J-Integral Elastic-Plastic Fracture Mechanics Technology in the U.S. Navy

J. P. Gudas
United States Department of Defense

J. A. Joyce
United States Naval Academy

H. H. Vanderveldt
United States Department of Defense

Follow this and additional works at: http://lib.dr.iastate.edu/cnde_yellowjackets_1979

Part of the Materials Science and Engineering Commons

Recommended Citation

This 6. Failure Mechanisms for Metals is brought to you for free and open access by the Interdisciplinary Program for Quantitative Flaw Definition Annual Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the DARPA/AFML Review of Progress in Quantitative NDE, July 1978–September 1979 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Abstract
The United States Navy has historically been interested in the development of fracture safe materials for ship construction, and in developing fracture mechanics criteria for design considerations. Recently, a substantial research effort has been directed to the development of J-Integral technology. The purpose of this presentation is to review recent Navy advances in this area. The main points will include a discussion of the applicability of the J-Integral to fracture in ductile materials, the development of test procedures for J_{IC}, recent results in the areas of J-controlled crack growth, dynamic J-Integral properties, and instability criteria based on the J_I versus crack growth resistance curve.

Keywords
Nondestructive Evaluation

Disciplines
Materials Science and Engineering
J-INTEGRAL ELASTIC-PLASTIC FRACTURE MECHANICS TECHNOLOGY IN THE U. S. NAVY

J. P. Gudas
David W. Taylor Naval Ship R&D Center

J. A. Joyce
United States Navy Academy

H. H. Vanderveldt
Naval Sea Systems Command

ABSTRACT

The United States Navy has historically been interested in the development of fracture safe materials for ship construction, and in developing fracture mechanics criteria for design considerations. Recently, a substantial research effort has been directed to the development of J-Integral technology. The purpose of this presentation is to review recent Navy advances in this area. The main points will include a discussion of the applicability of the J-Integral to fracture in ductile materials, the development of test procedures for J_{IC}, recent results in the areas of J-controlled crack growth, dynamic J-Integral properties, and instability criteria based on the J_I versus crack growth resistance curve.

#