Annual summary research report in metallurgy July 1959 - June 1960

Ames Laboratory

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports

Part of the Metallurgy Commons

Recommended Citation
http://lib.dr.iastate.edu/ameslab_isreports/32

This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Abstract
This report is distributed according to the category Metals, Ceramics and Materials as listed in TID-4500, December 15, 1960.

Disciplines
Engineering | Materials Science and Engineering | Metallurgy
ANNUAL SUMMARY RESEARCH REPORT IN METALLURGY

July 1959 - June 1960

by

Ames Laboratory Staff

AMES LABORATORY
RESEARCH AND DEVELOPMENT REPORT
U.S.A.E.C.
UNCLASSIFIED

IS-193

Metals, Ceramics and Materials (UC-25)
TID - 4500, December 19, 1960

UNITED STATES ATOMIC ENERGY COMMISSION

Research and Development Report

ANNUAL SUMMARY RESEARCH REPORT IN METALLURGY

July 1959 - June 1960

by

Ames Laboratory Staff

December 1960

Ames Laboratory
at
Iowa State University of Science and Technology
F. H. Spedding, Director
Contract W-7405 eng-32

UNCLASSIFIED
This report is distributed according to the category Metals, Ceramics and Materials as listed in TID-4500, December 15, 1960.

Legal Notice

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price $ 2.25. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.
Contents

1. Metal Preparation and Purification Studies
 1.1 Vanadium
 1.1.1 Iodide Refining
 1.1.2 Purification of Vanadium by Calcium Deoxidation
 1.2 Niobium (Columbium)
 1.2.1 By Carbon Reduction of Nb₂O₅
 1.2.2 Purification of Niobium by Iodide Refining
 1.2.3 Purification of Niobium Metal by Calcium Deoxidation
 1.3 Thorium
 1.3.1 Purification of Thorium by Iodide Refining
 1.3.2 Purification by Calcium Deoxidation
 1.3.3 Preparation by Mg Reduction of ThCl₄
 1.4 Yttrium Metal
 1.4.1 Preparation of High Purity Y-Mg Alloy by Fused Salt Extraction
 1.4.2 Decreasing the Iron and Nickel Content of Yttrium
 1.4.3 Reduction of Y Salts with Zn-Ca and Zn-Mg Alloys
 1.4.4 Reclaiming of Yttrium Metal Scrap
 1.4.5 Electron Beam Melting of Yttrium Sponge
 1.5 Uranium Metal by Carbon Reduction of UO₂
 1.6 Preparation of Tantalum Metal
 1.7 Preparation of High Purity Chromium
 1.8 Studies on Refining of Tungsten

2. Phase Equilibria and Thermodynamic Properties of Alloys
 2.1 Phase Diagram and Thermodynamic Properties of Thorium-Zinc Alloys
 2.2 Phase Diagram and Thermodynamic Properties for the Yttrium-Zinc System
 2.3 Zirconium-Zinc System
 2.4 Thermodynamic Properties for Uranium-Zinc and Zirconium-Zinc Compounds
 2.5 Thermodynamic Properties for U₂Zn₁₇ and Th₂Zn₁₇ from emf Measurements
 2.6 Tantalum-Zirconium System
 2.7 Uranium-Rhenium Alloy Investigation
 2.8 Thorium-Molybdenum Alloy Investigation
 2.9 Phase Relationships in the Nickel-Zirconium and Nickel-Hafnium Systems
 2.10 Thorium-Tantalum System
 2.11 Distribution of Solutes Between Liquid Lead and Zinc
 2.12 Yttrium-Oxygen System
 2.13 Ternary Metal-Carbon-Hydrogen Phase Systems
2.14 Aluminum-Niobium Alloys .. 41
2.15 The Solubility of Thorium in Vanadium 43
2.16 Zirconium-Cobalt Alloy Investigation 43
 2.16.1 Phase Relationships ... 43
 2.16.2 Crystallography .. 45
2.17 Barium-Barium Hydride System ... 46
2.18 Aluminum-Yttrium Alloy Studies .. 46
2.19 Aluminum-Tantalum Alloy Studies 48
2.20 Ternary Uranium-Thorium-Vanadium Alloys 49
2.21 Stability of Hf₅Sn₃ in the D₈₈ Structure 49
3. Physical and Mechanical Properties of Metals and Alloys 53
 3.1 Tensile Properties of Yttrium-Titanium and Yttrium-Zirconium
 Alloys ... 53
 3.2 Tensile Properties of Yttrium-Magnesium Alloys 54
 3.3 Effect of Hydrogen on Tensile Properties of Yttrium 55
 3.4 Mechanical Properties of High Purity Yttrium 55
 3.5 Plastic Properties of Vanadium 56
 3.5.1 Effect of Hydrogen on Ductility of Vanadium and V-Nb Alloys .. 56
 3.5.2 Effect of Oxygen on Vanadium and V-Ti Alloys 57
 3.6 Ductility of Chromium Metal and Cr-Y Alloys 59
 3.7 Plastic Properties of Thorium Metal 60
 3.8 Work-Hardening of Thorium ... 62
4. Solid State Investigations .. 64
 4.1 Magnetic Susceptibility of Aluminum-Vanadium Alloys 64
 4.2 Anisotropic Thermal Expansion of Indium 65
 4.3 Measurement of the Elastic Constants of Single Crystals of
 Thallium Metal .. 65
 4.4 Crystallographic Studies on the Nickel-Zirconium and Nickel-
 Hafnium Systems ... 66
 4.5 Vibrational Amplitudes of Atoms in Crystals 69
 4.6 Characteristics of the Uranium Transformations 71
 4.7 Magnetic Susceptibility of Sodium Tungsten Bronze 74
 4.8 Crystal Structures of YAl₃ ... 74
5. Separation Studies .. 77
 5.1 Liquid-Liquid Extraction .. 77
 5.2 Pyrometallurgical Separations 78
 5.2.1 Selective Oxidation-Reduction Reactions 78
 5.2.2 Distribution of Cerium, Yttrium and Protactinium Between
 Mg-38 w/o Th and KCl-LiCl Eutectic Containing MgCl₂ 85
 5.2.3 Distribution of Cerium Between Mg-38 w/o Th and U-5.2 w/o
 Cr ... 86
 5.2.4 Precipitation of solutes as Hydrides from Liquid Metal
 Solvents .. 86
6. Other Investigations .. 90
 6.1 Diffusion of Hydrogen in Thorium 90
 6.2 Diffusion of Carbon in Thorium 91
APPENDIX

I. List of Reports from the Ames Laboratory, July 1959 - June 1960

1. Reports for Cooperating Laboratories
2. Publications

II. List of Shipments, July 1959 - June 1960
ANNUAL SUMMARY RESEARCH REPORT IN METALLURGY

For the Period July 1959 through June 1960

This report is prepared from material
submitted by the group leaders of
the Laboratory

Previous research reports in this series are:

ISC-35 ISC-396
ISC-41 ISC-339
ISC-56 ISC-423
ISC-69 ISC-453
ISC-74 ISC-485
ISC-76 ISC-506
ISC-79 ISC-531
ISC-113 ISC-575
ISC-130 ISC-607
ISC-133 ISC-644
ISC-137 ISC-708
ISC-171 ISC-759
ISC-193 ISC-835
ISC-220 ISC-903
ISC-248 ISC-977
ISC-290 ISC-1050
ISC-300 IS-17
IS-193

METALLURGY

(Annual Report, July 1959 - June 1960)

Under the direction of F. H. Spedding, H. A. Wilhelm,
O. N. Carlson, P. Chiotti, W. L. Larsen,
R. E. McCarley, D. T. Peterson and
J. F. Smith

1. Metal Preparation and Purification Studies

1.1 Vanadium

1.1.1 Iodide Refining (O. N. Carlson and C. V. Owen)

The optimum conditions for maximum growth rate of iodide vanadium were established as 800-850°C for the feed temperature and 1200-1300°C for the filament temperature. A comprehensive study was made of the impurity transfer from feed to filament under these conditions. The transfer of interstitial impurities was investigated by varying the oxygen, carbon and nitrogen content of the starting material. Crude vanadium varying in these impurities was used in a number of crystal bar experiments. The results for carbon and oxygen, presented in Table I, show that these impurities are partially removed from vanadium by iodide refining. The final carbon value appears to be independent of the concentration in the feed whereas the oxygen content depends somewhat upon the amount present in the initial material.

Two methods were used to prepare crude vanadium of a purity suitable for use as the feed material. Vacuum arc melting was found
Table I
Transfer of Carbon and Oxygen from Vanadium Feed to Hot Filament

<table>
<thead>
<tr>
<th>w/o 0 in Feed</th>
<th>w/o 0 in Bar</th>
<th>w/o C in Feed</th>
<th>w/o C in Bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06</td>
<td>0.004</td>
<td>0.11</td>
<td>0.020</td>
</tr>
<tr>
<td>0.4</td>
<td>0.033</td>
<td>0.12</td>
<td>0.009</td>
</tr>
<tr>
<td>0.6</td>
<td>0.020</td>
<td>0.14</td>
<td>0.007</td>
</tr>
<tr>
<td>2.6</td>
<td>0.027</td>
<td>0.15</td>
<td>0.020</td>
</tr>
<tr>
<td>3.7</td>
<td>0.031</td>
<td>0.17</td>
<td>0.012</td>
</tr>
<tr>
<td>4.0</td>
<td>0.050</td>
<td>0.21</td>
<td>0.006</td>
</tr>
<tr>
<td>4.9</td>
<td>0.052</td>
<td>0.23</td>
<td>0.003</td>
</tr>
<tr>
<td>5.9</td>
<td>0.062</td>
<td>0.25</td>
<td>0.018</td>
</tr>
<tr>
<td>7.5</td>
<td>0.039</td>
<td>1.0</td>
<td>0.034</td>
</tr>
<tr>
<td>9.5</td>
<td>0.047</td>
<td>2.8</td>
<td>0.013</td>
</tr>
<tr>
<td>10.0</td>
<td>0.038</td>
<td>3.6</td>
<td>0.015</td>
</tr>
<tr>
<td>10.0</td>
<td>0.130</td>
<td>4.9</td>
<td>0.016</td>
</tr>
<tr>
<td>11.3</td>
<td>0.180</td>
<td>6.2</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.3</td>
<td>0.010</td>
</tr>
</tbody>
</table>

w/o = weight percent
to reduce the oxygen content of calcium-reduced vanadium from 0.15 w/o to 0.04 w/o. Upon iodide refining of this material vanadium containing 0.004 w/o oxygen was obtained. Crude vanadium containing 0.5 w/o yttrium was also tried as the feed material. Since yttrium has a high affinity for oxygen and is not transferred by the iodide process it was added to vanadium in an attempt to scavenge the oxygen from the vanadium matrix thus preventing the formation of a volatile oxyiodide. No evidence was found that oxygen can be held back in this way.

The transfer of metallic impurities in iodide refining of vanadium was also investigated. An arc-melted alloy containing metallic elements usually found either in calcium-reduced or iodide vanadium was used in this study. Approximately 0.1 w/o each of nickel, silicon, copper, iron, chromium, and titanium was added to the vanadium feed. The results of these experiments are summarized in Table II. It will be noted that nickel, aluminum, silicon, copper and titanium are partially transferred while iron and chromium are carried over quantitatively. Yttrium is not transferred under the conditions of the experiment.

An inconel unit with a capacity to produce about five pounds of crystal bar vanadium per run was constructed. The retort was three feet long by one foot in diameter with a wall thickness of 0.25 inch. Metal gaskets were employed as vacuum seals on the large retort in an effort to eliminate condensation of vanadium iodide on the water-cooled surfaces, which was encountered with the small retort. A vacuum-tight closure was maintained at head temperatures of 600°C by means of a platinum gasket. Bars of iodide vanadium weighing
Table II
Metallic Impurity Transfer from the Vanadium Feed at 800°C to the Iodide Bar at 1300°C

<table>
<thead>
<tr>
<th>Element</th>
<th>w/o in Feed</th>
<th>w/o in Bar</th>
<th>Percent Transferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>10.0</td>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>Cr</td>
<td>0.10</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>Cu</td>
<td>0.12</td>
<td>0.020</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td>0.036</td>
<td>30</td>
</tr>
<tr>
<td>Fe</td>
<td>0.07</td>
<td>0.05</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.07</td>
<td>100</td>
</tr>
<tr>
<td>Ni</td>
<td>0.13</td>
<td>0.007</td>
<td>5</td>
</tr>
<tr>
<td>Si</td>
<td>0.13</td>
<td>0.017</td>
<td>13</td>
</tr>
<tr>
<td>Ti</td>
<td>0.05</td>
<td>0.006</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
<td>0.010</td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>0.50</td>
<td>not detected</td>
<td>0</td>
</tr>
</tbody>
</table>

approximately four pounds were produced in a twenty-four hour growth period. Chemical analysis showed that the purity of this metal was 99.9% vanadium which is comparable to metal produced in the smaller units.

Vanadium sponge produced by the direct reduction of V₂O₅ with carbon was evaluated as a possible feed material. The results of this study showed that equivalent growth rates were obtained using sponge and the metallic impurities were somewhat lower. The oxygen content
was consistently higher in this metal than in that obtained from the bomb-reduced feed, however.

1.1.2 Purification of Vanadium by Calcium Deoxidation

(D. T. Peterson)

Electron beam melted vanadium which contained 870 ppm of oxygen was deoxidized by treatment with calcium vapor at 1000, 1100 and 1200°C. The oxygen contents of specimens deoxidized for a long time at each temperature were 25, 30 and 15 ppm respectively. The hardness of the metal decreased from 123 DPH before deoxidation to 73 DPH afterward. The kinetics of deoxidation are being investigated more completely but this method of purification appears to be quite effective in reducing the oxygen content of vanadium.

1.2 Niobium (Columbium)

1.2.1 By Carbon Reduction of Nb$_2$O$_5$ (H. A. Wilhelm and E. R. Stevens)

Work was continued on the reduction of Nb$_2$O$_5$ by carbon. The charge for each reduction was prepared according to the general formula:

$$\text{Nb}_2\text{O}_5 + (5+Z)\text{C}$$

Several series of reductions were run. In one series the values of Z were -0.4, -0.3, -0.2, -0.1, 0, +0.1, +0.2, +0.3 and +0.4. The reductions of this series were run simultaneously and the results are found in Table III. The charges were heated at a top temperature of 2000°C for a time which was necessary to allow the pressure of the system to return to its initial pressure of about 1 μ. This time was approximately three hours.
Table III

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Equation for Charge</th>
<th>Z</th>
<th>Hardness R_A</th>
<th>Workability (cold)</th>
<th>Analyses (PPM)</th>
<th>Oxygen</th>
<th>Carbon</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-4-23</td>
<td>$\text{Nb}_2\text{O}_5+(5+Z)\text{C}$</td>
<td>-0.4</td>
<td>84</td>
<td>No Roll</td>
<td>4590</td>
<td>159</td>
<td>3064</td>
<td></td>
</tr>
<tr>
<td>ES-4-24</td>
<td></td>
<td>-0.3</td>
<td>80</td>
<td>No Roll</td>
<td>3450</td>
<td>173</td>
<td>2055</td>
<td></td>
</tr>
<tr>
<td>ES-4-25</td>
<td></td>
<td>-0.2</td>
<td>76</td>
<td>No Roll</td>
<td>3500</td>
<td>170</td>
<td>2850</td>
<td></td>
</tr>
<tr>
<td>ES-4-26</td>
<td></td>
<td>-0.1</td>
<td>68</td>
<td>No Roll</td>
<td>2825</td>
<td>93</td>
<td>4099</td>
<td></td>
</tr>
<tr>
<td>ES-4-27</td>
<td></td>
<td>0</td>
<td>59</td>
<td>Rolled; no edge-crack</td>
<td>215</td>
<td>6910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES-4-30</td>
<td></td>
<td>+0.3</td>
<td>57</td>
<td>No Roll</td>
<td>250</td>
<td>1.85%</td>
<td>8031</td>
<td></td>
</tr>
<tr>
<td>ES-4-31</td>
<td></td>
<td>+0.4</td>
<td>60</td>
<td>No Roll</td>
<td>210</td>
<td>2.35%</td>
<td>5029</td>
<td></td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Temperature of Reduction</th>
<th>Final Pressure at Temperature</th>
<th>Hardness R_A</th>
<th>Workability (cold)</th>
<th>Analyses (PPM)</th>
<th>Oxygen</th>
<th>Carbon</th>
<th>Nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-4-63</td>
<td>2000°C</td>
<td>0.15×10^{-3} mm Hg</td>
<td>48</td>
<td>Rolled; edge-cracked</td>
<td>30</td>
<td>5761</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>ES-4-56</td>
<td>1900</td>
<td>0.16×10^{-3}</td>
<td>57</td>
<td>Rolled; no edge-crack</td>
<td>1000</td>
<td>178</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td>ES-4-57</td>
<td>1800</td>
<td>0.26×10^{-3}</td>
<td>73</td>
<td>No Roll</td>
<td>6000</td>
<td>111</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>ES-4-61</td>
<td>1700</td>
<td>0.31×10^{-3}</td>
<td>68</td>
<td>No Roll</td>
<td>3000</td>
<td>137</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>ES-4-70</td>
<td>1600</td>
<td>0.50×10^{-3}</td>
<td>55</td>
<td>Rolled; edge-cracked</td>
<td>730</td>
<td>6575</td>
<td>194</td>
<td></td>
</tr>
</tbody>
</table>
Another series of reductions was run to determine the minimum top temperature at which \(\text{Nb}_2\text{O}_5 \) can be reduced to essentially pure Nb. The reductions were made in a system capable of attaining a pressure of approximately \(1 \times 10^{-6} \) mm Hg. To insure a representative charge for each of these reductions, a bulk mixture of \(\text{Nb}_2\text{O}_5 \) and carbon (\(Z = 0 \) in formula above) was prepared and an appropriate sample was taken for each reduction. The top finishing temperatures which were investigated were \(2000^\circ \), \(1900^\circ \), \(1800^\circ \), \(1700^\circ \) and \(1600^\circ \)C. For each case the specific top temperature was finally maintained until the pressure of the system attained a constant low pressure. The results for these experiments are presented in Table IV. These data indicate that it may be possible to allow the reduction to take place at approximately \(1700^\circ \)C or lower and then raise the temperature up to \(2000^\circ \)C where there appears to be volatilization of an oxide of niobium. There is a possibility, however, that charge uniformity is difficult to maintain. Work will continue on this project during the next period.

1.2.2 Purification of Niobium by Iodide Refining (R. E. McCarley and W. Tadlock)

This work was continued with efforts to lower the concentration of oxygen incorporated in the crystal bar niobium during the iodide refining. Several reactions were performed in which niobium alloys containing 1-3 w/o yttrium were used as feed metal. This approach was tried since the heat of formation of yttrium oxide is sufficiently large that yttrium was expected to function as an oxygen getter in the presence of niobium. The properties of yttrium triiodide are also
favorable for this purpose. Thus, the relatively high melting point and low vapor pressure of YI_3 at the reaction temperature are desirable in order to maintain conditions conducive to good filament growth. However, results of these experiments were very unsatisfactory. The oxygen concentration in the crystal bar obtained from the Nb-Y alloy feed was comparable to that previously obtained using only Nb feed. In the light of these results, and the additional effort needed to prepare and recover the alloy feed, the method was dropped from further consideration.

Additions of anhydrous barium chloride to the reaction vessel were also made, since it had been reported by Rolsten$^{(1)}$ that this material was effective for the reduction of oxygen transfer to the crystal bar. Results of these experiments are given in Table V.

Table V
Effect of BaCl_2 Additions on Oxygen Transfer from Feed to Crystal Bar

<table>
<thead>
<tr>
<th>Reaction Temp. $^\circ\text{C}$</th>
<th>O_2 Conc., ppm</th>
<th>BaCl_2 used grams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feed</td>
<td>Xtal Bar</td>
</tr>
<tr>
<td>500</td>
<td>730</td>
<td>960</td>
</tr>
<tr>
<td>500</td>
<td>160</td>
<td>260</td>
</tr>
<tr>
<td>600</td>
<td>120</td>
<td>310</td>
</tr>
<tr>
<td>600</td>
<td>145</td>
<td>310</td>
</tr>
<tr>
<td>610</td>
<td>145</td>
<td>440</td>
</tr>
</tbody>
</table>

The data obtained in this work fail to support the observation made by Rolsten. There was, however, a major difference in the oxygen concentration of the feed metal used in this work and that of Rolsten who used metal of 0.3 to 0.4 w/o oxygen. Clearly there must be a source of oxygen other than that in the feed, which has contaminated the crystal bar metal and actually increased the oxygen concentration above that of the feed. The desired observation was thus completely obscured. Assuming that the unidentified source of oxygen was small, the same results may not have been noted for feed of high oxygen content. Experiments are in progress to identify and exclude miscellaneous sources of oxygen in these systems.

Preliminary observations on the outgassing operation have shown that oxygen is actually removed from the feed in this step. For example, two samples of feed metal, each initially containing 145 ppm oxygen, after outgassing for 24 hours at 800° and 2x10^-5 mm in a vycor vessel, were found to contain 68 and 40 ppm oxygen. At the same time the nitrogen content of these samples was increased from 512 ppm initially to 1115 and 1091 ppm after outgassing. In view of these results, the outgassing procedure appeared to be favorable for maintenance of the low oxygen concentration in the feed metal. Work is now underway to detect and eliminate oxygen which may be introduced into the crystal bar vessel along with the iodine after the outgassing operation.

Since the previous report in this series (IS-17) a new modification of the crystal bar vessel has been employed. The modification concerns only the method for retaining the feed metal in the vessel. A molybdenum
bucket which fits snugly within the vycor vessel has been used to retain the feed metal on the outer walls, while a molybdenum screen retained the metal on the inner side near the filament. This arrangement was designed to reduce the possible reaction of the feed metal with the walls of the vycor vessel. However, in the experiments in which this arrangement has been used, it was determined that the nitrogen content of the crystal bar metal was below the limits of detection. This corresponded to less than 10 ppm nitrogen in the refined metal and a purification factor of up to 1000 relative to nitrogen content in the feed. Apparently the molybdenum is a very effective getter for nitrogen, which may be liberated from the niobium feed during the course of the refining process.

1.2.3 Purification of Niobium Metal by Calcium Deoxidation

(D. T. Peterson)

Niobium metal which had been prepared by carbon reduction of niobium pentoxide so as to result in a high oxygen content product was deoxidized by treatment with calcium vapor at 1200°C. No oxygen analyses have been obtained but the hardness of the metal was lowered from 238 DPH to 115 DPH. The decrease in hardness indicates a significant removal of oxygen from the metal.

1.3 Thorium

1.3.1 Purification of Thorium by Iodide Refining (W. L. Larsen and P. E. Palmer)

A metal system for the purification of thorium by iodide refining has been constructed and successfully operated. It has a greater production rate and more durability than the Pyrex apparatus previously used.
In view of the success of other means of thorium refining and the commercial availability of iodide thorium, further work on the development of equipment for purifying thorium by this process will be discontinued. Thorium will be refined only as may be needed for alloy investigations.

1.3.2 **Purification by Calcium Deoxidation (D. T. Peterson)**

Exposure of thorium containing thorium oxide inclusions to calcium vapor at 1000°C resulted in the growth of a calcium oxide layer on the outer surface of the thorium and the disappearance of the thorium oxide particles in the thorium metal. The reaction occurred by diffusion of the oxygen in solution in the thorium to the surface where it reacted with calcium vapor. To maintain the equilibrium concentration of oxygen in the thorium, the thorium oxide inclusions dissolved in the metal beginning at the outer surface. The kinetics of the reaction were investigated and the rate of growth of the thorium oxide free rim in the thorium was found to follow the parabolic rate law. The oxygen content in thorium in equilibrium with calcium oxide and saturated calcium vapor was determined at 1000°, 1100° and 1200°C and found to be 16, 26 and 72 ppm respectively. The solubility limit of oxygen in thorium was determined at the same temperatures and found to be 35, 52 and 90 ppm respectively. The diffusion coefficients of oxygen in thorium were calculated at these temperatures.

This reaction appears to be an excellent way of lowering the oxygen content of thorium metal. Thorium containing up to 1300 ppm of oxygen can be treated and probably much higher concentrations could also be
tolerated in the starting metal. Oxygen contents of 16 ppm have been obtained and lower oxygen contents could probably be achieved. The purity of the thorium with respect to other impurities is not significantly changed. Calcium metal is not appreciably soluble in thorium and no change in the calcium content of the metal as a result of deoxidation was observed. Carbon and nitrogen were not removed from the thorium and indeed if the thorium is in contact with liquid calcium these impurities may be transferred to the thorium. However, if only calcium vapor were in contact with the thorium, no transfer of carbon or nitrogen would occur because both calcium carbide and nitride are nonvolatile at 1200°C. Deoxidation had no significant effect on the hardness or ductility of thorium and, in all of the specimens which were examined, the hardness of the deoxidized rim was identical to that of the undeoxidized core.

1.3.3 Preparation by Mg Reduction of ThCl₄ (D. T. Peterson)

Several minor modifications of the purification and reduction procedure described previously (2) have resulted in significant improvement in the purity of the thorium product. The amount of excess magnesium used in the reduction was decreased and solid pieces of special purity magnesium were substituted for the coarse ground magnesium used previously. These changes have resulted in the preparation of thorium containing 50 ppm of carbon and 24 ppm of nitrogen. The lowest oxygen content which has been achieved is 180 ppm but this is

now of little concern since a method of lowering the oxygen content to 16 ppm has been discovered. The softest thorium which has been produced by this method has a hardness of 35 DPH and was too soft to measure on the R_E scale. Plans are being made to produce thorium by this method on a several kilogram scale.

1.4 Yttrium Metal (O. N. Carlson, F. A. Schmidt and J. A. Haefling)

Major emphasis during this period was on improving the purity of yttrium metal. The purification of the Y-Mg alloy by a fused salt extraction has been described in detail.\(^{(3)}\) The method was scaled up to a 30-lb scale facilitating the preparation of several pounds of yttrium metal of 99.9% purity. Several other methods of preparing the Y-Mg intermediate alloy were also investigated.

1.4.1 Preparation of High Purity Y-Mg Alloy by Fused Salt Extraction

All of these experiments were carried out in tantalum crucibles to minimize metallic contamination of the yttrium metal. The Y-Mg alloy was prepared in the usual manner by the reduction of YF_3 with calcium in the presence of magnesium metal. This was followed by a refining step in which the Y-Mg alloy was contacted with a $\text{YF}_3:\text{CaCl}_2$ fused salt mixture at 900-950°C. In several experiments a second extraction with YCl_3 was performed. Yttrium metal containing 150 to 300 ppm oxygen, 10 ppm nitrogen, 100 ppm carbon, and 50 ppm fluorine was obtained.

was consistently prepared by this method. Total metallic impurities, consisting mostly of iron and nickel, varied from 300 to 800 ppm.

To facilitate preparation of larger amounts of high purity yttrium metal a tantalum-lined reduction vessel was constructed. A pot with a capacity to produce 30 pounds of yttrium metal per batch was fabricated and several reductions were made in this apparatus. The resulting yttrium metal was of comparable analytical purity to that obtained in the smaller experiments described above.

1.4.2 Decreasing the Iron and Nickel Content of Yttrium

Efforts were also made to prepare yttrium metal that was low in iron and nickel. These impurities are introduced into the YF₃ during hydrofluorination. Analysis of the YF₃ shows that 100 to 200 ppm of iron is present and about 50 ppm of nickel. Particular attention was devoted to the removal of iron and nickel from the YF₃-CaCl₂ fused salt mixture prior to reduction to the metal. Two methods employed were (1) electrolysis and (2) displacement with a more active metal. The iron content of the YF₃-CaCl₂ salt mixture was decreased from 150 to 75 ppm and the nickel content lowered from 50 to 15 ppm by passing a current through the fused salt. The second method, involving stirring of the molten salt mixture in contact with yttrium or titanium, resulted in substantial decrease in the iron and nickel content. Yttrium metal prepared by reduction of the purified YF₃-CaCl₂ mixture contained about 50 ppm iron and 20 ppm nickel.

1.4.3 Reduction of Y Salts with Zn-Ca and Zn-Mg Alloys

Attempts were made to prepare the Y-Mg alloy by direct reduction of Y₂O₃. Such an alloy would probably have a high oxygen content but
could then be purified by the refining technique described above.

Although thermodynamic data indicate that magnesium metal will not reduce Y_2O_3 the use of a Mg-Zn alloy reductant was tried since yttrium and zinc form a stable intermetallic compound with a high heat of formation. No reduction of yttrium oxide was obtained with the Zn-Mg alloy; however, a Zn-Ca reductant gave some reduction although the yields were low (25% of theoretical) and the oxygen content of the final yttrium was very high. Highest yields were obtained with Zn-5 w/o Ca alloy.

As has been reported previously, metal yields of less than 20 w/o are obtained by the reduction of YF_3 with magnesium. Attempts were made to reduce YF_3 with the Zn-Mg alloy in an effort to obtain higher yields of yttrium by taking advantage of the stability of the Y-Zn product. A series of reductions was carried out in a tantalum vessel at 900°C with stirring for one hour using various magnesium-zinc alloys as reductants.

Sufficient Zn-Mg alloy was used in each experiment to reduce 134g. of YF_3 assuming magnesium was the reductant. One experiment employing pure zinc as the reductant yielded no measurable amount of yttrium metal. Yttrium metal recoveries of 70% were obtained using a Zn-2.5 w/o Mg alloy reductant. A plot of yttrium metal obtained versus composition of the Zn-Mg alloy is presented in Fig. 1. In the high-magnesium range the yttrium metal yields were
determined by weight changes occurring in the alloy and salt phases as a result of the reduction reaction. In the low-magnesium range the alloy and slag did not separate cleanly thus making it difficult to obtain accurate weight changes. The yields in this range were determined from chemical analysis of the final alloy.

1.4.4 Reclaiming of Yttrium Metal Scrap

A method for reclaiming yttrium scrap metal has been developed. The process consists of heating anhydrous MgCl₂ in contact with yttrium metal at 900°C. The reaction is

\[Y(\text{excess}) + MgCl_2 \rightarrow Y-25 \text{ w/o Mg} + YCl_3 \]

whereby the YCl₃ extracts oxygen from the Y-Mg alloy. In this way scrap metal containing greater than 3000 ppm oxygen has been successfully reclaimed and yttrium containing less than 500 ppm oxygen obtained. The reaction has been satisfactorily applied to yttrium turnings, sponge or massive pieces. The YCl₃ produced by this reaction can be purified by distillation.

1.4.5 Electron Beam Melting of Yttrium Sponge

Approximately 12 pounds of yttrium sponge was sent to the National Research Corporation, Newtown, Mass. for electron-beam melting. The initial sponge contained 890 ppm oxygen, 60 ppm nitrogen and 1817 ppm fluoride. The fluoride content of the melted ingot had decreased to 95 ppm but the nitrogen and oxygen contents of the ingot had increased during melting, resulting from a vacuum leak that developed in the system during the heating operation.
1.5 Uranium Metal by Carbon Reduction of \(\text{UO}_2 \) (H. A. Wilhelm and E. P. Neubauer)

The two major problems of the carbothermic reduction of \(\text{UO}_2 \) are; (1) that of lowering the quantity of carbon remaining in the product metal and (2) that of obtaining a container which will withstand the attack of the molten metal at the high temperature required for the reduction. A possible solution to carbon contamination may be found in the tendency of free carbide to concentrate near the top of the liquid metal. Rather than doing the liquation in a separate procedure it was hoped that it could be incorporated into a continuous operation of producing and casting the metal. Efforts to date have met with only very limited success, however.

The course of the reduction reaction was followed by collecting the gas evolved at 50 centigrade degree intervals for increasingly higher temperatures. Seventy-five percent of the gas is given off below 1700°C, where the reaction subsides until 2000°C. This may lead to a better understanding of the reaction and possibly throw some light on a means of by-passing the high temperature fusion of the product.

The molten uranium metal at the temperature required in the carbothermic reduction of \(\text{UO}_2 \) is very reactive, and consequently it has posed a serious problem as to how it can be contained. \(\text{UO}_2 \) crucibles have been used, but the vapor pressure of \(\text{UO}_2 \) at the high temperatures is such that the crucible life under vacuum conditions in a graphite environment is very short. Also, the \(\text{UO}_2 \) crucibles have to be broken
away from the solidified metal each time. A desirable crucible would be inert to the molten uranium and stable in contact with a graphite heater.

In an attempt to improve upon the properties of the UO_2 crucible or to replace it, various mixtures of UO_2, ThO_2, ZrO_2, Y_2O_3, CaO, TiO_2 and BeO were made into crucibles. In many cases the vaporization problem was overcome, but the molten uranium appeared to attack to some degree every crucible tested. In some instances the contamination of the metal from the crucible was quite appreciable. Further work is to be done in this area.

1.6 Preparation of Tantalum Metal (H. A. Wilhelm and C. B. Hamilton)

The problem of obtaining pure ductile tantalum metal by the carbon reduction of tantalum pentoxide is still under investigation.

An attempt to lower the 2200°C temperature needed to obtain good metal by the addition of silicon metal or silicon dioxide proved unsuccessful. Apparently the silicon metal forms silicon carbide which cannot be oxidized by the tantalum oxide, thus causing a high carbon content in the final metal. Silicon dioxide showed little effect on the reduction, except that it tended to lower the yield of tantalum metal.

A comparison was made between two forms of carbon—an acetylene black and graphite. Both forms gave good yields along with soft metal. However, the graphite gives more compact charges but is less pure.

The graphite powder received from the National Carbon Company had 18% residue on ignition. This residue consisted mainly of iron.
with traces of silicon, aluminum, titanium and vanadium. The best results in purifying this graphite powder by a simple process were obtained by washing it in concentrated hydrochloric acid.

A feed material for the resistance heating of pressed bars was made by first heating a mixture of a stoichiometric amount of carbon and tantalum pentoxide to 1600°C to give a product containing mainly carbide and an oxide. Several observations were made in the resistance heating of bars made from this feed material. Care should be taken when heating the bar at temperatures between 1800°C and 1900°C since, if the bar is heated too rapidly, the center will melt before the outside of the bar reacts. The addition of titanium dioxide to the pressed bar does not change the heating characteristics of the bar even when additional carbon is added.

A "Wet Test" gas meter was used to get a direct volume measurement of gases pumped from the reaction mixture with increasing temperature during a carbon reduction of tantalum pentoxide. Previously an approximate volume was obtained by multiplying the pressure in the vacuum system by the measured length of time at each temperature. The volume of gas evolved vs. temperature of charge curve compared favorably with the curve obtained by the earlier method. Most of the reaction is completed at temperatures well below 2000°C but a temperature of 2200°C or better and a vacuum are required to remove any excess oxygen from the metal.

1.7 Preparation of High Purity Chromium (O. N. Carlson, D. T. Peterson and F. A. Schmidt)

During the period of this report a program was initiated on the
preparation of high-purity chromium metal. Several refining techniques are being explored.

One method consisted of the dissolution and re-precipitation of chromium in molten calcium metal. Commercially pure chromium metal containing 5000 ppm oxygen and 60 ppm nitrogen was sealed in a tantalum crucible with freshly distilled calcium. The tantalum crucible was sealed under an argon atmosphere and placed in a resistance furnace. The bottom of the calcium column was held at 1200°C and the upper portion at 900°C. In this temperature gradient chromium dissolved in the calcium at the higher temperature and precipitated onto the crucible wall at the lower temperature. After a heating period of 36 hours the precipitated chromium was isolated by leaching out the calcium with dilute HNO₃. The chromium crystals were dried, compacted and arc melted. The resulting metal contained 125 ppm oxygen and 8 ppm nitrogen.

Iodide chromium containing 25 ppm oxygen and 40 ppm nitrogen was also treated in the above manner; the resulting metal contained 30 ppm oxygen and 70 ppm nitrogen after precipitation. This increase in the nitrogen value suggests the possibility of a leak; or it may have been picked up from the calcium.

Attempts were made to purify chromium by deoxidation with calcium metal at elevated temperature. Pieces of commercial chromium were held in contact with molten calcium at a uniform temperature of 1000°C for 72 hours. A second experiment was conducted at 1200°C
for the same length of time. Upon microscopic examination of the chromium treated at 1000°C it was observed that no change had occurred in the microstructure. However, the chromium treated at 1200°C was observed to contain noticeably less of the oxide phase, with the outer edge of the sample virtually free of inclusions.

Attempts were made to find a low melting chromium-rich alloy that could be used in a fused salt extraction step such as has been employed for the Y-Mg alloy. Volatile metals such as bismuth, indium, cadmium, magnesium, antimony and zinc were tried as alloying agents but none were found to lower the melting point of chromium sufficiently.

Chromium trifluoride was prepared for possible use as a fused salt extractant or for direct reduction to the metal. Chromium trioxide was reacted with NH₄F·HF in the presence of an HF atmosphere.

1.8 Studies on Refining of Tungsten (O. N. Carlson and K. Solie)

A study of methods of refining tungsten metal was initiated during this period. High purity tungsten is of interest in the investigation of the brittle-ductile transition in tungsten metal. An electron-beam furnace of a design similar to that described by Calverly (4) is now under construction for use in zone refining of tungsten. The ductility of tungsten is improved by electrolysis in an aqueous solution of KOH and KNO₃ using the tungsten specimen as the anode. Several specimens were found to be ductile in a bend test following the electrolysis treatment. Further studies are underway to elucidate this surface phenomenon.

2. Phase Equilibria and Thermodynamic Properties of Alloys

2.1 Phase Diagram and Thermodynamic Properties of Thorium-Zinc Alloys (P. Chiotti and K. Gill)

Work on the thorium-zinc system has been completed. The phase diagram has been presented in an earlier report, ISC-1050, and other details in IS-17. The final relations for the zinc vapor pressure over various two phase regions are summarized in Table VI.

Table VI

<table>
<thead>
<tr>
<th>Solid Two-Phase Regions of the Thorium-Zinc System</th>
<th>log₁₀P atm. = aT⁻¹ + b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium Phases:</td>
<td></td>
</tr>
<tr>
<td>Th-Th₂Zn</td>
<td>-9743</td>
</tr>
<tr>
<td>Th₂Zn-ThZn²</td>
<td>-9119</td>
</tr>
<tr>
<td>ThZn₂-ThZn₄</td>
<td>-8048</td>
</tr>
<tr>
<td>ThZn₄-Th₂Zn₁₇</td>
<td>-7512</td>
</tr>
<tr>
<td>a, a*</td>
<td>77, 6.422</td>
</tr>
<tr>
<td>b, b*</td>
<td>0.073, 0.061</td>
</tr>
<tr>
<td>Temp. Range °K</td>
<td>875-1215, 880-1180, 800-1220, 855-1190</td>
</tr>
</tbody>
</table>

* a* and b* are the standard deviations for the constants a and b, respectively.

The relations in Table VI were combined with known data for the free energy of vaporization and sublimation for pure zinc to obtain the standard free energy of formation for the compounds formed. The derived expressions are summarized in Table VII. Since no data are available for the specific heats of the compounds, the derived relations were simplified to linear functions of the absolute
Table VII

Expressions for ΔF° for the Compounds in the Thorium-Zinc System

<table>
<thead>
<tr>
<th>Equations</th>
<th>Temp. Range °K</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta F^\circ(\text{Th}_2\text{Zn}) = -16,271 + 5.344T$</td>
<td>875-1215</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{ThZn}_2) = -28,261 + 10.290T$</td>
<td>880-1180</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{ThZn}_4) = -45,297 + 18.314T$</td>
<td>800-1220</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{Th}2\text{Zn}{17}) = -145,192 + 72.068T$</td>
<td>855-1190</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{Th}_2\text{Zn}) = -13,449 + 1.184T$</td>
<td>Extrapolation</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{ThZn}_2) = -22,616 + 1.970T$</td>
<td>692.8 to 298°K</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{ThZn}_4) = -34,010 + 1.686T$</td>
<td>"</td>
</tr>
<tr>
<td>$\Delta F^\circ(\text{Th}2\text{Zn}{17}) = -97,224 + 1.475T$</td>
<td>"</td>
</tr>
</tbody>
</table>

temperature. More precise relations can be derived from the zinc vapor pressure relations in Table VII once heat capacity data are available. Within the temperature range 773 to 1173°K the free energy given by the relations in Table VII is estimated to be within 2% of the true values, except for $\Delta F^\circ(\text{Th}_2\text{Zn}_{17})$ which is probably not better than ±5%. The standard enthalpies of formation which may be calculated from the expressions in Table VII are estimated to be within ±10% of the true values within the same temperature range. The calculated room temperature ΔS° values are all small, -1 to -2 entropy units. These values were determined by extrapolation of the measured vapor pressure data and it is difficult to estimate the probable
error. However, these small negative values for ΔS° are consistent with the supposition that the standard entropies, S_{298}, for the compounds do not differ markedly from the sum of the entropies of the pure constituents and that Δcp for the respective reactions is small and negative. Some calculated values for these thermodynamic quantities are given in Table VIII.

Table VIII
Calculated Values for the Standard Free Energy, Enthalpy, and Entropy of Formation

<table>
<thead>
<tr>
<th>Compound</th>
<th>Temp.</th>
<th>$-\Delta F^\circ$ kcal/mole</th>
<th>$-\Delta H^\circ$ kcal/mole</th>
<th>$-\Delta S^\circ$ cal/mole K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th$_2$Zn</td>
<td>298</td>
<td>13.2</td>
<td>13.4</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>773</td>
<td>12.1</td>
<td>16.3</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>973</td>
<td>11.1</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td></td>
<td>1173</td>
<td>10.0</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td>ThZn$_2$</td>
<td>298</td>
<td>22.0</td>
<td>22.6</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>773</td>
<td>20.3</td>
<td>28.3</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td>973</td>
<td>18.2</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td></td>
<td>1173</td>
<td>16.2</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td>ThZn$_4$</td>
<td>298</td>
<td>33.5</td>
<td>34.0</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>773</td>
<td>31.1</td>
<td>45.3</td>
<td>18.3</td>
</tr>
<tr>
<td></td>
<td>973</td>
<td>27.5</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td></td>
<td>1173</td>
<td>23.8</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td>Th2Zn${17}$</td>
<td>298</td>
<td>96.8</td>
<td>97.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>773</td>
<td>89.5</td>
<td>145.2</td>
<td>72.1</td>
</tr>
<tr>
<td></td>
<td>973</td>
<td>75.1</td>
<td>''</td>
<td>''</td>
</tr>
<tr>
<td></td>
<td>1173</td>
<td>60.7</td>
<td>''</td>
<td>''</td>
</tr>
</tbody>
</table>

A paper giving further details and summarizing this work has been submitted for publication in The Transactions of the Metallurgical Society of AIME.
2.2 Phase Diagram and Thermodynamic Properties for the Yttrium-Zinc System (P. Chiotti and K. Gill)

Results of thermal analyses and metallographic data thus far obtained for the yttrium-zinc system are summarized in the phase diagram presented in Fig. 2. As in the thorium-zinc system thermal analyses were made on alloys sealed in tantalum crucibles. In addition to the seven compounds shown on the phase diagram, weak thermal arrests at 985°C and 745°C in the composition range between YZn and YZn$_2$ indicate the possibility of another compound in this region which is unstable outside the temperature range 985 to 745°C. This possibility is being investigated.

Zinc vapor pressure data as a function of temperature has been obtained for the two phase region Y-YZn over the temperature range 880-1110°K. The vapor pressure is represented by the relation

$$\log P = \frac{-11,351}{T} + 6.947$$

where P is in atmospheres and T is degrees Kelvin.

2.3 Zirconium-Zinc System (P. Chiotti and G. R. Kilp)

The phase diagram for the zinc-zirconium system has been published

2.4 Thermodynamic Properties for Uranium-Zinc and Zirconium-Zinc Compounds (P. Chiotti and G. R. Kilp)

The results of zinc vapor pressure measurements and calculated standard free energy, enthalpy and entropy of formation for various temperatures for the compounds in the uranium-zinc and zirconium-zinc systems have been summarized and published in the Transactions of the Metallurgical Society of AIME, vol. 218, pp. 41-44, Feb., 1960.

2.5 Thermodynamic Properties for U_2Zn_{17} and $\text{Th}_2\text{Zn}_{17}$ from emf Measurements (P. Chiotti and M. Koizumi)

Measurements of the emf of appropriate electrolytic cells were made in an attempt to check the standard free energy, enthalpy and entropy of formation for the compounds U_2Zn_{17} and $\text{Th}_2\text{Zn}_{17}$ as calculated from vapor pressure data. Measurements were made over the temperature range of 500 to 650°C with cells of the type

$$\text{M(s)} / \text{KCl-LiCl-MC}_x \ell / \text{Zn(}\ell\text{), M}_2\text{Zn}_{17(s)}$$

where M refers to pure uranium or thorium and (s) and (ℓ) refer to solid and liquid states respectively. The salt phase, approximately 70 g, consisted of KCl-LiCl eutectic containing three to five w/o uranium chloride or thorium chloride. The eutectic salt containing an appropriate amount of ZnCl_2 was dried by passing anhydrous HCl through it for about five hours at a temperature below its melting point, and an additional ten hours at 500°C. The system was then evacuated to remove dissolved HCl and thereafter maintained under
a helium atmosphere. Cleaned zinc and metal shavings (uranium or thorium) were added to the dried salt. The ZnCl₂ in the salt was displaced by the more active metal component. The pure metal anode was suspended in the salt by means of a tungsten wire. A tungsten wire was also used to make contact with the zinc-rich liquid cathode. Both silica and tantalum were tried as containers. Tantalum proved satisfactory for both the uranium and thorium cells. No visible attack of silica occurred with uranium but attack was evident in the case of thorium.

In several experiments it was observed that the anodes became contaminated with zinc after the cell had been operated for one or two weeks. Solubility of zinc in the salt phase was suspected as the source of contamination. However, qualitative tests showed no detectable zinc in salt samples withdrawn from the cells. Examination of the tungsten anode lead revealed zinc crystallites had formed on the cold part of the lead. These apparently had formed by condensation of zinc vapor. Consequently zinc may have reached the anode by surface diffusion or film flow of liquid zinc along the tungsten lead. Thereafter the anode lead was enclosed in a small quartz tube with a flared bottom which extended to within a centimeter of the fused salt surface. With this arrangement no further contamination of the anode was detected and the data discussed below were obtained.

The measured emf's for the uranium cell contained in silica can be represented by the relation

\[E = 0.7903 - 5.32 \times 10^{-4} T, \]
and for the same cell contained in tantalum by the relation

\[(2) \quad E = 0.5977 - 1.101 \times 10^{-4}T - 2.686 \times 10^{-7}T^2. \]

In the case of the thorium cell contained in tantalum the corresponding relation is

\[(3) \quad E = 0.6637 - 1.525 \times 10^{-4}T - 1.32 \times 10^{-7}T^2. \]

In the uranium cell the measured emf is related to the partial molar free energy of solution of solid uranium in the saturated zinc phase by the relation

\[\Delta F_U = -nFE = RT\ln a_U. \]

Since the zinc liquid contains very little uranium, 0.004 to 0.5 a/o in the temperature range 500 to 650°C, the deviation of zinc from unit activity may be considered negligible and

\[\Delta F^\circ(U_2Zn_{17}) = -2nFE = -6(23,060)E. \]

Similar relations may be written for the thorium cell.

Values for \(\Delta F^\circ \), \(\Delta H^\circ \) and \(\Delta S^\circ \) for \(U_2Zn_{17} \) calculated from the emf data for 500°C and 600°C are in fair agreement with the corresponding values obtained from vapor pressure data. The corresponding values for \(Th_2Zn_{17} \) are also in fair agreement if it is assumed that the valence of thorium in the salt is four. The agreement is poor if the valence is taken to be three. Data presented in section 5.2.1 indicate that the valence of thorium as chloride in contact with liquid zinc saturated with thorium is three.

In view of these complicating factors, it must be concluded that the thermodynamic properties determined from the vapor pressure
data are more reliable than those obtained from the above emf
data.

2.6 Tantalum-Zirconium System (W. L. Larsen and D. E. Williams)

The phase diagram has been established for the tantalum-zirconium
alloy system and is contained in Fig. 3. The diagram in its present form
was constructed from the results of metallography, X-ray diffraction,
electrical resistance and dilatometric measurements, and melting point
determinations.

Tantalum and beta-zirconium exhibit complete solid solubility at
temperatures just below the solidus. This solid solution decomposes
monotectoidally at 800°C and 12
w/o tantalum. The solubility of
tantalum in alpha-zirconium is 2
w/o at the monotectoid tempera-
ture and decreases with decreasing
temperature.

Metallographic studies conducted
during this period confirm the work
donc previously.

2.7 Uranium-Rhenium Alloy Investigation (W. L. Larsen, R. J.
Jackson and J. F. Smith)

The present status of the investigation is summarized in the tenta-
tive constitutional diagram presented in Fig. 4.
There are two eutectic reactions, one between the Re₂U intermediate phase and each of the terminal solid solutions. These reactions occur at 1104±3°C and 2140±60°C at compositions of approximately 12 and 65 w/o rhenium respectively.

There are two eutectoid reactions due to the solid state transformations in uranium. The alpha-beta and beta-gamma eutectoid horizontals occur at 643±3°C and 680±3°C respectively. The eutectoid composition for the alpha-beta transformation is estimated to be 1.5 w/o rhenium. The eutectoid composition for the beta-gamma transformation is about 6 w/o rhenium.

An intermediate phase, Re₂U, is formed congruently on cooling at about 2200°C. This phase undergoes an allotropic transformation at 180±2°C. Hatt(5), who has studied the crystal structure of this phase reports that the high temperature modification is a C14 hexagonal Laves phase, whereas the low temperature modification is orthorhombic. Experimental data indicate that the transformation temperature is

essentially the same on either side of the stoichiometric composition. By inference, therefore, the solubility of either rhenium or uranium in the compound must be small.

An unidentified phase has been found by X-ray diffraction to exist on the uranium side of the Re₂U intermediate phase. Extensive X-ray diffraction studies have been made to determine its composition and the manner in which it forms, however, neither of these investigations is complete. It seems possible that this phase may well be metastable.

2.8 Thorium-Molybdenum Alloy Investigation (W. L. Larsen and P. E. Palmer)

The 1400°C eutectic horizontal determined previously from melting point data was confirmed by electrical resistance measurements. Efforts are still being made to locate accurately the solubility limits for the entire diagram. Metallography indicates the room-temperature solubility of thorium in molybdenum is less than one w/o.

2.9 Phase Relationships in the Nickel-Zirconium and Nickel-Hafnium Systems (W. L. Larsen and M. E. Kirkpatrick)

The phase diagrams of the nickel-zirconium and nickel-hafnium systems are being determined in conjunction with the crystallographic investigation of the intermetallic compounds of these systems. The proposed diagram for the nickel-zirconium system based on metallographic and melting point data is contained in Fig. 5.
The investigation of the nickel-hafnium system has established the existence of the following intermetallic compounds: NiHf$_2$, NiHf, Ni$_{11}$Hf$_9$ and Ni$_{10}$Hf$_7$. Crystallographic data show these to be isostructural with the corresponding nickel-zirconium phases.

2.10 Thorium-Tantalum System (W. L. Larsen, O. D. McMasters and D. E. Williams)

The study of the thorium-tantalum system was continued. X-ray diffraction, electrical resistance measurements, and metallography have been used to reveal the form of the diagram near the thorium alpha-beta transformation at the thorium-rich end of the diagram. The transformation is observed at 1380±10°C in iodide thorium. The addition of tantalum lowers the transformation only slightly; the eutectoid temperature being 1360±10°C. Lattice parameter measurements show the maximum solubility of tantalum in alpha thorium to be less than 0.2 w/o. The solubility in beta thorium is undetermined but probably slight. The solubility of thorium in tantalum has not yet been determined but is believed to be <0.1 w/o at
the eutectoid temperature and <1 w/o at the eutectic temperature.

On the basis of metallographic data the eutectic composition has been found to be between 2 and 4 w/o tantalum instead of 7.5 w/o as previously deduced from liquidus measurements. Efforts to locate the eutectic point more precisely will be continued.

![Fig. 6. A tentative phase diagram for the thorium-tantalum alloy system.](image)

The possibility of reactions occurring upon long heat treatment will be investigated.

The tentative phase diagram based upon work to date is presented in Fig. 6.

2.11 Distribution of Solutes Between Liquid Lead and Zinc (D. T. Peterson and R. Kontrimas)

The results of the study of the distribution of silver have been published in the Journal of Physical Chemistry, Vol. 64, 362 (1960). The title of the paper is "Distribution of Silver Between Liquid Lead and Zinc".
Abstract—The distribution coefficient of silver between liquid zinc and lead was determined over a wide concentration range at three temperatures. The coefficient did not change with concentration. The enthalpy of transfer of silver from lead to zinc was -10.9 kcal. This agrees with the value calculated from the partial molar enthalpy of silver in liquid zinc and lead.

The distribution coefficients for copper between liquid lead and zinc have been determined over a considerable range of temperature and composition. No variation of the distribution coefficient with composition was observed. The variation with temperature is given by the expression \(\log K_d = 4.308/T - 2.320 \). From this temperature dependence, the enthalpy of transfer was calculated and found to be -19.7 kcal. The distribution of a selected number of solute metals will be measured and the results analysed to determine what factors control the distribution coefficients.

2.12 Yttrium-Oxygen System (O. N. Carlson and W. D. McMullen)

A series of arc-melted alloys containing 0.015, 0.05, 0.1, 0.2, 0.3, 2.0 w/o oxygen was studied by microscopic and X-ray examination and by electrical resistivity measurements. The limit of solid solubility lies somewhere between 150 and 500 ppm \(\text{O}_2 \) as determined from a plot of lattice parameter versus oxygen concentration. There is evidence from resistivity and microscopic data that a eutectoid occurs at approximately 1225°C and at a composition of 0.8 w/o oxygen.
As part of this investigation some of the properties of yttrium metal of 99.9+ purity containing 200 ppm oxygen as the principal impurity were determined. The lattice constants for this metal were:

\[a = 3.662 \text{Å} \text{ and } c = 5.752 \text{Å} \text{ and the melting point was determined as } 1495 \pm 5^\circ \text{C}. \]

The variation of the composition of thorium dihydride at several temperatures as a function of the hydrogen pressure was established. This information will be used to calculate the diffusivity of hydrogen in thorium dihydride from the known parabolic reaction rates.

An investigation to determine whether metals other than thorium form compounds of the type \(\text{MC}_x \cdot \text{MH}_y \) has been started. Preliminary results indicate that titanium forms a compound with the formula \(\text{TiC} \cdot \text{TiH}_2 \).

2.14 Aluminum-Niobium Alloys (H. A. Wilhelm and T. G. Ellis)

The investigation of the niobium-aluminum binary alloy system was continued with emphasis on alloys containing less than 25 a/o niobium in aluminum. The alloys were examined and analysed using metallographic, thermal and X-ray techniques.

Alloys of niobium and aluminum having compositions from 0.01 to 10 w/o niobium were prepared by dissolving appropriate quantities of \(\text{Al}_3\text{Nb} \) in aluminum. The dissolution was carried out at 1500°C in alumina (\(\text{Al}_2\text{O}_3 \)) crucibles under one atmosphere of helium
using induction heating. After dissolution the alloys were furnace
cooled to room temperature. A portion of each alloy was subsequently
annealed in vacuo for 18 hours at 400°C and furnace cooled. All
samples were prepared for microscopic examination by mechanical
polishing and by etching with a solution containing 50 parts H₂O, 10
parts 48% HF, 5 parts HNO₃ and 5 parts H₂SO₄ by volume.

Macroscopic and microscopic examination showed a "fern like"
dendritic structure surrounded by a different phase in all alloys, both
"as cast" and annealed. Those alloys which contained greater
than 0.03 w/o niobium also contained Al₃Nb. The boundary
between the "fern like" phase and the matrix was sharp and con­
tinuous. Also, the "fern like" phase was continuous across major
grain boundaries in some cases.

A 5 w/o niobium alloy previously used in thermal
analysis was also examined. During thermal analysis much of the
undissolved Al₃Nb settled to the bottom of the melt creating a niobium
rich layer at the bottom with respect to the top. Examination of the
junction between the two layers showed the "fern like" dendritic
structure in the top layer similar to that discussed above. The "fern­
like" phase of the top layer became the matrix phase in the region of
high Al₃Nb concentration.

An X-ray analysis of several alloys by the Debye-Scherrer powder
method gave no indication of any phase other than aluminum solid
solution and Al₃Nb. Also no change was noted in the lattice constant
for aluminum solid solution from that of pure aluminum.
A five w/o niobium in aluminum alloy was thermally analysed between 500° and 700°C. Immediately after each alloy analysis, the apparatus was calibrated using 99.99+ aluminum as a standard. Niobium was found to raise the melting point of aluminum by 3°C. It appears that Al₃Nb reacts peritectically with aluminum rich liquid at 663°C to give an aluminum niobium solid solution containing approximately 0.03 w/o niobium. The effort on the investigation of the niobium aluminum phase diagram has recently been curtailed in view of published results of similar work.⁶

2.15 The Solubility of Thorium in Vanadium (W. L. Larsen and P. E. Palmer)

Melting point data and electrical resistance measurements have confirmed metallographic evidence of limited solid solubility of thorium in vanadium. The solid solubility limit at the eutectic temperature, 1415°C, is less than one w/o.

The results from high-temperature X-ray diffraction studies of the solubility limits have so far been inconclusive due to specimen oxidation.

2.16 Zirconium-Cobalt Alloy Investigation

2.16.1 Phase Relationships (W. L. Larsen, W. H. Pechin, and D. E. Williams)

Based upon the data obtained during this reporting period a more nearly complete phase diagram, as shown in Fig. 7 is presented.

The 1225°C eutectic has been established at 86 w/o cobalt. It appears that there are two peritectic reactions yielding the phases Co_4Zr and $\text{Co}_{11}\text{Zr}_2$. The upper reaction isotherm occurs at 1350°C and extends to approximately 76 w/o cobalt. The lower isotherm occurs at 1270°C and extends to approximately 81 w/o cobalt.

The phase previously reported as the line compound ZrCo_2 has been found to exhibit appreciable solid solubility. In the vicinity of 1300°C this solubility range extends at least from 56 to 60 w/o cobalt. There is some evidence for decreasing solubility with decreasing temperature.

During this period considerable effort was spent in developing ways of preparing alloys by powder metallurgical means in the compositional region containing the two peritectic reactions. Arc cast alloys of this general composition usually fractured upon cooling and were difficult to equilibrate. With improved methods of sample preparation the more rapid completion of the phase diagram is expected.
Single crystals of CoZr$_2$ were obtained by heating an alloy of zirconium-rich composition, with respect to stoichiometry, to just above the eutectic isotherm and allowing gravitational separation of the liquid from the network of primary crystals. One of these crystals was aligned on the Weissenberg camera for X-ray examination. The diffraction symmetry and characteristic extinction conditions were obtained from hk0 data taken with Cu Kα radiation and from hk0, hkl, hk2, and hk3 Mo Kα data. These data are compatible with the tetragonal space groups D$_{4h}^{18}$-I4/mcm, C$_{2v}^{10}$-I4cm, and D$_{2d}^{10}$-I4c2.

Lattice parameters were measured from Weissenberg and rotation photographs taken with Cu Kα radiation: $a_0 = 6.31\AA$ and $c_0 = 5.44\AA$. Qualitative agreement in both the relative intensities and positions of the diffraction peaks was found when hk0 Cu Kα photographs of CoZr$_2$ and NiZr$_2$ were compared. It is now open to question whether the hexagonal crystals, previously examined and thought to be CoZr$_2$ (IS-17), represent a polymorphic form, a binary phase of different composition, or a phase stabilized by contamination.

For the tetragonal CoZr$_2$ diffraction intensities were visually estimated from timed exposures of hk0 Weissenberg and h0l precession patterns taken with Mo Kα radiation. These data were corrected for Lorentz and polarization effects but have not as yet been corrected for absorption or dispersion effects. The structure of NiZr$_2$ was chosen as a trial structure for CoZr$_2$. This trial structure was refined by a
least squares method with the IBM-650 computer. The refinement with h0l data produced a discrepancy index,
\[R = \frac{\sum |F_0| - |F_c|}{\sum |F_0|}, \] of 0.089 for the following structure:

Space Group D\textsubscript{4h}^{18}--I4/mcm

with 4 Co at (0, 0, 0; 1/2, 1/2, 1/2) ± (0, 0, 1/4)
and 8Zr at (0, 0, 0; 1/2, 1/2, 1/2) ± (x, 1/2+x, 0; 1/2+x, x, 0)

with x = 0.1679 ± 0.0019.

This structure is the C16 structure typified by CuAl\textsubscript{2}. Further refinement with hkl data is in progress.

2.17 Barium-Barium Hydride System (D. T. Peterson and M. Indig)

The results of this investigation have been published in the Journal of the American Chemical Society, Vol. 82, 5645 (1960). The title of the article is "The Ba-BaH\textsubscript{2} Phase System".

Abstract—The Ba-BaH\textsubscript{2} phase diagram was established by thermal analysis and chemical analysis of equilibrated phases. The m.p. of barium is raised to a peritectic at 950° and 66 mole % BaH\textsubscript{2}. A phase transformation in BaH\textsubscript{2} was found at 550°. The m.p. of BaH\textsubscript{2} obtained by extrapolation of the liquidus curve was 1200°. The solubility of BaH\textsubscript{2} in solid barium at 370° was 9.8 mole %.

2.18 Aluminum-Yttrium Alloy Studies (H. A. Wilhelm and R. L. Snyder)

X-ray diffraction and other studies indicate that at room temperature possibly five intermetallic compounds exist between yttrium and aluminum. These compounds are YA\textsubscript{13}, YA\textsubscript{12}, YA\textsubscript{1}, Y\textsubscript{3}Al\textsubscript{2} and Y\textsubscript{2}Al.
Eutectics exist between Al and YAl$_3$, between Y$_2$Al and yttrium and possibly between YAl and Y$_3$Al$_2$. Evidence points to YAl$_3$ existing in two closely related crystalline modifications; however, no evidence of a transition from one form to the other in the pure compound has been found. More detailed information on YAl$_3$ structures is reported in section 4.8 of this report.

Heat of formation data indicate that YAl$_2$ with a value of 58.2 Kcal/mole is the most stable of the above intermetallic compounds. This compound is highly corrosion resistant to high temperature water and high temperature air; however, it is quite brittle. Addition of a few per cent of aluminum to yttrium gave increased resistance to air corrosion.

The addition of small percentages of yttrium to aluminum increases the strength above that of pure aluminum.

The hydrogen absorbing capacity of yttrium and various yttrium-aluminum alloys was determined at several temperatures. The hydriding was performed in a quartz tube which was enclosed in an electric resistance furnace. All samples were equilibrated with hydrogen at approximately one atmosphere pressure and temperatures of about 700, 600, 500 and 400°C. In all cases the quantity of hydrogen absorbed increased linearly as temperature decreased. In view of this linear relationship, the data are completely represented by Table IX below.
Table IX

Hydrogen Capacity of Yttrium and Yttrium-Aluminum Alloys

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature °C</th>
<th>$N_{H/NY}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.6% Y</td>
<td>700</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.12</td>
</tr>
<tr>
<td>Y_3Al_2</td>
<td>700</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1.37</td>
</tr>
<tr>
<td>YAl</td>
<td>700</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.98</td>
</tr>
<tr>
<td>YAl_2</td>
<td>700</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.76</td>
</tr>
<tr>
<td>YAl_3</td>
<td>700</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0</td>
</tr>
</tbody>
</table>

2.19 **Aluminum-Tantalum Alloy Studies** (H. A. Wilhelm and D. S. Cowgill)

The work on alloys of tantalum and aluminum has as a major obstacle the preparation of some compositions. Co-melting gives very erratic results and inhomogeneous samples due to the fact that aluminum metal not only melts but boils at a temperature far below that required to melt tantalum. Co-reduction or reduction of tantalum compound in the presence of aluminum serves for alloy preparation to a fair degree for some compositions.

X-ray studies indicate that another intermetallic compound besides Al_3Ta may be formed in this alloy series. Diffusion couple studies on tantalum and aluminum in the solid state (640°C) indicate that a new intermetallic phase forms in one region of the
diffusion band. This phase could not be identified with those previously observed in the microstructure of bomb produced alloys. A sample prepared by heating aluminum (liquid) at 700°C in contact with tantalum for 200 hours showed only one compound, Al₃Ta.

2.20 Ternary Uranium-Thorium-Vanadium Alloys (H. A. Wilhelm and K. M. Wolf)

Work on these alloys continued into this period. Due to an apparently broad valley in the ternary system in the neighborhood of the uranium rich ternary eutectic, cooling and heating curve data are not adequate for the location of the exact temperature and composition of this eutectic. Microstructures have been of some assistance; however, means of identification of ternary eutectic structure in the presence of any of the assumed three binary eutectic structures has not yet been satisfactorily developed. The liquid immiscibility gap of thorium-rich and uranium-rich phases also appears to carry into the ternary system and complicate the interpretation of the behavior of some of the alloys. The ternary eutectic is close to the uranium corner of the diagram and contains about 90 w/o uranium.

2.21 Stability of Hf₅Sn₃ in the D₈₈ Structure (J. F. Smith and D. M. Bailey)

Compounds with the formula M₅N₃ often occur between transition elements, M, and Group IV B elements, N. An appreciable number of these compounds crystallize in the D₈₈ structure if interstitial
impurities, particularly carbon, are present.\(^{(7)}\) In the case of silicides and germanides, reduction in content or absence of interstitial impurities results in instability of the D\(_{8h}\) structure.\(^{(8)}\) The availability of relatively pure hafnium and tin prompted an investigation to determine whether Hf\(_5\)Sn\(_3\) would remain stable in the D\(_{8h}\) structure (ISC-835) with a low impurity content.

The hafnium metal which was used to prepare the samples had been purified by the iodide process. The tin metal was 'Baker Analyzed' reagent grade which had been further purified by a drossing process. Analytical data for the interstitial impurity content of the hafnium and tin are shown in Table X.

Table X

<table>
<thead>
<tr>
<th>Element</th>
<th>Hafnium w/o</th>
<th>Tin w/o</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.03(^{x})</td>
<td>0.0027(^{x})</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.02(^{x})</td>
<td>0.0005(^{x})</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0.009(^{#})</td>
<td>n. d. (^{*})</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.001(^{x})</td>
<td>n. d. (^{*})</td>
</tr>
<tr>
<td>Boron</td>
<td>n. d. (^{+})</td>
<td>n. d. (^{+})</td>
</tr>
</tbody>
</table>

n. d.--not detected, \(x\)--combustion-conductometric analysis, \(\#\)--vaccum fusion analysis, \(+\)--spectrographic analysis, \(#\)--Kjeldahl analysis.

\(^{(7)}\) H. Nowotny, E. Lux, and H. Kudielka, Mh. Chem. 87, 447 (1956).

An alloy on the tin-rich side of the stoichiometric ratio was prepared by arc melting under a helium atmosphere. The excess tin was dissolved in dilute HNO₃. Debye-Scherrer patterns taken on the residue were indexed on the basis of a hexagonal structure with \(a = 8.39\,\text{Å}\) and \(c = 5.82\,\text{Å}\). These patterns showed qualitative agreement in both line position and intensity with the D8₈ structure.

Single crystals were separated from the dissolution residue and mounted so that the axis of rotation was the c-axis. The symmetry of the layer line patterns obtained with Weissenberg and precession cameras indicated space group symmetry P6₃/mcm, P6₃cm, or P6c2. Since the D8₈ structure has the symmetry P6₃/mcm, intensities were calculated on the basis of the D8₈ structure:

- 6 Hf₁ in 6(g): \(x, 0, 1/4\) with \(x = 0.23\);
- 4 Hf₂ in 4(d): \(1/3, 2/3, 0\) parameterless;
- 6 Sn in 6(g): \(x, 0, 1/4\) with \(x = 0.60\).

Experimental values for the diffraction intensities were obtained by the multiple film technique with a Weissenberg camera and Cu Kα radiation. A comparison of observed and calculated values for (hk0) reflections is shown in Table XI. The discrepancy index, \(R = \Sigma \left| F_o - F_c \right| / \Sigma F_o \), for these data is 0.146 which is adequate to verify the structure. The observed intensity values include corrections for Lorentz and polarization effects plus an artificial temperature factor but no additional corrections.
Table XI

Observed Structure Factors Compared With Calculated Structure Factors Based on the D8\(_8\) Structure for Hf\(_5\)Sn\(_3\)

| hk0 | \(|F_o|\) | \(F_c\) | hk0 | \(|F_o|\) | \(F_c\) | hk0 | \(|F_o|\) | \(F_c\) |
|-----|---------|---------|-----|---------|---------|-----|---------|---------|
| 120 | 49.5 | -49.6 | 240 | 29.6 | -38.4 | 400 | 25.7 | 23.4 |
| 130 | 25.5 | -23.0 | 250 | 17.4 | 22.9 | 440 | 35.9 | 36.6 |
| 140 | 51.4 | 68.5 | 260 | 21.4 | -22.7 | 450 | <4 | 5.4 |
| 150 | 15.0 | -19.6 | 270 | 21.2 | -15.9 | 460 | <4 | -6.2 |
| 160 | 38.7 | -36.7 | 300 | 64.4 | 62.1 | 500 | 54.4 | 47.5 |
| 170 | 19.5 | 16.5 | 330 | <4 | 4.9 | 550 | 30.4 | 35.2 |
| 180 | <4 | -1.2 | 340 | 8.5 | -11.2 | 600 | 11.9 | 15.8 |
| 200 | 21.4 | -18.9 | 350 | <4 | 6.4 | 700 | <4 | -3.7 |
| 220 | 15.7 | 15.5 | 360 | <4 | 5.1 | 800 | 24.4 | 17.9 |
| 230 | <4 | -10.6 | 370 | <4 | -5.3 | 900 | 32.6 | 30.0 |

Cursory attempts to vary the parameters in either direction resulted in an increase in the discrepancy index. However, extensive effort on parameter refinement was not warranted since the primary interest was in the nature of the structure and not in a precise determination of interatomic distances.

In their study of the stabilization of Mo\(_5\)Si\(_3\) in the D8\(_8\) structure by carbon, Nowotny et al (1954) report the structure to be unstable with less than 0.9 carbon atom per unit cell. A reasonable estimate of the impurity content of the compound Hf\(_5\)Sn\(_3\) can be made from the analyses of the hafnium and tin. On this basis Hf\(_5\)Sn\(_3\) contains less
than one carbon atom per twenty unit cells and a total of only one impurity atom of any of the analyzed species per ten unit cells. The interstitial impurity content is thus an order of magnitude less than that necessary to stabilize Mo$_5$Si$_3$ in the D8$_8$ structure. The implication of these data is that tin is more tolerant of the D8$_8$ structure than either silicon or germanium, and it is at least possible that the presence of interstitials is not necessary for the stability of Hf$_5$Sn$_3$ in the D8$_8$ structure.

3. Physical and Mechanical Properties of Metals and Alloys

3.1 Tensile Properties of Yttrium-Titanium and Yttrium-Zirconium Alloys (O. N. Carlson and D. W. Bare)

The room-temperature tensile properties of yttrium-titanium alloys were investigated for the complete binary system. The yield and ultimate tensile strengths of the alloys increase with increasing titanium content, attaining maximum values at 70 w/o. This is seen from the plot of tensile data versus composition shown in Fig. 8.

A yield point was observed in all alloys containing greater than 30 w/o Ti and in unalloyed titanium sponge. A yield point was not observed in crystal bar titanium but appeared in the
1 and 3 w/o Y alloys. There is a general increase in uniform elongation and reduction in area as titanium is added to yttrium.

Yttrium-zirconium alloys exhibit a similar increase in the yield and tensile strengths with increasing zirconium content. These properties reach maximum values of 32,000 and 54,000 psi respectively at 40 w/o Zr and remain constant at these values over the composition range of 40 to 90 w/o Zr. The binary alloys exhibit a ductility minimum in the composition range of 5 to 20 w/o Zr. This lack of ductility has caused some difficulty in preparing tensile specimens of these compositions. Yield points were observed in all zirconium-rich alloys tested.

3.2 Tensile Properties of Yttrium-Magnesium Alloys (O. N. Carlson, D. W. Bare and E. D. Gibson)

An investigation of the tensile properties of magnesium-rich alloys of yttrium and magnesium has been carried out between 70° and 600°F. The addition of less than 5 w/o yttrium decreases the strength of magnesium at room temperatures but the addition of 5 to 10 w/o Y raises the yield and tensile strengths. At temperatures of 200, 400 and 600°F the effect of alloying becomes more apparent. All alloys exhibit a higher strength at 400°F than at room temperatures suggesting the possibilities of a creep resistant magnesium alloy at elevated temperatures.

Methods for preparing yttrium-rich magnesium alloys were investigated. Alloys containing less than 5 w/o Mg are of interest because of the possibility of obtaining a high strength alloy by heat
treatment. Several techniques have been employed in an effort to prepare these alloys but none of them have been successful. Yttrium turnings and powder of the compound, YMg, were pressed into compacts and annealed at 800-900°C for several days. An Y and Mg couple, consisting of a cylinder of Mg within a cylinder of Y, was held at 1200°C for 100 hours in an attempt to form an alloy by solid state diffusion.

3.3 Effect of Hydrogen on Tensile Properties of Yttrium (O. N. Carlson and E. D. Gibson)

The tensile properties of yttrium-hydrogen alloys are being studied as a function of temperature. Alloys containing 1000 ppm H₂ were prepared and tested at 20, -65 and -196°C. The addition of 1000 ppm hydrogen has little effect on the tensile properties of yttrium at room temperature. At liquid nitrogen temperatures (-196°C) the alloy fractures in a brittle manner.

3.4 Mechanical Properties of High Purity Yttrium (O. N. Carlson and E. D. Gibson)

Tension tests were carried out on high-purity yttrium over a wide temperature range. These tests revealed that marked changes occur in the strength and ductility of yttrium as the temperature is varied. As is seen from Fig. 9 the tensile strength decreases from 28,000 psi at -187°C to 7600 psi at 450°C and exhibits a plateau in the temperature range of 0 to 200°C. Uniform elongation over the entire temperature range increases from 12% at -187°C to 25% at 450°C.
The change in tensile strength at 200°C is accompanied by a rapid drop in the strain hardening exponent above this temperature.

The basic deformation mechanisms operable in yttrium at room temperature are being investigated using yttrium single crystals. Determination of the slip and twinning systems at room temperature is underway using Laue X-ray patterns and microscopic examination to determine the orientation of the planes of deformation.

3.5 Plastic Properties of Vanadium

3.5.1 Effect of Hydrogen on Ductility of Vanadium and V-Nb Alloys (O. N. Carlson and A. L. Eustice)

The tensile properties of iodide vanadium were determined as a function of hydrogen concentration. It was shown that the presence of 10 ppm hydrogen is sufficient to cause embrittlement of vanadium over a limited temperature range. The temperature of the observed ductility minimum was established as approximately -105°C for a strain rate of
0.008 in/in/min and at -80°C for a strain rate of 0.5 in/in/min. The
temperature and range of this embrittlement is also dependent upon
hydrogen concentration. Hydrogen was found to raise the yield stress
of vanadium quite markedly in the regions of minimum ductility. The
brittle behavior of vanadium at these temperatures is attributed to this
delayed yielding effect. A detailed discussion of this work is presented
in a paper entitled "Effect of Hydrogen on the Tensile Properties of
Vanadium" to be published in the Transactions of the Metallurgical
Society.

Hydrogen embrittlement in vanadium-niobium alloys was investi-
gated as a function of alloy composition and hydrogen content. Bend
and tension tests were carried out in the temperature range of -196°C
to 25°C. The embrittlement temperatures were determined as a func-
tion of alloy composition. This is described more fully in a paper
entitled "Hydrogen Embrittlement in Vanadium-Niobium Alloys" by
A. L. Eustice and O. N. Carlson to be published in the Transactions

3.5.2 Effect of Oxygen on Vanadium and V-Ti Alloys (O. N.
Carlson and S. Bradford)

A study of the effect of oxygen on the lattice parameter, hardness,
strength and ductility of vanadium and vanadium-titanium alloys was
initiated during this period. A series of vanadium-oxygen alloys varying
in oxygen content from 100 ppm to 3000 ppm was used in the lattice
parameter measurements. Portions of the arc-melted buttons were
rolled into thin sheets and these were recrystallized by annealing in vacuo at 900°C. X-ray diffraction photographs were taken in a back-reflection camera with Mo Kα radiation in order to get reflections of higher order. Approximately 15 lines could be measured and the lattice constants were determined by a least-squares method of calculation. A plot of lattice parameter versus oxygen content is shown in Fig. 10. The lattice constant of vanadium is 3.026±0.001Å for low oxygen concentrations. The hardness versus oxygen curve (see Fig. 11) varies from 70 R₄ at 600 ppm oxygen to 19 R₄ at 80 ppm.

It was noted that hydrogen has a significant effect on the vanadium lattice. A high purity vanadium specimen that had been pickled in HCl was found to have the unusually high parameter of 3.031Å. After removal of hydrogen from the specimen by heating in vacuo a value of 3.028Å was obtained.

Bend tests were run on vanadium containing from 100 to 2800 ppm oxygen at temperatures between 24° and -196°C. For ductile specimens a steady increase in the maximum bending load was observed with decreasing temperature or increasing oxygen concentration. All samples
were ductile at -50°C. At -85°C and below, the samples with 1500 ppm oxygen or less were ductile but those containing more than 1800 ppm oxygen were brittle. The composition region between 1500 and 1800 ppm is somewhat erratic.

A study of the deoxidation of vanadium by addition of titanium was begun. A series of vanadium alloys containing 2000 ppm oxygen and from 0 to 5 w/o titanium was prepared.

These alloys were hard and brittle and only those containing less than 0.5 w/o Ti could be cold rolled. Consequently a second alloy series was prepared containing only 350 ppm oxygen. Measurement of the lattice parameter of the alloys in this series was attempted, but the presence of titanium distorts the diffraction patterns making their measurement extremely difficult. No significant decrease in hardness or increase in ductility was produced by the addition of titanium.

3.6 Ductility of Chromium Metal and Cr-Y Alloys (O. N. Carlson and F. A. Schmidt)

A bend test apparatus was constructed for use in comparing the ductility of various grades of chromium metal and also of chromium
alloys. Specimens 1" x 3/8" x 0.040" were tested in the as-arc-melted conditions. Samples of chromium metal received from different commercial suppliers were evaluated by the bend test. Chromium containing 4000-5000 ppm oxygen and 50-250 ppm nitrogen had a brittle-ductile transition temperature between 200 and 250°C, whereas chromium with 700 ppm oxygen and 20 ppm nitrogen present exhibited a transition at 170°C-185°C. Iodide refined chromium containing 180 ppm oxygen and 3 ppm nitrogen had a brittle-ductile transition temperature of 65°C to 75°C. This metal was obtained from the Chromalloy Corporation.

Several Cr-Y alloys were tested for bend ductility at room temperature. It was found that commercially pure chromium-base alloys containing more than 5 w/o yttrium underwent a 90 degree angle bend at room temperature. However, the addition of yttrium to crystal-bar chromium did not produce the improvement in ductility that was expected, as is seen from the data presented in Table XII.

3.7 Plastic Properties of Thorium Metal (D. T. Peterson and H. Klievoneit)

The plastic properties of Ames thorium were studied by tensile tests over the temperature range from -196° to 900°C at several strain rates. The yield point phenomena which was observed at room temperature in annealed specimens was found to disappear at temperatures above and below room temperature. The yield point was also eliminated at all temperatures by charging with 30 ppm of hydrogen and quenching
Table XII
Brittle-Ductile Transition Temperature of Cr-Y Alloys

<table>
<thead>
<tr>
<th>Source of Chromium</th>
<th>w/o Y Added</th>
<th>B-D Transition Temp. °C</th>
<th>Deflection before fracture(in mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromet</td>
<td>0</td>
<td>200°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>>25°</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>25°</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td><25°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td><25°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td><25°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td><25°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td><25°</td>
<td></td>
</tr>
<tr>
<td>Belmont</td>
<td>0</td>
<td>225-250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>>25°</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>>25°</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>>25°</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>>25°</td>
<td>112</td>
</tr>
<tr>
<td>Chromalloy</td>
<td>0</td>
<td>70°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>90°</td>
<td></td>
</tr>
</tbody>
</table>
to room temperature. A strong dependence of the magnitude of the yield phenomena on the grain size of the specimen was found. The difference between the upper and lower yield point decreased with increasing grain size.

The temperature dependence of the flow stress at constant strain and strain rate can be divided into three temperature intervals. From -196° to 100°C, the flow stress decreased linearly with temperature and the flow stress decreased with decreasing strain rate. From 200° to 400°C, the flow stress was nearly constant and did not vary with the strain rate. Above 400°C, the flow stress again decreased with increasing temperature and with decreasing strain rate. At all temperatures, thorium showed extremely high ductility even when charged with hydrogen. The uniform elongation was always more than 40% and the reduction in area at fracture was usually about 60%.

Strain hardening was more rapid at -196° than at higher temperatures and deformation to a given extent produced greater hardening at low temperatures than at higher temperatures. The results of this investigation are being compiled for publication.

3.8 Work Hardening of Thorium (W. L. Larsen and D. E. Williams)

Conflicting data exist in the literature concerning the work hardening of thorium. Davenport(9) and Lowenstein(10) reported that beyond 50% reduction further working softens thorium. Hamby(11) reported a

sharp increase in hardness with reductions up to 10 %, relatively little change upon further reduction to 70 %, and thereafter a further increase in hardness. Work was undertaken in an attempt to discover the relation of hardness to cold work and the reasons for the discrepancy in the reported data.

Working was done by cold rolling, using reductions of 0.002 inch per pass. Two kinds of rolling were done; unidirectional rolling, in which rolling direction was held constant during successive passes, and compression rolling, in which the sample was rotated slightly between passes.

The arc-melted thorium buttons used in the initial stages of the compression rolling tests had a maximum thickness of about 1/4 inch. Thus, beyond 80 % reduction the warping of the thin samples as it passed through the rolls was too great to permit reliable hardness measurements. For greater reduction by compression rolling and for unidirectional rolling, samples were prepared from thick slices of a 4 inch diameter arc-cast billet. These were given to a 30 % reduction and a recrystallization anneal at 825°C before testing.

Typical Vickers hardness values, obtained using a 10 kg. load, are plotted in Fig. 12. These curves agree closely in both form and magnitude with those of Hamby.

The softening reported by other investigators may arise from the different methods of cold reduction employed or may be unreal and dependent upon the methods of hardness measurement used. This point will be investigated further.
4. Solid State Investigations

4.1 Magnetic Susceptibility of Aluminum-Vanadium Alloys

(J. F. Smith and J. D. Greiner)

Measurements of the magnetic susceptibility of the phases in the aluminum-vanadium alloy system are in progress. Preliminary values at room temperature for some of the phases are available:

Fig. 12. Work hardening of Ames thorium.

<table>
<thead>
<tr>
<th>Phase</th>
<th>$\chi \times 10^6$ e.m.u. per g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al (pure)</td>
<td>$+0.62$</td>
</tr>
<tr>
<td>$\beta (Al_{23}V_4)$</td>
<td>$+0.65$</td>
</tr>
<tr>
<td>$\gamma (Al_3V)$</td>
<td>-0.12</td>
</tr>
<tr>
<td>$\delta (Al_8V_5)$</td>
<td>$+2.6$</td>
</tr>
<tr>
<td>V (pure)</td>
<td>$+6.0$</td>
</tr>
</tbody>
</table>

The results indicate pairing in the aluminum-rich alloys of the electrons which are responsible for the strong paramagnetism of pure vanadium.
4.2 Anisotropic Thermal Expansion of Indium (J. F. Smith and R. W. Meyerhoff)

Initial measurements of the coefficients of thermal expansion of indium both parallel and perpendicular to the c-axis have been made by X-ray diffraction. The values between μ^3 and 60°C are:

- parallel to the c-axis: -12.2×10^{-6} per °C
- perpendicular to the c-axis: 55.9×10^{-6} per °C.

The spread in values previously reported in the literature quite probably indicates that the anisotropy in thermal expansion is sensitive to the degree of purity of the sample though the volume coefficient of expansion is relatively insensitive. Additional measurements on macrocrystals will be made with a dilatometer.

4.3 Measurement of the Elastic Constants of Single Crystals of Thallium Metal (J. F. Smith and M. L. Shepard)

Measurements of the five independent elastic constants of hexagonal single crystals of thallium are in progress. Preliminary values in units of 10^{11} dyne/cm2 at liquid helium and liquid nitrogen temperatures are:

<table>
<thead>
<tr>
<th></th>
<th>4.2°K</th>
<th>77.8°K</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>4.404</td>
<td>4.340</td>
</tr>
<tr>
<td>C_{12}</td>
<td>2.148</td>
<td>2.141</td>
</tr>
<tr>
<td>C_{13}</td>
<td>3.044</td>
<td>2.951</td>
</tr>
<tr>
<td>C_{33}</td>
<td>5.999</td>
<td>5.831</td>
</tr>
<tr>
<td>C_{44}</td>
<td>0.876</td>
<td>0.830</td>
</tr>
</tbody>
</table>

These values are uncorrected for dimensional changes resulting from the cooling of the samples to the temperature of measurement from
room temperature. Measurements of the anisotropic thermal expansion of single crystals are in progress. These latter measurements will provide data for making the dimensional corrections.

4.4 Crystallographic Studies on the Nickel-Zirconium and Nickel-Hafnium Systems (W. L. Larsen and M. E. Kirkpatrick)

The precision lattice dimensions for the tetragonal NiZr$_2$ phase as determined from single crystal data are; $a_0 = 6.477\text{Å}$ and $c_0 = 5.241\text{Å}$. The compound has the C_{16} structure typified by CuAl$_2$ and the space group symmetry, D_{4h}^{18}/mcm. A qualitative comparison of diffraction intensities and extinction conditions from NiZr$_2$ and NiHf$_2$ data indicates the two compounds are isostructural. The lattice dimensions of the NiHf$_2$ compound, $a_0 = 6.743\text{Å}$ and $c_0 = 5.584\text{Å}$, are somewhat larger than expected on the basis of the elemental atomic diameters of hafnium and zirconium and the cell dimensions of NiZr$_2$.

The structure and lattice constants of the NiZr phase were determined and the compound was shown to be isostructural with the NiHf phase. The orthorhombic structure is similar to the B_1 structure type typified by zeta-CrB. The lattice constants of the NiZr compound are; $a_0 = 3.268\text{Å}$, $b_0 = 9.937\text{Å}$, and $c_0 = 4.101\text{Å}$. The approximate lattice dimensions of the NiHf compound are; $a_0 = 3.22\text{Å}$, $b_0 = 9.82\text{Å}$ and $c_0 = 4.12\text{Å}$.

Further study of the Ni$_{10}$Zr$_7$ intermediate phase has revealed the existence of limited solid solubility which produced a change in symmetry for compositions rich in zirconium with respect to stoichiometry. All data previously reported concerning this compound were obtained from a crystal having the composition of the zirconium-rich boundary of the
phase. The stoichiometric phase has the space group symmetry \(D_{3h}^{15} \text{Cmca} \) or \(C_{2v}^{17} \text{CZca} \). The lattice dimensions for the stoichiometric compound are: \(a_0 = 12.386\,\text{Å} \), \(b_0 = 9.156\,\text{Å} \) and \(c_0 = 9.211\,\text{Å} \). Intensity data for the 0kl and h0l zones of reflections were obtained by visual judging of precession and Weissenberg photographs. Structure factors calculated on the basis of the centric space group \(D_{3h}^{18} \) do not agree with the observed structure factors. Therefore, the structure refinement was carried out for a trial structure based on the noncentric space group, \(C_{2v}^{17} \). A least-squares refinement was applied and a reliability factor, \(R_1(\text{h0l}) = \frac{\sum |F_O| - |F_C|}{\sum |F_O|} = 0.186 \), was obtained for the following structure:

Space Group \(C_{2v}^{17} \text{CZca} \)

- 12 Zr atoms in 3 sets, \((0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0) + (x, 0, 0; x, \frac{1}{2}, \frac{1}{2})\)
- 16 Zr atoms in 2 sets, \((0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0) + (x, y, z; x, \bar{y}, \bar{z}; x, \frac{1}{2}+y, \frac{1}{2}-z; x, \frac{1}{2}-y, \frac{1}{2}+z)\)
- 40 Ni atoms in 5 sets, \((0, 0, 0; \frac{1}{2}, \frac{1}{2}, 0) + (x, y, z; x, \bar{y}, \bar{z}; x, \frac{1}{2}+y, \frac{1}{2}-z; x, \frac{1}{2}-y, \frac{1}{2}+z)\).

The positional parameters are listed in Table XIII. The y-parameters are approximations based on the zirconium-rich structure. The structure determination of the zirconium-rich \(\text{Ni}_{10}\text{Zr}_7 \) phase has been completed and the optimum parameters for this structure are listed in Table XIV.

X-ray data obtained from a single crystal of \(\text{Ni}_{10}\text{Hf}_7 \) indicate the hafnium phase is isostructural with the stoichiometric \(\text{Ni}_{10}\text{Zr}_7 \) phase. The lattice dimensions of the orthorhombic \(\text{Ni}_{10}\text{Hf}_7 \) compound are:

\(a_0 = 12.275\,\text{Å} \), \(b_0 = 9.078\,\text{Å} \) and \(c_0 = 9.126\,\text{Å} \).
Table XIII

Atomic Parameters for the Stoichiometric \(\text{Ni}_{10}\text{Zr}_7 \) Structure

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Atom</th>
<th>No. of Positions</th>
<th>(x/a)</th>
<th>(y/b)</th>
<th>(z/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>Zr</td>
<td>4</td>
<td>0.046</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_1)</td>
<td>Zr</td>
<td>4</td>
<td>0.358</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_2)</td>
<td>Zr</td>
<td>4</td>
<td>0.743</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(P_3)</td>
<td>Zr'</td>
<td>8</td>
<td>0.299</td>
<td>0.259</td>
<td>0.248</td>
</tr>
<tr>
<td>(P_4)</td>
<td>Zr</td>
<td>8</td>
<td>0.546</td>
<td>0.316</td>
<td>0.313</td>
</tr>
<tr>
<td>(P_5)</td>
<td>Ni</td>
<td>8</td>
<td>0.241</td>
<td>0.006</td>
<td>0.200</td>
</tr>
<tr>
<td>(P_6)</td>
<td>Ni</td>
<td>8</td>
<td>0.404</td>
<td>0.020</td>
<td>0.291</td>
</tr>
<tr>
<td>(P_7)</td>
<td>Ni</td>
<td>8</td>
<td>0.403</td>
<td>0.294</td>
<td>0.009</td>
</tr>
<tr>
<td>(P_8)</td>
<td>Ni</td>
<td>8</td>
<td>0.691</td>
<td>0.292</td>
<td>0.011</td>
</tr>
<tr>
<td>(P_9)</td>
<td>Ni</td>
<td>8</td>
<td>0.548</td>
<td>0.108</td>
<td>0.106</td>
</tr>
</tbody>
</table>

Table XIV

Optimum Parameters for the Zirconium-rich Structure of the Phase \(\text{Ni}_{10}\text{Zr}_7 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Atom</th>
<th>No. of Positions</th>
<th>(x/a)</th>
<th>(y/b)</th>
<th>(z/c)</th>
<th>(B/\lambda^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_0)</td>
<td>Zr</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.14</td>
</tr>
<tr>
<td>(P_1)</td>
<td>Zr</td>
<td>8</td>
<td>0.336</td>
<td>0.998</td>
<td>0.990</td>
<td>2.44</td>
</tr>
<tr>
<td>(P_2)</td>
<td>Zr</td>
<td>8</td>
<td>0.238</td>
<td>0.259</td>
<td>0.244</td>
<td>3.17</td>
</tr>
<tr>
<td>(P_3)</td>
<td>Zr</td>
<td>8</td>
<td>0.496</td>
<td>0.316</td>
<td>0.318</td>
<td>2.54</td>
</tr>
<tr>
<td>(P_4)</td>
<td>Ni</td>
<td>8</td>
<td>0.195</td>
<td>0.006</td>
<td>0.208</td>
<td>1.72</td>
</tr>
<tr>
<td>(P_5)</td>
<td>Ni</td>
<td>8</td>
<td>0.358</td>
<td>0.020</td>
<td>0.296</td>
<td>0.94</td>
</tr>
<tr>
<td>(P_6)</td>
<td>Ni</td>
<td>8</td>
<td>0.356</td>
<td>0.294</td>
<td>0.004</td>
<td>1.39</td>
</tr>
<tr>
<td>(P_7)</td>
<td>Ni</td>
<td>8</td>
<td>0.641</td>
<td>0.292</td>
<td>0.015</td>
<td>1.03</td>
</tr>
<tr>
<td>(P_8)</td>
<td>Ni</td>
<td>8</td>
<td>0.508</td>
<td>0.108</td>
<td>0.102</td>
<td>2.06</td>
</tr>
</tbody>
</table>
4.5 Vibrational Amplitudes of Atoms in Crystals (P. Chiotti and E. R. Ryba)

The change in X-ray reflection intensity as a function of temperature for various reflections from single crystals, 10 mm x 25 mm x 1.5 mm, of copper and zinc has been measured over the temperature range from 13°C to near the melting temperature of each metal. The thermal expansion over the same temperature range was also determined from the change in "d" spacing for the reflections.

The integrated intensities for the 400 reflection of copper may be represented by the relation

$$\ln R_{400} = 7.5347 - 5.8266 \times 10^{-4} T - 9.7993 \times 10^{-7} T^2 + 3.4911 \times 10^{-10} T^3,$$

and the mean square vibrational amplitude normal to these planes by the relation

$$\mu^2_{400} = 6.9644 \times 10^{-19} + 12.049 \times 10^{-22} T + 2.0223 \times 10^{-24} T^2 - 0.7219 \times 10^{-10} T^3.$$

In these relations R is the integrated intensity in arbitrary units, μ^2 the mean square vibrational amplitude in cm2 and T is the temperature in °C. The measured change in interplanar spacing may be represented by the relation

$$d_{400} = (0.903396 \pm 0.000053) + (1.231 \pm 0.026) \times 10^{-5} T + (3.56 \pm 0.26) \times 10^{-9} T^2$$

where d_{400} is in Angstrom units and T in °C. The integrated intensities were scaled to the base temperature of 13°C by calculating the mean square vibrational amplitude at this temperature from the Debye-Waller theory. The Debye temperature employed was 315°K.
Similarly for the zinc single crystal the integrated intensities were scaled by employing a Debye temperature of 200°C for vibrations in the direction parallel to the hexagonal c axis and 320°C for vibrations perpendicular to the c-axis. The experimental data are represented by the relations

\[
\ln R_{0006} = 5.5584 - 3.7238 \times 10^{-3} T - 8.90406 \times 10^{-7} T^2 - 1.0249 \times 10^{-8} T^3
\]
\[
\ln R_{2100} = 6.9496 - 7.1009 \times 10^{-4} T + 2.3858 \times 10^{-6} T^2 - 7.8106 \times 10^{-9} T^3.
\]

The relations for the mean square vibrational amplitude along the c and a-axes were calculated to be

\[
\mu^2_{0006} = 15.1085 \times 10^{-19} + 6.4091 \times 10^{-21} T + 1.5388 \times 10^{-24} T^2 + 1.7639 \times 10^{-26} T^3,
\]

and

\[
\mu^2_{2100} = 5.7295 \times 10^{-19} + 3.1579 \times 10^{-21} T - 1.0610 \times 10^{-23} T^2 + 3.4736 \times 10^{-26} T^3,
\]

respectively. The units in these relations and the similar relations for copper are the same. The change in d spacings with temperature were fitted by the relations

\[
d_{0006} = (0.823251 \pm 0.000059) + (5.134 \pm 0.074) \times 10^{-5} T - (6.22 \pm 1.8) \times 10^{-9} T^2
\]

and

\[
d_{2100} = (1.324878 \pm 0.000089) + (1.20 \pm 0.11) \times 10^{-5} T + (2.47 \pm 0.28) \times 10^{-8} T^2.
\]
Each of the above relations, except for the \mathcal{II}^{0} data, represents the combined data for three or more heating and cooling cycles. The standard deviations for the constants in the relations for the \(d\) spacings are included in parenthesis with the constants. Most of the measured and scaled intensities for copper lie within $\pm 6.0\%$ of the values given by the least squares curve for $\ln R_{400}$. The measured integrated intensities for the 0006 reflection for zinc showed much less scatter than the copper data. A greater degree of scatter was observed for the integrated intensities for the \mathcal{II}^{0} reflections. In this case only one run, involving 42 measurements, was made and the data lie within $\pm 10\%$ of the least squares curve for $\ln R$ given above.

An attempt is being made to correlate these data with other properties, such as the electrical resistivity, and a final report is being prepared.

4.6 Characteristics of the Uranium Transformations (P. Chiotti and J. Mason)

Previous work on the isothermal transformation characteristics for uranium was summarized in ISC-893, June, 1957. Some questions have been raised relative to the temperature range for the $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ transformations. A number of experiments were repeated with wire specimens of comparable purity in a different furnace in which the constant temperature zone was several times the length of the constant temperature zone in the furnace previously used. The results obtained were similar to those previously reported. An appreciable scatter in the temperature at which the transformations start, either on heating
or cooling was observed. Whether this was in part due to variations in carbon content with time as a result of contamination or decarbonization by residual gases in the furnace is not known. Donze and Faivre, Comptes Rendus, 246, 3619 (1958) have shown that carbon content and the degree of super heat into the beta region affect the velocity of the $\beta \rightarrow \alpha$ transformation on cooling as well as the temperature at which the transformation starts. However, their experiments were carried out with constant cooling rates of 4°C per hour. Once the transformation started it proceeded to completion over a temperature span of only a few degrees; the greater the degree of supercooling the narrower the temperature span. In the present work samples were held for one half hour at some temperature in the beta range and then rapidly cooled to within the transformation range. The samples were then held at constant temperature for five minutes. If no transformation was apparent in this period of time the temperature was lowered two to three degrees and again held at constant temperature for five minutes. This process was repeated until a temperature was reached at which transformation occurred. Samples which required a high degree of supercooling to initiate the transformation proceeded to near completion within two or three degrees, however, if once started the transformation was arrested by reheating, usually about 10°C, the transformation thereafter proceeded in a stepwise manner on further cooling as previously observed, (See ISC-893).

Some further data have also been obtained with a 3/16 inch square cross-section by five inches long bar. In this case the bar was mounted
between water-cooled copper electrodes and heated by passing an electric current through it. The resistance across approximately one centimeter length near the middle of the bar was measured. The thermal history and resistance as a function of temperature are shown in Fig. 13. It is evident that heating in the beta range for 8 to 10 minutes results in suppression of the resistivity break for the $\beta \rightarrow \alpha$ transformation. The transformation still occurs, as evident from thermal arrests, but the change in resistance characteristic of randomly oriented polycrystalline uranium is absent, indicating a high degree of preferred orientation and anisotropy in the electrical resistivity of one of the phases, probably alpha, or both of the phases. This preferred orientation is retained after several cycles through both transformations. However, more rapid cycling through one or both of the transformations restores the alpha-beta resistivity break and presumably randomized the crystal structure. Repeated cycling sometimes results in anomalous resistivity breaks in the beta range, that is, an increase in resistivity occurs on cooling at a temperature between the normal transformation temperatures.
The fact that the preferred orientation is regenerated on heating indicates that the nucleation of the beta phase is coherent with the alpha phase. Retention of a given orientation on cooling could be explained on the basis of the movement of phase interfaces present in the colder parts of the sample. In this case no new nuclei would have to form.

The continued decrease in the resistance above 780°C indicated by curve C is most probably caused by changes in dimensions of the bar in the region of the resistance probes due to yielding of the relatively soft gamma uranium under thermal or transformation stress or due to slight shifts in the probe positions. Since these probes are only one centimeter apart slight changes in their position can produce a pronounced change in the measured resistance. However, these effects cannot explain the disappearance of the $\alpha \rightarrow \beta$ break since it reappears on rapid thermal cycling of the bar.

4.7 Magnetic Susceptibility of Sodium Tungsten Bronze (J. F. Smith and J. D. Greiner)

Sodium tungsten bronze is nonstoichiometric sodium metatungstate, Na_xWO_3. Samples of various sodium concentrations were prepared by electrolysis. A plot of susceptibility versus sodium concentration is shown in Fig. 14 and it may be noted there that the data are fit reasonably well by a straight line relationship.

4.8 Crystal Structures of YAl$_3$ (J. F. Smith, D. Bailey, H. A. Wilhelm and R. L. Snyder)

Crystals etched from an alloy of 30 w/o yttrium in aluminum were found to exhibit two distinct growth habits, needles and platelets.
The 30 w/o alloy contained a preponderance of the platelet form with only a few rather large needles present. Other alloys of 20 w/o and 15 w/o yttrium in aluminum were similarly etched with NaOH. It was observed that as the yttrium content decreased, with the attendant lowering of the temperature of crystallization, the percentage of needles increased and the needles became smaller in size. From an alloy of 6 w/o yttrium, a composition on the aluminum side of the eutectic, only very fine needles and no platelets were obtained. An alloy of 30 w/o yttrium quenched from 680°C produced only crystals of the platelet form. The implication is that YAl₃ undergoes an allotropic transformation at a temperature near the eutectic temperature, 640°C.

A crystal of the needle form of YAl₃ was isolated from a 30 w/o yttrium alloy and was mounted and aligned on the Weissenberg camera for X-ray investigation. This crystal exhibited the diffraction symmetry and systematic extinctions of space groups P6₃/mmc, P62c,
and \(P6_3mc \). The following lattice parameters were measured from rotation and Weissenberg X-ray pictures: \(a_0 = 6.28 \text{Å} \) and \(c_0 = 4.58 \text{Å} \).

The intensities of the \(hk0 \) reflections were measured with the proportional counter attachment for the Weissenberg camera employing Cu Kα radiation. These data were corrected for Lorentz and polarization effects but no corrections were made for absorption or dispersion effects. The structure of ThAl₃ was chosen as a trial structure for YAl₃ and was refined by a least squares method with the I. B. M. 650 computer.

The atomic form factors employed in the computations were those of Thomas and Umeda\(^{(12)}\). The refinement produced a value for the "discrepancy index"

\[
R = \frac{\sum |F_O| - |F_C|}{\sum |F_O|} = 0.034
\]

for the following structure for the needle form of YAl₃:

Space Group \(P6_3/mmc \)

with 2 Y at \(\pm (2/3, 1/3, 1/4) \)

and 6 Al at \(\pm (x, 2x, 1/4; 2\overline{x}, \overline{x}, 1/4; x, \overline{x}, 1/4) \)

with \(x = 0.146 \).

A crystal of the platelet form of YAl₃ was isolated from the 30 w/o yttrium alloy and aligned on the Weissenberg camera. Initial examination of the diffraction patterns from this crystal indicated apparent 6-fold diffraction symmetry with \(a_0 = 6.19 \text{Å} \) and \(c_0 = 21.3 \text{Å} \). Ten layers of Weissenberg data were taken. Layers \(hk0 \) through \(hk8 \) were found to satisfy the extinction conditions for space groups \(P6_3/mmc \), \(P\overline{6}2c \), and \(P6_3mc \). Additional extinctions of the form \(h-k = 3n \) occur in \(hk0 \),

hk3, and hk6 data. These additional extinctions are characteristic of a rhombohedral unit cell indexed on a hexagonal basis. In addition, hk9 data have the same symmetry and extinctions as hk0 data. This violates the extinction conditions for the hexagonal space groups listed above. These observations, plus the ratio of the c₀ lattice parameters of the two crystalline form, \(c_{\text{platelet}} = 4.5 \ c_{\text{needle}} \), indicate that the structure of the platelet form of \(\text{YAl}_3 \) may be based on a rhombohedral unit cell with a stacking disorder such that the basic repeat unit in the c-direction is nine atom layers thick. This could be accomplished with a stacking of the type

\[\text{ABCBCACAB ABCBCACAB ABCB--- --- -} \]

As yet intensity data have not been taken in order to check this postulated structure, but work is in progress.

5. Separation Studies

5.1 Liquid-Liquid Extraction (H. A. Wilhelm and M. L. Andrews)

Work on the separation of barium and strontium was continued. A feed solution 0.67M in barium and 0.67M in strontium as chlorides entered a 20 stage laboratory extractor at stage 11. With certain flow ratios of the liquids including aqueous scrub entering at stage 1 and organic solvent entering at stage 20, the aqueous phase delivered from the extractor at stage 20 carried the major part of the barium with a purity of less than 50 ppm strontium. The strontium product delivered in the organic phase from stage 1 analyzed 1.8% barium; however, an extraction employing different flow ratios gave with the 20 stage extractor a strontium product containing only parts per million of barium.
In this investigation the organic phase is tributyl phosphate and NaSCN is used to effect adequate distribution of the metals between the liquid phases. Analyses are being performed to determine the stagewise distribution data on the chloride, sodium and thiocyanate ions as well as that of the barium and strontium during an extraction.

5.2 Pyrometallurgical Separations

5.2.1 Selective Oxidation-Reduction Reactions (P. Chiotti and S. J. S. Parry)

Some details on the separation of various components by selective oxidation-reduction reactions in a two phase system consisting of KCl-LiCl eutectic and zinc were presented in the Annual Summary Research Report, IS-17, Nov. 1959. Work has continued with this system and a number of reactions involving chromium, zirconium, cerium, uranium, thorium, protactinium and yttrium have been investigated.

In all of these experiments tantalum was used as the container. Zinc chloride was employed as an oxidizing agent and magnesium as a reducing agent. In one series of experiments the dried salts and metallic components (total mass of charge was about 50g) were sealed in tantalum crucibles. Each tantalum crucible was sealed in a graphite crucible with a screw cap top which in turn was sealed inside a welded steel container. The charge was equilibrated at temperature in a rocking furnace for periods ranging from one to four hours. It was then permitted to settle for 15 minutes and cooled with an air blast. In another series of experiments charges consisting of approximately 800 grams of KCl-LiCl eutectic and 800 grams of zinc in which the
various components had been dissolved were equilibrated in tantalum containers under an inert atmosphere. Anhydrous ZnCl$_2$ was added step wise; each addition was followed by an equilibration period of one half hour or longer with vigorous stirring of the charge, and after a settling period of 15 minutes a sample of the salt was taken for analysis. This procedure was continued until the zinc in the salt phase reached a concentration of 1.0 to 2.0 w/o. The concentration of other components in the salt phase usually did not exceed 2.0 w/o. Thereafter magnesium was added in steps and samples similarly taken. Periodic samples of the metal phase were also taken, but in most cases the concentration of the component in the zinc phase was determined from a material balance based on the amount initially added and the amount found in the salt.

The equilibrium constant K_N is a more useful index than the usual distribution coefficient for evaluating the distribution of a particular component between the two phases. However, in order to obtain a value for K_N the valence states for the components in the salt phase must be known. Furthermore, K_N will be constant only if K_r, the ratio of activity coefficients of products and reactants, is constant. This condition is reasonably well satisfied in dilute solutions.

Analyses of the data thus far obtained for equilibrations carried out at 700°C as well as 500°C indicate that the average valence for thorium and zirconium is both three so long as the equilibrium concentration of zinc chloride in the salt phase is 1.0 w/o or less. At higher zinc chloride concentrations displacement toward higher valence states may occur to an extent which is uncertain. It was
observed in the second series of experiments that some zirconium was lost from the salt phase, presumably due to volatilization of ZrCl_4 resulting from the reaction

$$\text{ZrCl}_3 + 1/2\text{ZnCl}_2 \rightarrow \text{ZrCl}_4 + \text{Zn}.$$

Experiments have shown that the zirconium can be effectively removed by volatilization by operating under reduced pressure. Zirconium losses by volatilization have made it difficult to establish the true valence of zirconium. Further work is being done to check the valence states of both zirconium and thorium in this system.

The data in Fig. 15 were obtained by the second procedure described above from a system containing zirconium and chromium as components. The equilibration temperature was 700°C. If a valence of two is accepted for zinc it is apparent that the data are consistent with the following reactions:

1. $\text{Cr} + \text{ZnCl}_2 \rightarrow \text{CrCl}_2 + \text{Zn}$
2. $\text{Zr} + 3/2\text{ZnCl}_2 \rightarrow \text{ZrCl}_3 + 3/2\text{Zn}$
3. $\text{Zr} + 3/2\text{CrCl}_2 \rightarrow \text{ZrCl}_3 + 3/2\text{Zn}$.

Fig. 15. Log-log plot of oxidation-reduction data for zirconium and chromium in a KCl-LiCl/zinc system at 700°C; open points obtained on oxidation with ZnCl$_2$, and solid points obtained on reduction with magnesIum. (S) and (M) refer to salt and metal phase respectively.
For reaction 1,

$$K_N = \left(\frac{N_{CrCl_2}}{N_{ZnCl_2}} \right)_{salt} \left(\frac{1}{N_{Cr}} \right)_{zinc} = \left(\frac{n_{Cr}}{n_{Zn}} \right)_{salt} \left(\frac{n_M}{n_{Cr}} \right)_{zinc}$$

where N represents mole fraction and n represents actual number of moles, and n_M is the total number of moles of zinc-rich liquid. The number of moles of zinc-rich liquid varied by less than 3% throughout the course of the experiment and was treated as a constant. The maximum concentration of chromium and zirconium in the zinc phase was 1.4 w/o ($N = 0.0176$) and 1.6 w/o ($N = 0.0115$) respectively. The maximum concentrations in the salt phase were 1.02 w/o zirconium, 0.18 w/o chromium and 2.3 w/o zinc. If K_r is constant then

$$\log \frac{n_{Cr}}{n_{Cr}}(salt) = \log \frac{n_{Zn}}{Zn}\text{ (salt)} + C$$

and the slope of the log-log plot of the corresponding data should reveal the relative valence of chromium and zinc. A straight line with a slope of one represents the data quite well and it may be concluded that the valence of chromium and zinc is the same, namely plus two. Corresponding plots for reactions 2 and 3, Fig. 15, show a slope of 3/2 indicating a valence of three for zirconium. However, as the concentration of zinc and zirconium attained their maximum value in the salt, some zirconium was lost by volatilization. Chemical analyses of the zinc phase at the end of the oxidation cycle made an appropriate correction possible. The two oxidation points corrected are indicated by arrows in Fig. 15.

Figures 16 and 17 show data obtained for the transfer of cerium, uranium and zirconium at 700°C by oxidation with ZnCl$_2$ and by reduction with magnesium respectively. Similar data obtained at 500°C
show a more effective separation of cerium from uranium. In either case the separation was not as effective as initially expected on the basis of available free energy data. The experimental data imply a very strong negative deviation from Raoult's law for cerium in zinc. Work at ANL by Johnson and Yonco, Chemical Engineering Summary Report ANL-5959, March, 1959, p 124, shows that this is indeed the case. They find that the activity coefficient of cerium in zinc at 508°C is of the order of 3.4×10^{-10}.

![Fig. 16. Transfer of solutes, cerium, uranium and zirconium at 700°C from a zinc-rich phase to KCl-LiCl eutectic by oxidation with ZnCl₂; moles M(Ce, U, Zr) in salt versus moles ZnCl₂ added.](image)

![Fig. 17. Transfer of solutes, cerium, uranium and zirconium at 700°C from KCl-LiCl eutectic to a zinc-rich phase by reduction with magnesium; moles M in salt versus moles magnesium added.](image)

Although the data show appreciable scatter, approximate values for the equilibrium constant, K_N, the ratio of the mole fraction of
products to mole fraction of reactants, for several reactions have been determined and are summarized in Table XV.

The values of K_N listed under 6, 7, 8 and the third value under 1 were calculated from data obtained from equilibrations carried out in sealed tantalum containers. The relative amounts of oxidizing or reducing agent and components were varied in the individual equilibrations.

For equilibrations in which the amount of component in the zinc phase exceeded the solubility limit in zinc, the solubility limit as determined for the binary zinc system was used in the calculations. These are listed in Table XVI. No attempt was made to determine the effect of the presence of a second component on the solubility of a particular component in zinc.

The values for K_N given in Table XV can also be expressed as w/o ratios. If both components have the same valence in the salt, as for reaction 1,

$$\left(\frac{\%U}{\%Th}\right)_{\text{salt}} \left(\frac{\%Th}{\%U}\right)_{\text{zinc}} = K_N \approx 9.0$$

If the valence states are not the same, as in reaction 3, an appropriate expression can be obtained, in this case:

$$\log K_N = \log \left(\frac{\%Zr}{(\%Zn)^{3/2}}\right)_{\text{salt}} \left(\frac{1}{\%Zr}\right)_{\text{zinc}} + \frac{3}{2} \log(100 \times 65.38) - \frac{1}{2} \log 55.9.$$

The numbers in the last two terms represent the average molecular weight of the zinc phase (usually 99+% zinc) and the salt phase (KCl-LiCl eutectic containing small amounts of ZrCl$_3$, ThCl$_3$ etc.) respectively.
Table XV
Equilibrium Constants, K_N, for Oxidation-Reduction Reactions
in a KCl-LiCl/Zinc System

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Components in System</th>
<th>Temp. °C</th>
<th>$K_N(N<0.015)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. U+ThCl$_3$ \rightarrow UCl$_3$+Th</td>
<td>U, Th, Zr</td>
<td>700</td>
<td>9.0±1.3</td>
</tr>
<tr>
<td></td>
<td>Th, U</td>
<td>700</td>
<td>8.8±0.6</td>
</tr>
<tr>
<td></td>
<td>U, Th, Pa*</td>
<td>500</td>
<td>2.0±0.5</td>
</tr>
<tr>
<td></td>
<td>U, Th, Zr</td>
<td>500</td>
<td>2.3±1.3</td>
</tr>
<tr>
<td>2. Ce+UC$_3$ \rightarrow CeCl$_3$+U</td>
<td>Ce, U, Zr</td>
<td>700</td>
<td>10.8±2.0</td>
</tr>
<tr>
<td></td>
<td>Ce*, U</td>
<td>500</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>Ce, U</td>
<td>500</td>
<td>18</td>
</tr>
<tr>
<td>3. Zr+3/2ZnCl$_2$ \rightarrow ZrCl$_3$+3/2Zn</td>
<td>U, Th, Zr</td>
<td>700</td>
<td>2.04x103</td>
</tr>
<tr>
<td></td>
<td>U, Th, Zr</td>
<td>700</td>
<td>3.22x103</td>
</tr>
<tr>
<td></td>
<td>Zr, Cr</td>
<td>700</td>
<td>1.5 x103</td>
</tr>
<tr>
<td></td>
<td>Ce, U, Zr</td>
<td>700</td>
<td>1.7 x103</td>
</tr>
<tr>
<td></td>
<td>Zr, U</td>
<td>650</td>
<td>1.8 x103</td>
</tr>
<tr>
<td></td>
<td>Zr, Cr</td>
<td>500</td>
<td>1.5 x103</td>
</tr>
<tr>
<td></td>
<td>U, Th, Zr</td>
<td>500</td>
<td>(4.0±2.0)x103</td>
</tr>
<tr>
<td>4. Zr+3/2CrCl$_2$ \rightarrow ZrCl$_3$+3/2Cr</td>
<td>Zr, Cr</td>
<td>700</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Zr, Cr</td>
<td>500</td>
<td>280</td>
</tr>
<tr>
<td>5. Cr+ ZnCl$_2$ \rightarrow CrCl$_2$+3/2Zn</td>
<td>Zr, Cr</td>
<td>700</td>
<td>7.6</td>
</tr>
<tr>
<td></td>
<td>Cr, U</td>
<td>650</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Cr, U</td>
<td>625</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Zr, Cr</td>
<td>500</td>
<td>3.0</td>
</tr>
<tr>
<td>6. Th+PaCl$_3$ \rightarrow ThCl$_3$+Pa</td>
<td>Th, U, Pa*</td>
<td>500</td>
<td>10.0±6.0</td>
</tr>
<tr>
<td>7. U+PaCl$_3$ \rightarrow UCl$_3$+Pa</td>
<td>Th, U, Pa*</td>
<td>500</td>
<td>20.0±1.3</td>
</tr>
<tr>
<td>8. Y+UC$_3$ \rightarrow YCl$_3$+U</td>
<td>U, Y*</td>
<td>500</td>
<td>1.0±0.5</td>
</tr>
</tbody>
</table>

* Radioactive tracer added, concentrations in the zinc and salt phases determined radiochemically.
Table XVI

Solubility Limits of Metals in Zinc

<table>
<thead>
<tr>
<th></th>
<th>500°C w/o</th>
<th>Mole Fraction</th>
<th>700°C w/o</th>
<th>Mole Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0.033</td>
<td>9.0x10^-5</td>
<td>1.48</td>
<td>4.1x10^-3</td>
</tr>
<tr>
<td>Th</td>
<td>0.022</td>
<td>6.1x10^-5</td>
<td>0.99</td>
<td>2.8x10^-3</td>
</tr>
<tr>
<td>Zr</td>
<td>0.24</td>
<td>1.72x10^-3</td>
<td>Not exceeded</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>1.2</td>
<td>1.5x10^-2</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Ce</td>
<td>0.012</td>
<td>5.6x10^-5</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>Y</td>
<td>0.014</td>
<td>1.03x10^-4</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

The values for the equilibrium constants obtained in the various experiments are fairly consistent. In experiments involving different components some variation in \(K_N \) for a particular reaction may result due to interaction between the solute components. The mutual effects of the solute components on their activity coefficients are not known. Scatter in the experimental data was too large to permit any such significance to be associated with the variations of the \(K_N \) values listed in Table XVI.

5.2.2 Distribution of Cerium, Yttrium and Protactinium Between Mg-38 w/o Th and KCl-LiCl Eutectic Containing MgCl\(_2\) (P. Chiotti and S. J. S. Parry)

The distribution of cerium, yttrium and protactinium between Mg-38 w/o Th and KCl-LiCl eutectic containing MgCl\(_2\) has been measured in an
attempt to determine the extent to which such components may be separated from Mg-Th eutectic. These equilibrations were carried out in sealed tantalum cans in the same manner as the small scale equilibrations described in section 5.2.1. The results obtained are summarized in Table XVII. The amount of yttrium and cerium present in each case was in the range of 1.2 to 0.8 w/o based on the total weight of charge. In the case of protactinium neutron irradiated Mg-38 w/o Th was used and the distribution of protactinium-233 between the two phases was determined radiochemically.

5.2.3 Distribution of Cerium Between Mg-38 w/o Th and U-5.2 w/o Cr (P. Chiotti and S. J. S. Parry)

Three experiments were performed to determine the extent to which a Mg-38 w/o Th phase extracts cerium from U-5.2 w/o Cr. These equilibrations were carried out at 1000°C in tantalum crucibles. The amount of cerium present was roughly 0.2 w/o based on the total weight of the two phases. Cerium-144 was added as a tracer and the cerium concentration was determined radiochemically. The results summarized in Table XVIII show that the cerium is very effectively extracted by the Mg-Th phase.

5.2.4 Precipitation of Solutes as Hydrides from Liquid Metal Solvents (P. Chiotti and P. F. Woerner)

Work on the precipitation of solutes from liquid metals with hydrogen at one atmosphere pressure has been completed and the results have been summarized by Paul F. Woerner, Ph.D. Thesis,
Table XVII

Distribution of Cerium, Yttrium, and Protactinium Between Mg-38 w/o Th and KCl-LiCl Eutectic Containing MgCl₂

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Salt w/o MgCl₂</th>
<th>Component</th>
<th>Kₐ w/o in salt</th>
<th>R wt. salt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ce</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>700</td>
<td>15</td>
<td></td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td>1.2</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td>0.65</td>
</tr>
<tr>
<td>800</td>
<td></td>
<td></td>
<td>2.3*</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0*</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.6*</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0*</td>
<td>0.37</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>Y</td>
<td>7.1</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.8</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.7</td>
<td>1.0</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>Pa</td>
<td>0.0020**</td>
<td>1.3</td>
</tr>
<tr>
<td>650</td>
<td>20</td>
<td></td>
<td>0.0076**</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*Metal phase contained 10 w/o zinc

**Kₐ - distribution coefficient counts/min/g in salt divided by counts/min/g in metal
Table XVIII

Distribution of Cerium Between Mg-38 w/o Th and U-5.2 w/o Cr at 1000°C

<table>
<thead>
<tr>
<th>Wt. Mg-38 Th</th>
<th>K_d w/o Ce in Mg-Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt. U-5.2 Cr</td>
<td>w/o Ce in U-Cr</td>
</tr>
<tr>
<td>0.64</td>
<td>0.58 x 10^3</td>
</tr>
<tr>
<td>0.47</td>
<td>3.7 x 10^3</td>
</tr>
<tr>
<td>0.46</td>
<td>3.0 x 10^3</td>
</tr>
</tbody>
</table>

Iowa State University, Ames, Iowa, 1960. Some details relative to this investigation have been presented in an earlier report of this series, IS-17. The results obtained for the solubility of yttrium, zirconium and thorium in some liquid metals are summarized in Table XIX. The residual concentration data of these solutes in the same solvents, after equilibration with hydrogen at one atmosphere pressure, as well as other data, are presented in Table XX. In the case of aluminum saturated with zirconium no significant change in the amount of zirconium in solution was observed upon equilibration with hydrogen at one atmosphere pressure. This was also observed to be the case for yttrium in zinc. The solubility of yttrium in zinc as a function of temperature shows a discontinuity in slope at 685°C, the peritectic decomposition temperature for YZn_{11}. See section 2.2.

The mole fractions of solutes in the solvents equilibrated with hydrogen were calculated on the assumption that the concentration of hydrogen in the solvent was negligible. Experiments are being conducted to check the validity of this assumption.
Table XIX

Solubility of Various Solutes in Liquid Metal Solvents as a Function of Temperature

\[\log_{10} N = -\frac{A}{T} + B \]

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solute</th>
<th>A</th>
<th>Probable error in (A)</th>
<th>B</th>
<th>Probable error in (B)</th>
<th>Temp range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>Y</td>
<td>4769</td>
<td>348</td>
<td>2.946</td>
<td>0.332</td>
<td>685-850</td>
</tr>
<tr>
<td>Zn</td>
<td>Y</td>
<td>7663</td>
<td>169</td>
<td>5.902</td>
<td>0.195</td>
<td>495-685</td>
</tr>
<tr>
<td>Al</td>
<td>Zr</td>
<td>4089</td>
<td>316</td>
<td>0.896</td>
<td>0.305</td>
<td>650-850</td>
</tr>
<tr>
<td>Al-70 w/o Mg</td>
<td>Th</td>
<td>3267</td>
<td>121</td>
<td>-0.056</td>
<td>0.134</td>
<td>500-815</td>
</tr>
<tr>
<td>Mg-55 w/o Zn</td>
<td>Th</td>
<td>2067</td>
<td>156</td>
<td>1.144</td>
<td>0.187</td>
<td>500-815</td>
</tr>
</tbody>
</table>

Table XX

Residual Solute Concentration in Various Liquid Metal Solvents Equilibrated With Hydrogen at a Pressure of One Atmosphere

\[\log N = -\frac{A}{T} + B \]

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solute</th>
<th>A</th>
<th>Probable error in (A)</th>
<th>B</th>
<th>Probable error in (B)</th>
<th>Temp range °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>Ca</td>
<td>2343</td>
<td>137</td>
<td>1.285</td>
<td>0.137</td>
<td>625-900</td>
</tr>
<tr>
<td>Mg</td>
<td>Y</td>
<td>8458</td>
<td>624</td>
<td>5.703</td>
<td>0.605</td>
<td>650-913</td>
</tr>
<tr>
<td>Mg-55 w/o Zn</td>
<td>Y</td>
<td>4857</td>
<td>134</td>
<td>3.199</td>
<td>0.140</td>
<td>485-850</td>
</tr>
<tr>
<td>Mg</td>
<td>La</td>
<td>3625</td>
<td>107</td>
<td>2.395</td>
<td>0.107</td>
<td>655-850</td>
</tr>
<tr>
<td>Mg</td>
<td>Ce</td>
<td>1376</td>
<td>137</td>
<td>0.0028</td>
<td>0.137</td>
<td>597-850</td>
</tr>
<tr>
<td>Mg</td>
<td>Th</td>
<td>4603</td>
<td>215</td>
<td>2.810</td>
<td>0.214</td>
<td>650-850</td>
</tr>
<tr>
<td>Mg-55 w/o Zn</td>
<td>Th</td>
<td>1880</td>
<td>30</td>
<td>0.558</td>
<td>0.0326</td>
<td>500-815</td>
</tr>
<tr>
<td>Mg-70 w/o Al</td>
<td>Th</td>
<td>3441</td>
<td>91</td>
<td>-0.152</td>
<td>0.098</td>
<td>500-815</td>
</tr>
</tbody>
</table>
The reaction of hydrogen with solutes which form stable hydrides is also being investigated as a method for determining the thermo-
dynamic properties of intermetallic phases or compounds. Measure-
ments of the equilibrium hydrogen pressure over a system consisting of \(\text{CaH}_2 \), \(\text{CaMg}_2 \) and a magnesium-rich solid solution are being made in an attempt to determine the thermodynamic properties for the compound \(\text{CaMg}_2 \). The data thus far obtained yield a value for the standard free energy of formation for \(\text{CaMg}_2 \) which is in agreement with the free energy of formation obtained by other methods. However, the temperature dependence of the free energy, or the enthalpy of formation has not been satisfactorily determined. Such reactions will be extended to other systems of interest if the present investigation proves successful.

6. Other Investigations

6.1 Diffusion of Hydrogen in Thorium (D. T. Peterson and D. G. Westlake)

The results of this investigation have been published in the Journal of Physical Chemistry, Vol. 64, 649 (1960). The title of the article is "Diffusion of Hydrogen in Thorium" by D. T. Peterson and D. G. Westlake.

Abstract—The diffusivity of hydrogen in thorium was measured from 300 to 900°C. Over this temperature range, \(D = 2.92 \times 10^{-3} \exp (-9750/RT) \). The diffusivity increased with concentration above 600° but did not vary significantly with purity, grain size or cold working. Two different methods of determining diffusion constants were used and gave similar values.
6.2 Diffusion of Carbon in Thorium (D. T. Peterson)

The diffusion of carbon in thorium was studied at 1000, 1100 and 1200°C. Cylinders of thorium were carburized by packing in powdered graphite and heating at temperature for a measured length of time. The carbon concentration gradient along the radius of the cylinder was measured by sampling and analysing for carbon by the combustion method. The diffusion coefficients were calculated from the rate of saturation of the specimen and also by a differential method. The results of the two methods of calculation were in very good agreement. The diffusion coefficients decreased with increasing carbon content at each temperature. The diffusion coefficients from the rate of saturation method are given in Table XXI and the solubility of carbon in thorium in Table XXII. The activation energy for diffusion of carbon in thorium was 38 kcal.

6.3 Vapor Pressure of Calcium over Solutions of Calcium in Molten Calcium Chloride (D. T. Peterson and E. Johnson)

The vapor pressure of calcium over solutions of calcium in calcium chloride was measured by a carrier gas method at two temperatures and a range of calcium concentrations. The vapor pressure varied with the square of the calcium concentration up to the solubility limit. This concentration dependence indicates that calcium forms two solute particles on dissolving in molten calcium chloride. There was considerable scatter and lack of reproducibility in the experimental data which must have been due to an undetected experimental error. The procedure will be examined to find the source of the erratic results and modified to improve the accuracy and precision.
Table XXI
Diffusion Coefficients for Carbon in Thorium

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Diffusion Coefficient</th>
<th>Time, sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000°C</td>
<td>7.9 x 10^{-9}</td>
<td>2.6 x 10^5</td>
</tr>
<tr>
<td></td>
<td>10.5 x 10^{-9}</td>
<td>5.2 x 10^5</td>
</tr>
<tr>
<td></td>
<td>11.4 x 10^{-9}</td>
<td>8.6 x 10^5</td>
</tr>
<tr>
<td></td>
<td>7.9 x 10^{-9}</td>
<td>1.7 x 10^6</td>
</tr>
<tr>
<td></td>
<td>7.4 x 10^{-9}</td>
<td>2.6 x 10^6</td>
</tr>
<tr>
<td>1100°C</td>
<td>3.9 x 10^{-8}</td>
<td>8.6 x 10^4</td>
</tr>
<tr>
<td></td>
<td>3.6 x 10^{-8}</td>
<td>4.3 x 10^5</td>
</tr>
<tr>
<td></td>
<td>2.8 x 10^{-8}</td>
<td>7.8 x 10^5</td>
</tr>
<tr>
<td>1200°C</td>
<td>11.1 x 10^{-8}</td>
<td>9.4 x 10^4</td>
</tr>
<tr>
<td></td>
<td>5.6 x 10^{-8}</td>
<td>3.4 x 10^5</td>
</tr>
<tr>
<td></td>
<td>5.9 x 10^{-8}</td>
<td>4.1 x 10^5</td>
</tr>
<tr>
<td></td>
<td>3.6 x 10^{-8}</td>
<td>7.8 x 10^5</td>
</tr>
<tr>
<td></td>
<td>4.1 x 10^{-8}</td>
<td>11.2 x 10^5</td>
</tr>
</tbody>
</table>

Table XXII
Solubility Limits of Carbon in Thorium

<table>
<thead>
<tr>
<th>Temperature</th>
<th>This Investigation</th>
<th>Peterson & Mickelson</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000°C</td>
<td>0.63 w/o</td>
<td>0.56 w/o</td>
</tr>
<tr>
<td>1100°C</td>
<td>0.80 w/o</td>
<td></td>
</tr>
<tr>
<td>1200°C</td>
<td>1.06 w/o</td>
<td>0.90 w/o</td>
</tr>
</tbody>
</table>
6.4 Thorium Metallography (D. T. Peterson)

An investigation of new electrolytes for the preparation of thorium specimens for metallographic examination was made. The results of this study have been summarized and issued as IS-155, "Some Metallographic Observations on Thorium Metal".

6.5 Transport Reactions of Some Vanadium Halides (R. E. McCarley and J. W. Roddy)

One of the most difficult vanadium halides to prepare in a high state of purity is vanadium(III) chloride. The difficulty arises from the relative thermodynamic stabilities of the compounds VCl$_4$, VCl$_3$ and VCl$_2$. At the temperatures required for chlorination of either vanadium metal or vanadium oxides, e.g. V$_2$O$_3$ or V$_2$O$_4$, the equilibrium constant for the reaction

$$ (1) \quad \text{VCl}_3(s) + \frac{1}{2}\text{Cl}_2(g) = \text{VCl}_4(g) $$

is sufficiently large that VCl$_4$ is the chief product obtained from the chlorination reactions. A subsequent step is then required for formation of VCl$_3$, whereby the inverse of reaction (1) is utilized.

Under the conditions usually employed for the decomposition of VCl$_4$, many of the impurities which may be present remain with the VCl$_3$. Further purification of VCl$_3$ by sublimation is rendered impractical owing to the decomposition

$$ (2) \quad 2\text{VCl}_3(s) = \text{VCl}_4(g) + \text{VCl}_2(s) $$

which becomes important at the temperatures required for vaporization.

A possible solution to the purification problem may be found in the utilization of chemical transport reactions, i.e., reactions where the
compound is transported through a temperature gradient T_1 to T_2 by formation of a gaseous species stable at T_1, but unstable at T_2. Such a reaction may be represented, in the case of vanadium(III) chloride, by the equation

$$\frac{\text{T}_1}{\text{T}_2} x\text{VC}_3(\text{s}) + \frac{x_n}{m} X_m(\text{g}) \rightleftharpoons x\text{VC}_3X_n(\text{g})$$

With this in mind, an investigation of some possible reactions has been initiated. During this period attention was centered on the reactions of VC_3 and VC_2 with bromine, as well as solid solubility and compound formation in the system $\text{VC}_3 - \text{VBr}_3$.

The VC_3 used in this work was prepared by decomposition of VC_4 at 154°C under reflux and inert atmosphere. The purity of this material was found to depend greatly on the source of the VC_4. When VC_4 produced by chlorination of crystal bar vanadium was employed, a satisfactory product resulted. However, several attempts to prepare the VC_4 from V_2O_3 by chlorination with carbon tetrachloride led to products of unacceptable purity. The first step in this reaction must involve conversion of V_2O_3 to VOCl since the latter compound was always obtained in those reactions stopped short of completion. In subsequent steps the VOCl was converted to VC_4, with some conversion of carbon tetrachloride to hexachloroethane, and possibly other long chain chlorocarbons. Hexachloroethane has been identified as one product of the reaction. On subsequent decomposition of the VC_4, the chlorocarbons were difficult to remove from the VC_3 and a product of a low degree of purity was obtained.
Several reactions of bromine and VCl$_3$ were performed in the following manner. A sample of VCl$_3$ at elevated temperature was contacted with bromine vapor in a sealed, evacuated Pyrex tube. The bromine was contained in a special arm of the tube so that the vapor pressure could be regulated by use of constant temperature baths. During the course of the reactions little of the bromine was actually consumed, but the VCl$_3$ was transported from the hot reaction zone to cooler regions of the tube. Some difficulty has been encountered in the analysis of the products, which contain both chlorine and bromine. Analytical data for the products of two such reactions, along with reaction conditions are given below:

<table>
<thead>
<tr>
<th>P_{Br_2} (mm. Hg)</th>
<th>Reaction Temp. °C</th>
<th>%V</th>
<th>%Cl</th>
<th>%Br</th>
<th>Total %</th>
<th>Atom Ratio Cl/V</th>
<th>Br/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>400</td>
<td>31.8</td>
<td>65.5</td>
<td>2.5</td>
<td>99.8</td>
<td>2.96</td>
<td>0.05</td>
</tr>
<tr>
<td>67</td>
<td>400</td>
<td>32.1</td>
<td>66.2</td>
<td>1.6</td>
<td>99.9</td>
<td>2.97</td>
<td>0.03</td>
</tr>
</tbody>
</table>

It is evident that some bromine has entered into solid solution in the deposited VCl$_3$. Work is now in progress to determine the dependence of the solid solution formation on the bromine pressure. Transpiration experiments designed to determine equilibrium constants and nature of the vapor species are also in progress.

Preliminary results of an X-ray diffraction study of solids in the system VCl$_3$-VBr$_3$ indicate solid solution formation over the complete range of compositions. Samples very low in bromine content were prepared by the transport reaction; those with Br/V ratio greater than
0.1 were prepared by heating mixtures of VCl$_3$ and VBr$_3$ at 600-650°C in sealed evacuated tubes. The sample of the composition VCl$_2$Br was obtained by direct reaction of VCl$_2$ and bromine at 400°C. X-ray powder patterns for all samples were successfully indexed on the basis of a hexagonal unit cell. The derived lattice constants are given in Table XXIII.

Table XXIII

Lattice Constants for Solid Solutions in the System VCl$_3$-VBr$_3$

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Nominal Composition*</th>
<th>Formula</th>
<th>Lattice Constants</th>
<th>a(Å)</th>
<th>c(Å)</th>
<th>c/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32.4 67.6 --</td>
<td>VCl$_3$</td>
<td>6.01</td>
<td>17.34</td>
<td>2.885</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32.1† 66.2 1.6†</td>
<td>VCl${2.97}$Br${0.03}$</td>
<td>6.18</td>
<td>17.87</td>
<td>2.892</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31.8† 65.5 2.5†</td>
<td>VCl${2.96}$Br${0.05}$</td>
<td>6.06</td>
<td>17.46</td>
<td>2.881</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29.8 56.0 14.2</td>
<td>VCl${2.70}$Br${0.30}$</td>
<td>6.08</td>
<td>17.56</td>
<td>2.888</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.3 35.1 39.6</td>
<td>VCl$_2$Br</td>
<td>6.16</td>
<td>17.98</td>
<td>2.919</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>23.0 23.0 54.0</td>
<td>VCl${1.44}$Br${1.50}$</td>
<td>6.24</td>
<td>18.09</td>
<td>2.899</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19.2 7.6 73.2</td>
<td>VCl${0.57}$Br${2.43}$</td>
<td>6.33</td>
<td>18.28</td>
<td>2.888</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.5 -- 82.5</td>
<td>VBr$_3$</td>
<td>6.38</td>
<td>18.48</td>
<td>2.897</td>
<td></td>
</tr>
</tbody>
</table>

* Determined from the weights of VCl$_3$ and VBr$_3$ used for preparation of the solid solution
† Determined by direct analysis

When the lattice constants are plotted vs composition of the solid in the system VCl$_3$-VBr$_3$, a linear relationship is obtained for a$_0$ over
the range of compositions examined. The \(c_0 \) values show considerable scatter but also appear to be linearly dependent on the composition. These results indicate that \(\text{VCl}_3 \) and \(\text{VBr}_3 \) are completely miscible in the solid state and also that the solid solutions exhibit almost ideal behavior. Further work to confirm these observations with the bromine-rich solutions is in progress.

6.6 Reduction of Vanadium Oxytrichloride with Hydrogen (R. E. McCarley and J. W. Roddy)

The results of this investigation have been accepted for publication in the Journal of Inorganic and Nuclear Chemistry. An abstract of the paper, "The Hydrogen-Vanadium(V) Oxytrichloride Reaction", is given here.

Abstract—The reaction of hydrogen and \(\text{VOCl}_3 \) has been investigated over the temperature range 500 to 850°C. Pure \(\text{VOCl}_1 \) was obtained as the reaction product at 600-635°C; but at higher temperatures mixtures of \(\text{V}_2\text{O}_3, \text{VCl}_2 \) and \(\text{VOCl}_1 \) resulted. Thermal decomposition of \(\text{VOCl}_1 \) at 650 to 900°C proceeded with formation of \(\text{V}_2\text{O}_3, \text{VCl}_2, \text{VCl}_3 \) and \(\text{VCl}_4 \); this reaction was related in a definite way to the hydrogen reduction. X-ray powder diffraction data are given in the paper for \(\text{VOCl}_1 \) and \(\text{VCl}_2 \).

6.7 Preparation of Pure Vanadium Pentoxide (R. E. McCarley and J. W. Roddy)

The results of this work have been published in the Journal of Less Common Metals, 2, 29 (1960). An abstract of the paper is given here.
Abstract—A method for the preparation of high purity V_2O_5 from a technical grade oxide has been developed. The method includes the reaction of the impure oxide with chlorine and carbon, hydrolysis of the resultant $VOCl_3$ in aqueous ammonia, and ignition of the precipitated NH_4VO_3 at 500-600°C. V_2O_5 containing a maximum of ca. 100 ppm impurities was produced in kilogram quantities both cheaply and efficiently by this process.

6.8 Niobium Halides

6.8.1 Reactions of Niobium(V) Halides with Pyridine (R. E. McCarley and B. G. Hughes)

Work on the reaction of pyridine with NbBr$_5$ was continued and extended also to the reactions with other niobium(V) halides and tantalum(V) halides. These reactions are of considerable interest because of the reduction of the metal to a lower valence state. For example, in the case of the reactions of the niobium halides with pyridine, the niobium was reduced to the average oxidation state +4. While NbCl$_5$, NbBr$_5$ and NbI$_5$ were all reduced by pyridine under similar conditions, the only tantalum halide to show evidence for reduction was TaI$_5$.

Reaction of NbBr$_5$ with a large excess of pyridine at room temperature led to formation of a green, insoluble solid. Removal of the excess pyridine on the vacuum line gave, by weight gain data, a pyridine/NbBr$_5$ reaction ratio of 3.38-3.40. Analysis of the solid also supported this reaction ratio. It has been demonstrated that pyridinium bromide may be extracted from the reaction mixture either by washing the solids.
with dry chloroform or by sublimation at 150°C. In either case the pyridinium bromide was identified by its infrared spectrum or by its X-ray diffraction powder pattern. Up to 1/5 of the total bromide was removed by these techniques, which indicated that one mole of pyridinium bromide was formed for each mole of NbBr₅ used in the reaction. Attempts to identify the oxidation product of pyridine have not been successful.

That the preponderance of the niobium is in a lower oxidation state has been demonstrated by the behavior of the product on hydrolysis in dilute acids or by titrations with standard oxidizing agents. The results of the titrations have not been consistent and have depended greatly on the solvent system selected for the experiment. For example, titrations in 1M acetic acid with potassium dichromate indicated from 35 to 70 percent of the niobium to be in the +4 oxidation state, while titrations in 1N sulfuric acid with ceric sulfate indicated up to 90 percent of the niobium was in the reduced valence state.

Solutions of the reaction product in dilute aqueous acids exhibited a deep blue color, and were unstable to air oxidation and separation of niobium(V) oxide. When dissolved in 50 volume percent sulfuric acid the solution was pink and gave absorption bands with maxima at 502 and 697 m\(\mu\) in the visible region of the spectrum. The product of the reaction of NbCl₅ and pyridine exhibited an absorption spectrum identical to that of the bromide in the 50 volume percent sulfuric acid solutions.
Reaction of NbCl\textsubscript{5} and pyridine under conditions similar to those used for the NbBr\textsubscript{5} reaction yielded a brown solid, the composition of which corresponded to NbCl\textsubscript{5}·2.54C\textsubscript{5}H\textsubscript{5}N. The behavior of this product towards hydrolysis and the titrations with standard oxidizing agents was entirely analogous to that of the bromide.

The reaction of NbI\textsubscript{5} and pyridine also resulted in reduction of the niobium, but otherwise the reaction was very much different from that of either NbBr\textsubscript{5} or NbCl\textsubscript{5}. In this case all products were completely soluble in the pyridine and the solution exhibited a green color. On removal of excess pyridine by vacuum distillation, it was found that iodine was lost from the product. Heating the solid product at 100°C and 10-3 mm Hg affected the complete removal of the volatile iodine species and left a residue of NbI\textsubscript{4}·2C\textsubscript{5}H\textsubscript{5}N. Treatment of the volatile iodine species with aqueous acid produced elemental iodine, a reaction expected of the compound C\textsubscript{5}H\textsubscript{5}NI\textsubscript{2}. Thus, it is thought that the reduction of NbI\textsubscript{5} in pyridine proceeds according to the reaction

$$2\text{NbI}_5 + 5\text{C}_5\text{H}_5\text{N} = 2[\text{NbI}_4 \cdot 2\text{C}_5\text{H}_5\text{N}] + \text{C}_5\text{H}_5\text{NI}_2$$

Further information about the compound NbI\textsubscript{4}·2C\textsubscript{5}H\textsubscript{5}N is given in section 6.8.2 of this report.

The reaction of TaBr\textsubscript{5} and pyridine gave no evidence for reduction of the tantalum. The only product of this reaction was the simple adduct TaBr\textsubscript{5}·C\textsubscript{5}H\textsubscript{5}N, the composition of which was established by both weight gain data for pyridine and analysis of the solid. Further work on this reaction was not considered pertinent to this investigation.

Preliminary work on the reaction of TaI\textsubscript{5} and pyridine has indicated that reduction of tantalum does take place by a reaction similar to
that of NbI$_5$. Thus, reaction of TaI$_5$ in an excess of pyridine at 25°C for 48 hours, removal of excess pyridine on the vacuum line, and pumping the product at 100°C and 10^{-3} \text{mm Hg} for 22 hours, yielded a product of the composition TaI$_4$.36 \cdot 1.98C_5H$_5$N. The volatile iodine compound was found in the cold trap of the vacuum line, as in the case of the NbI$_5$ reaction. An X-ray diffraction powder pattern of this tantalum compound also proved to be essentially identical with that of NbI$_4$.2C_5H_5$N. Thus good evidence for the reaction

$$2\text{TaI}_5 + 5\text{C}_5\text{H}_5\text{N} = 2[\text{TaI}_4 \cdot 2\text{C}_5\text{H}_5\text{N}] + \text{C}_5\text{H}_5\text{NI}_2$$

has been obtained. However, either this reaction did not go to completion under the experimental conditions, or the C$_5$H$_5$NI$_2$ was incompletely removed from the product by the vacuum treatment at 100°C. A comparison of the thermal stabilities of NbI$_5$ and TaI$_5$ would tend to support the former possibility. Additional work will be performed to support these observations.

6.8.2 Reactions and Properties of the Niobium(IV) Halides

(R. E. McCarley and B. A. Torp)

The investigation of the chemical and physical properties of the compounds NbCl$_4$, NbBr$_4$ and NbI$_4$ was initiated to support the work on the reactions of the niobium(V) halides and pyridine, and to expand the available information on the chemistry of niobium in its lower valence states. Corbett has reported the preparation of NbI$_4$, and Shäffer has reported a more extensive study of the synthesis and properties of NbCl$_4$. No previous report of NbBr$_4$ has appeared in the literature.
It has been found that NbI$_4$ dissolves in anhydrous pyridine with formation of an emerald green solution. The solubility in this solvent at room temperature is ca. 200 g/L. Rough magnetic susceptibility measurements on the saturated solution have shown it to be paramagnetic. Removal of excess pyridine on the vacuum line at 25-50°C and <10$^{-3}$ mm Hg gave a purple solid of the composition NbI$_4$·2C$_5$H$_5$N. This solid has also proven to be paramagnetic.

Dahl and Wampler have shown NbI$_4$ to be diamagnetic and to possess some degree of metal-metal bonding in the solid state. The paramagnetism of the solid NbI$_4$·2C$_5$H$_5$N and its pyridine solution indicate that the metal-metal bond is broken in the reaction with pyridine and that the resulting compound is probably a monomeric species. A more detailed study of the magnetic properties of the pyridine adduct will be undertaken since data of this type are not readily available, nor well understood, for elements of the second and third transition series.

The synthesis of NbBr$_4$ has been accomplished by reaction of NbBr$_5$ with niobium metal at 400°C in a sealed tube. In this reaction the partial pressure of NbBr$_5$ was maintained at ca. 200 mm. For higher reaction temperatures and the same NbBr$_5$ pressure, the predominant product was NbBr$_3$. Additional work to establish the optimum conditions for formation of NbBr$_4$ is in progress. A study of the properties and reactions of this compound will also be undertaken.
6.9 Air Oxidation of Yttrium and Yttrium Alloys (O. N. Carlson, R. L. Wells and F. A. Schmidt)

A study was made of the air oxidation properties of yttrium metal at elevated temperatures. Tests were run up to 925°C using a semi-continuous weighing apparatus. Arc-cast yttrium containing approximately 0.5 w/o titanium, 700 ppm fluorine and 700 ppm oxygen was used in this study. Negligible weight gains were observed below 450°C in a 24-hr period. The rate increases with increasing temperature, reaching a maximum at 700°C where the rate falls off somewhat and reaches a minimum at 750°C. Above this temperature the oxidation rate increases rapidly and becomes catastrophic at 900°C. As can be seen from Figs. 18 and 19 most of these curves are not linear on a log-log plot for the 24-hour period although some appear to have straight-line segments with different slopes. The hardness of the base metal was found to increase with increasing temperature due to the diffusion of oxygen into the metal lattice during oxidation. The oxide layer increased in thickness and the metal-oxide interface became more regular as the temperature of oxidation was increased. The results of this investigation are described in detail in a recent report entitled "A Study of the High-Temperature Air Oxidation of Yttrium Metal". (13)

Mn, Fe, Co, Ni, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, Th, and U were given a preliminary survey by heating in a muffle furnace at 900°C for 24 hours. The more corrosion-resistant alloys of this series were then tested more thoroughly.

The 5 w/o Be alloy which appeared somewhat promising was tested at 900°C, 800°C, 700°C, and 600°C. At 900°C, a sample of the annealed alloy obeyed the parabolic rate law and the weight gain was relatively low, 9 mg/cm², after 24 hours. At 700°C and 800°C, however, the oxidation rate was surprisingly high gaining 18.2 mg/cm² in a 24-hour period. At 600°C the rate was again lower gaining 1 mg/cm² in 24 hours. The anomalies in the temperature-oxidation
rate curves are currently being investigated using higher purity metal.

6.10 Investigation of the Oxides of Niobium and Niobium Alloys

(W. L. Larsen and V. C. Marcotte)

An investigation of the oxidation of niobium and niobium alloys was commenced after the completion of an extensive survey of the published work in this field.

Niobium specimens were heated in air at 100°C intervals from 400°C to 1000°C. The specimen heated to 1000°C produced the high temperature or alpha form of Nb₂O₅ while all the other specimens formed the low temperature, or gamma modification. According to recent work the gamma-alpha transformation temperature is 830°C. However, this transformation is grossly affected by minor impurities and by heating and cooling rates. According to Goldschmidt(14) the gamma form of Nb₂O₅ is metastable. However, oxides produced at 600°C have been held at 600°C in excess of 500 hours with no reversion to the alpha form discernable from X-ray data.

The phase diagram of the Nb₂O₅-TiO₂ system is being investigated in an effort to expand the work done by Roth and Coughanour. (15)

A series of mixtures of the oxides was prepared by dry-pressing at 16,000 psi followed by sintering at 1400°C. X-ray diffraction patterns

of the compacts have established the location of two compounds, \(\text{Nb}_2\text{O}_5 \cdot \text{TiO}_2 \) and \(3\text{Nb}_2\text{O}_5 \cdot \text{TiO}_2 \) at approximately the same compositions reported by Roth and Coughanour. The X-ray diffraction results indicate the compounds are located very near the stoichiometric compositions.

Apparatus is being constructed and work begun on an investigation of the mechanism of oxidation of niobium and niobium-titanium alloys. It is too early to report any results of this work.

6.11 High Pressure X-ray Diffraction Camera (J. F. Smith and R. W. Meyerhoff)

An X-ray diffraction camera for use at high pressures has been constructed and is in the process of testing and calibration. The salt \(\text{KNO}_3 \) undergoes a polymorphic transition near 3600 Kg/cm\(^2\). This transition was observed to occur at a calculated pressure of 5500 Kg/cm\(^2\) in the camera and indicated an appreciable frictional loss in the process of compression. Even with the large frictional loss however, measurements of the lattice constant of tungsten show that pressures up to 18,000 Kg/cm\(^2\) had been obtained in the camera.
APPENDIX I: LIST OF REPORTS FROM THE AMES LABORATORY

1. Reports for Cooperating Laboratories

IS-67 Toshihiro Ukada. Note on the Determination of the Magnetoresistance Tensor of a Crystal Having the Symmetry O_h or O.

2. Publications

APPENDIX II: LIST OF SHIPMENTS

<table>
<thead>
<tr>
<th>Destination</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Arizona General Stores Building Fifth Street and Mountain Avenue Tucson, Arizona</td>
<td>5 gm ytterbium oxide</td>
</tr>
<tr>
<td>Monsanto Chemical Company Mound Laboratory Miamisburg, Ohio</td>
<td>1 lb cerium metal</td>
</tr>
<tr>
<td>University of California Los Alamos Scientific Laboratory Los Alamos, New Mexico</td>
<td>2 metal cylinders lanthanum and cerium</td>
</tr>
<tr>
<td></td>
<td>50 gm lanthanum metal</td>
</tr>
<tr>
<td></td>
<td>50 gm neodymium metal</td>
</tr>
<tr>
<td>Michigan State University P. O. J9530 East Lansing, Michigan</td>
<td>20 gm cerium metal</td>
</tr>
<tr>
<td>H. B. Nicholas B-11 Research Building Iowa State University Ames, Iowa</td>
<td>10 gm yttrium oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm lanthanum oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm cerium oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm neodymium oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm dysprosium oxide</td>
</tr>
<tr>
<td></td>
<td>4 gm samarium oxide</td>
</tr>
<tr>
<td></td>
<td>2 gm gadolinium oxide</td>
</tr>
<tr>
<td></td>
<td>2 gm erbium oxide</td>
</tr>
<tr>
<td></td>
<td>2 gm ytterbium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm praseodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm holmium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm thulium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm terbium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm lutetium oxide</td>
</tr>
<tr>
<td></td>
<td>20 gm Er$_2$O$_3$</td>
</tr>
<tr>
<td>Mr. Sebastian Amer Box 122, Station A Ames, Iowa</td>
<td>10 gm Dy$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>25 gm La$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>25 gm Gd$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>25 gm Y$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>4 gm Lu$_2$O$_3$</td>
</tr>
<tr>
<td>Dr. Milton Burton Department of Chemistry University of Notre Dame Notre Dame, Indiana</td>
<td>samples of uranium metal (natural)</td>
</tr>
<tr>
<td>Mr. Pierre Pelen French Embassy 2535 Belmont Road N. W. Washington, D. C.</td>
<td></td>
</tr>
</tbody>
</table>
Destination

University of California
Receiving Department
2000 Carleton Street
Berkeley 4, California

Dr. Masao Atoji
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Item

25 gm ytterbium metal
25 gm thulium metal
50 gm samarium metal

30 gm lutetium metal
30 gm ytterbium metal
30 gm terbium metal
2 glass vials of thorium carbide-thorium deuteride x-ray powder samples
46 gm lutetium carbide
110 gm thorium carbide
42 gm ytterbium dicarbide
30 gm Lu$_2$O$_3$
30 gm Yb$_2$O$_3$

1 pc gadolinium metal
appx. 10cm x 5cm x 0.1cm

200 ml 5% rare-earth chloride solutions: YCl$_3$, NdCl$_3$, GdCl$_3$, DyCl$_3$ and YbCl$_3$
1500 ml 5% gadolinium chloride solution

100 gm cylinder cerium metal

50 gm crystal bar vanadium

10 gm Sm$_2$O$_3$
10 gm Dy$_2$O$_3$

50 gm crystal bar hafnium metal

1 gm yttrium metal

Dr. Richard J. Weiss
Materials Research Laboratory
Ordnance Materials Research Office
Watertown 72, Massachusetts

Iowa State University
Room 142 Research Building
Ames, Iowa

J. C. Jamieson
R. 21, 5641 S. Ingleside Avenue
Chicago 37, Illinois

Mr. Warren DeSorbo
General Electric Company
Schenectady, New York

Dr. Glenn A. Crosby
University of New Mexico
Albuquerque, New Mexico

Mr. Dave Drennen
Battelle Memorial Institute
Columbus 1, Ohio

Mrs. Mary E. White
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Destination

Professor Paul A. Beck
University of Illinois
Urbana, Illinois

Phillips Petroleum Company
Atomic Energy Division
Idaho Falls, Idaho

Argonne National Laboratory
Bailey Road
Lemont, Illinois

Warehouse 335
Fort Belvoir, Virginia

Veterinary Physiology & Pharmacology
Room 100, Vet Physiology
Ames, Iowa

Brookhaven National Laboratory
Warehouse 100
Upton, L. I., New York

Mr. W. E. Jardner
Atomic Energy Research Establishment
Harwell, Didcot
Berks, England

Dr. Alvin Boltax
Nuclear Metals Inc.
Concord, Massachusetts

Item

100 gm crystal bar wire
appx. 1/16" diameter
vanadium

18 pc. 1" x 1/4" x 1/8"
yttrium metal

250 gm distilled yttrium
metal

5 gm praseodymium metal
5 gm samarium metal
5 gm neodymium metal
5 gm dysprosium metal
5 gm terbium metal
5 gm gadolinium metal
5 gmholmium metal

1200 ml 5% dysprosium
chloride solution
0.5 gm gadolinium oxide
0.5 gm dysprosium oxide
0.5 gm ytterbium oxide
0.5 gm yttrium oxide

3 pc. thulium metal

5 gm crystal bar
vanadium

1 - 1" x 0.35" x 0.03"
thorium metal