM EDTA, 1 mg/mL BSA, 1 mM Pefabloc, and 200 μM ATP] at room temperature for 1 h. The samples were boiled, separated by SDS–PAGE, and Western blotted with the anti-Btk phosphoY551 antibody (BD Biosciences), anti-FLAG antibody (Sigma), or anti-His antibody (Upstate) as described previously (23). The anti-Btk phosphoY551 antibody is also used for detection of phosphorylation on Itk Y511. Kinetic parameters for the full-length wild-type and mutant Itk are derived using radioactive assays that have been described previously (10). Activity measurements of the pY551 level-normalized wild-type and mutant Btk kinase domain were conducted via preincubation of the Btk kinase domain with ATP at room temperature for varying lengths of time (Btk wild type and T474I, 45 min; Btk T474A, 90 min; Btk T474M, 30 s). The autophosphorylated Btk kinases were subsequently tested for activity using radioactive assays as described previously (10).
whereas the Itk F434G mutant retains ∼25% of the wild-type kinase activity (Figure 1c and Table 1). Thus, mutation of the Itk gatekeeper residue to alanine or glycine inactivates full-length Itk presumably by destabilizing the assembled conformation of the regulatory spine. The L432I Mutation Is a Second-Site Mutation That Rescues the Activity of the Itk F434A Mutant. Gatekeeper mutations for many kinases have been extensively examined in the context of generating kinase variants that are sensitive to modified ATP analogues (24, 25). In the context of that work, it has been found that certain kinases lose their activity upon mutation of the gatekeeper residue to alanine or glycine. Such kinases are termed “intolerant” kinases, whereas the kinases that retain activity upon mutation of the gatekeeper residue to alanine or glycine are defined as “tolerant” kinases (26). Previous work on intolerant kinases has shown that their loss of activity because of the gatekeeper mutation can be rescued by a second-site mutation at one of several specific locations within the amino-terminal lobe of the kinase (26). These activating secondary mutations always involve introduction of a β-branched amino acid residue at sites that do not contain a β-branched residue in the wild-type sequence and cluster to the β2, β3, and β5 strands of the N-terminal kinase lobe (26). Because we have demonstrated that Itk is an intolerant kinase (Figure 1c), we next set out to rescue the activity of the Itk F434A mutant using this second-site mutagenesis strategy.

Alignment of the β2, β3, and β5 strands of Itk with those of other members of the Tec kinase family shows that within the β3 strand of Itk, V387 and I389 are already β-branched amino acids and hence are not candidates for a secondary mutation (Figure 1a). The Itk β2 and β5 strands have four potential sites for second-site mutations: L375, H377, C431, and L432 (Figures 1a and 2a). Each of these residues was therefore mutated to a β-branched amino acid within the context of full-length Itk F434A and tested for activity using a peptide substrate. Three of the double mutants, C431V/F434A, L375V/F434A, and H377V/F434A, do not exhibit significant activity (Figure 2b and Table 1). However, the Itk L432I/F434A double mutant has significant kinase activity when compared to full-length wild-type Itk (Figure 2b and Table 1). We further characterized the Itk L432I/F434A double mutant by measuring its kinetic parameters. As shown in Figure 2c–e, the kinetic parameters (Km and kcat) for the full-length Itk L432I/F434A double mutant are nearly identical to that of wild-type full-length Itk. Hence, the Itk L432I mutation is a second-site mutation that rescues the activity of the Itk F434A gatekeeper mutation.

Stabilization of the Assembled State of the Regulatory Spine Activates Tec Kinases in the Absence of the N-Terminal Regulatory Domains. Previous studies have demonstrated that kinases can be activated by the introduction of a bulky hydrophobic residue such as isoleucine or methionine at the gatekeeper position (21). In fact, the gatekeeper residue has been
measurements show that mutation of the gatekeeper residue within Btk (and possibly Itk) to isoleucine or methionine might not only activate these kinases (21). The activating effect of the methionine mutation versus the isoleucine mutation likely reflects the better accommodation of the methionine side chain over the \(\beta \)-branched isoleucine in the structure of Itk and Btk. Additionally, consistent with our earlier results that show the inactivating effect of the Itk F434A mutation (Figure 1c), mutation of the Btk gatekeeper residue T474 to alanine also decreases the activity of Btk, albeit to a lesser extent than that of Itk (Figure 3a and Table 1). The CD spectra of the wild-type Itk and Btk isolated kinase domains overlay well with those of their respective gatekeeper mutants, suggesting that the observed changes in activity reflect the effect of mutation and are not due to misfolding in the kinase domain (Figure S1a,b of the Supporting Information). Overall, these results suggest that both Itk and Btk are intolerant kinases, and mutation of the gatekeeper residue to methionine, but not isoleucine, activates these Tec kinases in the absence of the amino-terminal regulatory domains that normally activate kinase activity.

In addition to measuring the initial velocity associated with peptide substrate phosphorylation, we can exploit the correlation between activation loop phosphorylation and activity for these enzymes. The activity of the wild-type and variant Itk and Btk enzymes correlates with the level of phosphorylation on the activation loop tyrosine (Y551 in Btk and Y511 in Itk). Phosphorylation on Y551 is observed for bacterially expressed Btk kinase domains in the absence of incubation with ATP, with the Btk T474M mutant showing maximal Y551 phosphorylation (Figure 3c). Incubation of the purified Btk kinase domains with ATP shows that the Btk T474M mutant autophosphorylates itself on Y551 more efficiently than wild-type Btk (Figure 3c). Unlike that of Btk, phosphorylation of Itk Y511 is detected only after incubation of the purified Itk kinase with ATP (Figure 3d). The Itk F434M mutant shows greater phosphorylation on Y511 than wild-type Itk (Figure 3d). Given the results described above that show the L432I mutation activates Itk, we tested whether this mutation would further activate the Itk gatekeeper F434M mutant. Indeed it does; the Itk L432I/F434M double mutant itself on Y551 more efficiently than wild-type Btk (Figure 3c).

Activity measurements were taken at room temperature using 5 \(\mu \)Ci of \([\text{32}\text{P}]\)ATP and Peptide B (aminohexanoyl biotin-EQEDEPEGIYGVLFF-NH\(_2\)) as a substrate in kinase assay buffer [50 mM Hepes (pH 7.0), 10 mM MgCl\(_2\), 1 mM DTT, 1 mg/mL BSA, and 1 mM Pefabloc] as described previously (10).

![Table 1](image)

<table>
<thead>
<tr>
<th>Itk Isolated Kinase Domain</th>
<th>(V_i/[\text{enzyme}]^a) (min(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>background</td>
<td>0.04 ± 0.0005</td>
</tr>
<tr>
<td>wild-type Itk</td>
<td>0.04 ± 0.0003</td>
</tr>
<tr>
<td>Itk F434T</td>
<td>0.003 ± 0.0002</td>
</tr>
<tr>
<td>Itk F434I</td>
<td>0.005 ± 0.0001</td>
</tr>
<tr>
<td>Itk F434M</td>
<td>0.008 ± 0.0003</td>
</tr>
<tr>
<td>Itk L432I/F434M</td>
<td>0.010 ± 0.0006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Btk Isolated Kinase Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i/[\text{enzyme}]^a) (min(^{-1}))</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>without pY551</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>background</td>
</tr>
<tr>
<td>wild-type Btk</td>
</tr>
<tr>
<td>Btk T474A</td>
</tr>
<tr>
<td>Btk T474M</td>
</tr>
<tr>
<td>Btk T474I</td>
</tr>
</tbody>
</table>

Activity measurements were taken at room temperature using 5 \(\mu \)Ci of \([\text{32}\text{P}]\)ATP and Peptide B (aminohexanoyl biotin-EQEDEPEGIYGVLFF-NH\(_2\)) as a substrate in kinase assay buffer [50 mM Hepes (pH 7.0), 10 mM MgCl\(_2\), 1 mM DTT, 1 mg/mL BSA, and 1 mM Pefabloc] as described previously (10).
pY551-normalized enzymes were then tested for kinase activity using a peptide substrate as described above. As shown in Figure 3, the relative activities of the Btk kinases with normalized levels of pY551 (Figure 3e,f and Table 1) are similar to that of the Btk kinases prior to pY551 level normalization (Figure 3c and Table 1). Hence, the observed changes in activity due to the gatekeeper mutations are reflective of the changes in the intrinsic kinase activity of Btk.

We note that the activity of Itk (wild type and mutants) is consistently lower than that of Btk (Table 1). One significant difference already noted is the identity of the gatekeeper residue. Despite the fact that the less active Itk contains the bulkier hydrophobic gatekeeper, we mutated Itk F434 to threonine, the corresponding gatekeeper residue in Btk, to assess whether this difference is responsible for the observed activity differences. This mutation, F434T, has no effect on Itk kinase activity (Figure 3b,d and Table 1), so the differences in the basal activity of the wild-type isolated kinase domains of Itk and Btk cannot be ascribed to the difference in the identity of the gatekeeper residue. Future work will explore the basis for the observed differences in activity among the Tec family kinases.

DISCUSSION

The regulatory spine is a key modulator of kinase activity (18, 19), and our recent work identified an extended spine structure that controls the activity of the Tec family kinases (20). The gatekeeper residue sits at the edge of the regulatory spine structure, so it is logical that, for Itk, the loss of the large phenylalanine gatekeeper by mutation to alanine inactivates Itk (Figure 1c). The crystal structure of Itk (8) shows that the second-site activating mutation, L432I, is adjacent to the gatekeeper residue F434 and the regulatory spine residue M409 (Figure 4). Models of the Itk kinase domain with the F434A single mutation
and the L432I/F434A double mutation show that the substitution of a \(\beta \)-branched Ile residue at position 432 likely compensates for the loss of hydrophobicity of the F434A mutation favoring assembly of the regulatory spine within Itk (Figure 4a–c). It is generally accepted that \(\beta \)-branched residues are preferred over non-\(\beta \)-branched residues within \(\beta \)-sheets (29, 30), so it is also possible that the \(\beta \)-branched isoleucine in the Itk L432I/F434A double mutant simply stabilizes the overall fold of the kinase. It should be noted, however, that we introduced \(\beta \)-branched residues at a number of different locations within the amino-terminal lobe of the kinase (all on \(\beta \)-strand structures), and none of these other substitutions rescued the activity of the Itk F434A mutant (Figure 2a). Thus, while introduction of \(\beta \)-branched residues might increase the overall stability of the \(\beta \)-sheet, the fact that the L432I mutation is the only one among all the \(\beta \)-branched residues that rescued the activity of Itk points to its proximity to

Figure 3: Mutation of the gatekeeper residue to methionine activates Tec kinases in the absence of the N-terminal regulatory domains. (a and b) The gatekeeper residues of Itk and Btk were mutated to alanine, methionine, isoleucine, and threonine in the context of the isolated kinase domains and tested for in vitro kinase activity as described in Experimental Procedures. Mutation of the Itk and Btk gatekeeper residues, F434 and T474, respectively, to methionine activates the isolated kinase domains of Itk and Btk. The inset in panel a shows the Btk T474A mutant is approximately half as active as the wild-type Btk kinase domain. (c and d) Activity of the Tec kinase gatekeeper mutations correlates with the level of phosphorylation on the activation loop of the kinase. The purified 250 nM kinase domain of wild-type Btk, T474A, T474I, or T474M or wild-type Itk, F434T, F434I, F434M, or L432I/F434M was incubated in a kinase assay buffer at room temperature for 1 h without or with ATP, separated by SDS–PAGE, transferred onto a polyvinylidene difluoride (PVDF) membrane, and probed with either an anti-Btk pY551 (also used to detect Itk pY511) or anti-His antibody. The exposure time for the Itk panel is 10 times longer than that for the Btk panel. (e) Normalization of phosphorylation level on Btk Y551. The purified 250 nM kinase domain of wild-type Btk, T474A, T474I, or T474M was preincubated with ATP in a kinase assay buffer as described in Experimental Procedures. The Btk enzymes were then probed with an anti-Btk pY551 and anti-His antibody as described above. (f) The Btk kinase domain enzymes in panel e that were normalized for phosphorylation on Btk Y551 were tested for in vitro kinase activity as described above.
Interestingly, there are differences in regulation even within the Tec family kinases. The isolated wild-type Btk kinase domain is significantly more active than the isolated Itk kinase domain (Figure 3a,b and Table 1). Swapping the gatekeeper residue in Itk to that of Btk did not generate a more active Itk enzyme (Figure 3b,d and Table 1). One possibility for the observed difference in activity between Itk and Btk might be related to the nature of the residue at the activating second site identified in this work. Comparison of the side chain packing within (a) wild-type Itk (Protein Data Bank entry 3MIY), (b) a model of the Itk F434A single mutant, and (c) a model of the Itk L432I/F434A double mutant. The introduction of the β-branched isoleucine residue at position 432 is likely more effective than the introduction of leucine in compensating for the loss of hydrophobicity of the gatekeeper F434A mutation. The leucine rotamer about χ1 shown in panel b is unchanged from the Itk crystal structure (Protein Data Bank entry 3MIY) shown in panel a. While alternative leucine rotamers might be favored in the F434A single mutant, inspection of the alternative rotamers suggests that none appear to show an increased level of packing with the residues at positions 434 and 409 in the context of the 3MIY structure compared to that shown in panel b. Kinetic data (see Table 1) are indicated for each structural model.

In addition to the N-terminal regulatory domains, phosphorylation of the activation loop has also been shown to activate kinases (17). For Itk, activation by phosphorylation on the activation loop is completely dependent on the presence of the SH2−kinase linker region. Indeed, while phosphorylation on the activation loop has been shown to activate full-length Itk or deletion constructs of Itk kinase containing the SH2−kinase linker region (10, 17), the isolated kinase domain of Itk (without the SH2−kinase linker) exhibits poor catalytic activity even when completely phosphorylated on the activation loop (Figure 1 of ref 8). Additionally, activity assays that directly compare two equally phosphorylated fragments of Itk that differ only with respect to the presence of the linker region indicate that the residues that surround the regulatory spines of Itk and Btk results in increased catalytic activity of the independent kinase domains. In particular, the Itk F434M and Btk T474M mutations in the context of the free kinase domain are significantly activating and partially overcome the requirement for the SH2−kinase linker (Figure 3 and Table 1). These findings suggest that for the wild-type kinase domains of the Tec kinases, the conformational preference of the regulatory spine is the inactive, disassembled state and the active, assembled conformation is energetically disfavored. The active conformation is stabilized only upon additional interactions between the kinase domain and the amino-terminal regulatory region (20). Gain-of-function mutations for the Tec kinases have to date been elusive, and we suggest that the Itk F434M and Btk T474M mutants might find utility as a research reagent.
linker-containing fragment of Itk is almost as active as full-length Itk while the smaller fragment that contains only the kinase domain of Itk (lacking the SH2–kinase linker) exhibits poor activity regardless of phosphorylation state (10). These data suggest that the poor activity of the isolated kinase domain of Itk is not due to the lack of phosphorylation on the activation loop; rather, it is the SH2–kinase linker region that is essential for the assembly of the regulatory spine within the isolated kinase domain of Itk (10, 20). This is also consistent with the observation that the Itk regulatory spine is not assembled in the crystal structures of the phosphorylated Itk kinase domain lacking the linker region (8, 20). Thus, in the context of wild-type full-length Itk, phosphorylation of the activation loop certainly drives the conformational equilibrium of the regulatory spine to that of the assembled state, but the SH2–kinase linker region is an equal if not more critical component of the activating machinery of this kinase.

Identification of legitimate in vivo substrates of kinases has been challenging (31). The gain-of-function mutant described above may be one approach to advancing our understanding of Tec family kinase signaling. Another approach that has been developed and used widely for the identification of protein kinase substrates involves mutation of the gatekeeper residue to a residue with a small side chain (32). Mutation of the gatekeeper residue to alanine or glycine creates a “hole” within the kinase domain active site that can accommodate larger modified ATP analogues or tailored inhibitors that can be used to identify kinase specific substrates in vivo. In this work, we have shown that Itk is intolerant to this type of gatekeeper mutation (Itk F434A is inactive) but can be rescued by mutation at a second site (L432I). The location of this second-site activating mutation suggests a role for the kinase regulatory spine; loss of hydrophobic packing interactions upon mutation of the gatekeeper phenylalanine to alanine might be balanced by favorable contacts with the isoleucine side chain at position 432. In addition to side chain packing effects, changes in backbone dynamics and/or flexibility could also contribute to the observed activating effect of these mutations. Regardless of the precise mechanism by which these combinations of mutations promote Itk activity, the Itk L432I/F434A double mutant is a useful tool for probing Itk specific signaling.

ACKNOWLEDGMENT

We thank Dr. Owen Witte for providing the Btk cDNA template.

SUPPORTING INFORMATION AVAILABLE

Comparison of the CD spectra of the Btk and Itk isolated kinase domains. Panel a shows the CD spectra of the wild-type isolated Btk kinase domain superimposed with spectra of the isolated Btk kinase domain mutants (T474A, T474M, and T474I). Panel b shows the CD spectra of the wild-type isolated Itk kinase domain superimposed with spectra of the isolated Itk kinase domain mutants (F434M, F434I, and F434T single mutants and L432I/F434M double mutant). This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

tion of the chaperonin impurity. Protein Expression Purif. 60, 194–197.