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Accelerated Destructive Degradation Test Planning

Abstract
Accelerated Destructive Degradation Tests (ADDTs) provide reliability information quickly. An ADDT plan
specifies factor level combinations of an accelerating variable (e.g., temperature) and evaluation time and the
allocations of test units to these combinations. This paper describes methods to find good ADDT plans for an
important class of destructive degradation models. First, a collection of optimum plans is derived. These plans
minimize the large sample approximate variance of the maximum likelihood (ML) estimator of a specified
failure-time quantile. The General Equivalence Theorem (GET) is used to verify the optimality of these plans.
Because an optimum plan is not robust to the model specification and the planning information used in
deriving the plan, a more robust and useful compromise plan is proposed. Sensitivity analyses show the effects
that changes in sample size, time duration of the experiment, levels of the accelerating variable, and
misspecification of the planning information have on the precision of the ML estimator of a quantile of the
failure-time distribution. Monte Carlo simulations are used to evaluate the statistical characteristics of the
ADDT plans. The methods are illustrated with an application for an adhesive bond.
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Accelerated destructive degradation tests (ADDTs) provide reliability information quickly. An ADDT plan
specifies factor-level combinations of an accelerating variable (e.g., temperature) and evaluation time and the
allocations of test units to these combinations. This article describes methods for finding good ADDT plans
for an important class of destructive degradation models. First, a collection of optimum plans is derived.
These plans minimize the large sample approximate variance of the maximum likelihood (ML) estimator of a
specified quantile of the failure-time distribution. The general equivalence theorem is used to verify the
optimality of these plans. Because an optimum plan is not robust to the model specification and the planning
information used in deriving the plan, a more robust and useful compromise plan is proposed. Sensitivity
analyses show the effects that changes in sample size, time duration of the experiment, levels of the
accelerating variable, and misspecification of the planning information have on the precision of the ML
estimator of a failure-time quantile. Monte Carlo simulations are used to evaluate the statistical characteristics
of the ADDT plans. The methods are illustrated with an application for an adhesive bond.
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Abstract

Accelerated Destructive Degradation Tests (ADDTs) provide reliability information quickly.

An ADDT plan specifies factor level combinations of an accelerating variable (e.g., temperature)

and evaluation time and the allocations of test units to these combinations. This paper describes

methods to find good ADDT plans for an important class of destructive degradation models.

First, a collection of optimum plans is derived. These plans minimize the large sample approx-

imate variance of the maximum likelihood (ML) estimator of a specified failure-time quantile.

The General Equivalence Theorem (GET) is used to verify the optimality of these plans. Be-

cause an optimum plan is not robust to the model specification and the planning information

used in deriving the plan, a more robust and useful compromise plan is proposed. Sensitivity

analyses show the effects that changes in sample size, time duration of the experiment, levels of

the accelerating variable, and misspecification of the planning information have on the precision

of the ML estimator of a quantile of the failure-time distribution. Monte Carlo simulations are

used to evaluate the statistical characteristics of the ADDT plans. The methods are illustrated

with an application for an adhesive bond.

KEY WORDS: reliability, large sample approximate variance, optimum ADDT plan, gen-

eral equivalence theorem, compromise ADDT plan, Monte Carlo simulation.
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1 Introduction

1.1 Motivation

Manufacturers often conduct up-front reliability tests on materials and components when their

products are being designed. Because degradation data provide more information on reliability

than traditional failure-time data (where time to failure is the response), especially in applications

where few or no failures are expected, degradation tests are used in manufacturing industries to

obtain reliability information of product components and materials. For most applications, however,

degradation rates at normal use conditions are so low that appreciable degradation will not be

observed in a test of practical time length. For this reason, degradation tests are often accelerated

to get reliability information more quickly. Generally, information from tests at high levels of

accelerating variables is extrapolated to obtain estimates of lifetime or degradation rates at lower,

normal use conditions based on a physically reasonable statistical model.

1.2 Accelerated Destructive Degradation Test

For some applications, the degradation measurement process destroys or changes the physical/mechanical

characteristics of test units so that only one meaningful measurement can be taken on each unit.

An accelerated degradation test with such degradation data is called an “accelerated destructive

degradation test” or ADDT.

Escobar, Meeker, Kugler, and Kramer (2003) described an application of an accelerated de-

structive degradation test to evaluate an adhesive bond (Adhesive Bond B). The response was the

strength (in Newtons) of the adhesive bond over time. The measurement process was destructive

because the strength of test unit could only be measured once. Additionally, there was special in-

terest in estimating the time at which 1% of the devices would have a strength below 40 Newtons

when operating at room temperature of 25 ◦C (i.e., the 0.01 quantile of the failure-time distribu-

tion). To obtain information about the 0.01 quantile of the failure-time distribution, an accelerated

destructive degradation test was used. As a baseline, 8 units with no aging were measured at the

start of the experiment. A total of 80 additional units were aged and measured according to the

temperature and time schedule presented in Table 1.
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Table 1: Original ADDT Plan

Temperature Weeks Totals
◦C 0 2 4 6 12 16

— 8 8

50 8 0 8 8 7 31

60 6 0 6 6 6 24

70 6 6 4 9 0 25

Totals 8 20 6 18 23 13 88

1.3 Related Literature

Nelson (1981) and Nelson (1990, chapter 11) introduced basic models and methods for analyzing

ADDT data. Escobar, Meeker, Kugler, and Kramer (2003) provided an application for accelerated

destructive degradation data and introduced a more general class of models. There is a large amount

of literature on planning accelerated tests. This work has been summarized by Nelson (2005a, 2005b).

Some work that is particularly relevant to this paper is included in the following references. Nelson

(1990, Chapter 6) described methods for planning accelerated life tests (ALTs) based on a simple

model. Meeker and Escobar (1998, chapter 20) provided details and examples on how to plan a

single-variable ALT. Escobar and Meeker (1995) described methods for planning ALT’s with two or

more variables. There are some important differences between accelerated life tests and accelerated

degradation tests. The most important difference is that ALTs almost always result in censored

data. Censoring is not as common in ADDTs. Boulanger and Escobar (1994) proposed methods

for planning repeated measures accelerated degradation tests. In this paper, we use the application

in Escobar, Meeker, Kugler, and Kramer (2003) and describe methods for planning accelerated

destructive degradation tests.

1.4 Overview

The remainder of this paper is organized as follows. Section 2 presents a class of models for ADDT

data and gives formulas for the degradation distribution. Section 3 gives formulas for the failure-time

distribution induced by the degradation models. Section 4 outlines the framework for accelerated

destructive degradation test planning. Section 5 gives optimum ADDT plans and applies the general

equivalence theorem (GET) to verify the optimality of test plans. Section 6 describes alternative

ADDT plans and compares the results of different test plans. Section 7 illustrates the effects of
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changing constraints and investigates sensitivity to misspecification of the planning information.

Section 8 uses Monte Carlo simulation to evaluate different test plans. Section 9 contains some

concluding remarks and extensions for future research work. Appendix A provides derivations and

technical details about large sample approximations that are used to evaluate ADDT plans. Ap-

pendix B verifies that the ADDT planning problem satisfies the necessary conditions for using the

GET.

2 Degradation Models

2.1 Accelerated Degradation Models

The degradation level for a typical observational unit at time t and accelerating variable AccVar (e.g.,

temperature, humidity) is denoted by D(τ, x, β), where τ = ht(t) and x = ha(AccVar) are known

monotone increasing transformations of t and AccVar respectively, and β is a vector of unknown

parameters.

For the class of degradation models used here, transformed degradation Y for a unit at trans-

formed time τ and transformed accelerating variable level x is

Y = µ(τ, x) + ǫ

= β0 + β1 exp(β2x)τ + ǫ (1)

where µ(τ, x) = hd(D) is a monotone increasing transformation of D and µ(τ, x) is a location

parameter for the distribution of Y that depends on the unknown parameters in β = (β0, β1, β2).

ǫ is a residual deviation that describes unit-to-unit variability with (ǫ/σ) ∼ Φ(z), where Φ(z) is a

completely specified cdf. For example, Φ(z) can be replaced by Φnor(z), the standardized normal

cdf, or Φsev(z), the standardized smallest extreme value cdf. The model parameters β and σ are

fixed but unknown.

Model (1) is linear in the sense that for specified x, the mean transformed degradation path µ(τ, x)

is linear in τ . For purposes of estimation, however, the model in (1) is nonlinear in the parameters.

β0 is the location parameter of the transformed degradation when τ = 0. The degradation rate

of µ(τ, x) with respect to τ at x is ω(x) = β1 exp(β2x). The sign of β1 determines whether the

degradation is increasing or decreasing over time. For example if the degradation response is size
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of a crack or the concentration of a harmful material, β1 would be expected to be positive. On the

other hand, if the degradation response is light output of a LED or the strength of an adhesive bond,

β1 would be negative.

For the Adhesive Bond B application, the strength degradation model used in Escobar, Meeker,

Kugler, and Kramer (2003) is as given in (1) with

Y = hd(Strength) = log(Strength in Newtons)

τ = ht(Time) =
√

Time in Weeks

x = ha(Temperature) = − 11604.83

Temperature in ◦C + 273.15

(ǫ/σ) ∼ Φnor(z).

The accelerating variable for this application is temperature. The denominator in x is temperature

on the kelvin (K) scale and the numerator is the reciprocal of Boltzmann’s constant in units of

electronvolt per kelvin (eV/K). For this parametrization, β2 has the interpretation of an effective

activation energy.

2.2 Degradation CDF

For given time and accelerating variable level, the CDF for the transformed degradation Y is

FY (y; τ, x) = Pr(Y ≤ y; τ, x) = Φ

[
y − µ(τ, x)

σ

]

where µ(τ, x) = β0 + β1 exp(β2x)τ .

For the Adhesive Bond B example, the CDF of FY (y; τ, x) at a fixed factor level combination of

time and temperature can be obtained by replacing Φ with Φnor. Figure 1 shows the degradation

distributions at 25 ◦C and different values of time for particular values of the parameters β0, β1, β2, σ

corresponding to the maximum likelihood (ML) estimates given in Escobar, Meeker, Kugler, and

Kramer (2003).
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Figure 1: Adhesive Bond B degradation distributions as a function of time at 25 ◦C. The strength
axis is a logarithmic axis and the time axis is a square root axis. The horizontal line at Df = 40
Newtons is the failure-definition degradation level. At each time t, the shaded area below the
horizontal line is the failure probability at t.

2.3 Degradation Quantiles

The p quantile function for the transformed degradation at (τ, x) is

yp = µ(τ, x) + σΦ−1(p)

= β0 + β1 exp(β2x)τ + σΦ−1(p)

where Φ−1(p) is the p quantile of the standard location-scale distribution.

Substituting Φ−1
nor(p) for Φ−1(p), one obtains the p quantile for the transformed degradation (log

Newtons) for the Adhesive Bond B example, such as the 0.01 and 0.001 quantiles shown in Figure 1.

3 Failure-Time Distribution for Degradation Models

3.1 Relationship Between Degradation and Failure

For some products, there is a gradual loss of performance with increasing time (e.g., decreasing

strength of an adhesive bond). Then failure would be defined at a specified degradation level. This

failure-definition is known as a “soft failure” (see Chapter 13 of Meeker and Escobar 1998). We use
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Df to denote the critical level for the degradation distribution at which failure is assumed to occur.

The failure-time T is defined as the time when the observed degradation crosses the critical level Df .

3.2 Failure-Time CDF

As mentioned in Section 2.1, degradation can be decreasing or increasing over time, depending on

the sign of β1. For decreasing degradation (i.e., when β1 is negative), failure-time T being less than

t is equivalent to an observed degradation being less than the critical level Df at time t (i.e., the

event T ≤ t is equivalent to the event Y ≤ yf , where yf = hd(Df)), as illustrated in Figure 1. Then

the failure-time CDF is

FT (t; x) = Pr(T ≤ t) = Pr(Y ≤ yf) = FY (yf ; τ, x)

= Φ

[
yf − µ(τ, x)

σ

]
= Φ

(
τ − ν

ς

)
, for t ≥ 0 (2)

where

ν =
(β0 − yf) exp(−β2x)

| β1 | and ς =
σ exp(−β2x)

| β1 | .

With a time transformation ht(t) for which τ = 0 when t = 0, the failure-time distribution

for decreasing degradation is a mixture with a spike Pr(T = 0) = Φ [(yf − β0)/σ] = Φ (− ν/ς) at

t = 0. This spike represents the probability of failure for a new unit that experiences no aging and

is sometimes called the dead-on-arrival (or DOA) probability. For t > 0 the cdf of failure-time in (2)

is continuous and it agrees with the cdf of a log-location-scale variable with standardized cdf Φ(·),

location parameter ν and scale parameter ς.

For increasing degradation (i.e., β1 is positive), failure-time T being less than t is equivalent to

an observed degradation being greater than the critical level Df at time t (i.e., the event T ≤ t is

equivalent to the event Y ≥ yf , where yf = hd(Df)). Then

FT (t; x) = Pr(T ≤ t) = Pr(Y ≥ yf) = 1 − FY (yf ; τ, x)

= 1 − Φ

[
yf − µ(τ, x)

σ

]
= 1 − Φ

(−τ − ν

ς

)
, for t ≥ 0. (3)

In this case the spike at t = 0 is Pr(T = 0) = 1 − Φ [(yf − β0)/σ] = 1 − Φ (− ν/ς).
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3.3 Failure-Time Quantiles

From (2), the p quantile of the failure-time for decreasing degradation is

tp =





h−1
t

[
ν + ςΦ−1(p)

]
if p ≥ Φ (− ν/ς)

0 otherwise.

From (3), the p quantile of the failure-time for increasing degradation is

tp =





h−1
t

{
−
[
ν + ςΦ−1(1 − p)

]}
if p ≥ 1 − Φ (− ν/ς)

0 otherwise.

In both cases, ν and ς are as defined in Section 3.2.

4 Accelerated Destructive Degradation Test Planning

4.1 ADDT Planning Information

ADDT planning requires information that includes planning values for the model parameters, a plau-

sible distribution for the model variability, a specification of the critical degradation level, the range

of accelerating variable available for experiment. There will also be constraints on the maximum

test time and the number of units available for testing.

For the Adhesive Bond B example, the degradation model is described in Section 2.1. The critical

degradation level is specified as Df = 40 Newtons. Some constraints for this application are:

• 88 test units.

• 70 ◦C is the maximum temperature that can be used (higher temperatures would cause the

model to breakdown).

• 16 weeks are available for testing.

The goal is to develop a test plan to evaluate a new adhesive bond material similar to the material

used in the example described in Escobar, Meeker, Kugler, and Kramer (2003). Test plan properties

will depend on the unknown parameters θ = (β0, β1, β2, σ)′. The planning values of the parameters

are β20 = 4.471, β21 = −864064160, β22 = 0.6364, and σ2 = 0.1580. These values derive from the
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data analysis in Escobar, Meeker, Kugler, and Kramer (2003). The planning information defines

the mean transformed degradation paths µ(τ, x) at all levels of temperature and the degradation

distribution at a given factor level combination of time and temperature, as depicted in Figure 2.

Note that the strength axis is a logarithmic axis and that the time axis is a square root axis so that

the mean transformed degradation paths are linear with respect to the transformed time.
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Figure 2: Model for degradation evaluated at four different temperatures. The lines for each tem-
perature indicate mean transformed degradation paths µ(τ, x) as a function of time.

An alternative specification of the planning values is to give the degradation rate (slope of the

line), ω2, of µ(τ, x) for a given temperature, say ω2 = −0.1026 at 50 ◦C instead of β21 . This method

has the advantage that each of the model parameters has a clear practical interpretation, making it

easier to elicit from experts when needed. With this specification at 50 ◦C, one gets

β21 = ω2 exp(−β22 x) = −0.1026 exp(0.6364 × 35.9116) = −864122323

where x = −11604.83/(50 ◦C + 273.15) = −35.9116. The difference in the values for β21 obtained

from the two methods is due to rounding in the specifications of ω2 and β22 .

4.2 ADDT Plan Specification

Denote a factor level combination of transformed time τ and transformed accelerating variable x as

v = (τ, x). An ADDT plan will specify a set of factor level combinations vi and the corresponding

9



proportional allocation πi of test units at vi. A test plan with r factor level combinations is denoted

as

ξ =




v1, π1

v2, π2

...
...

vr, πr




where πi > 0 and
∑r

i=1 πi = 1.

4.3 Criterion for Choosing ADDT Plans

The appropriate criterion for planning an ADDT depends on the purpose of the experiment. For

accelerated tests, a common objective is to estimate a particular quantile of the failure-time distribu-

tion at use conditions, say, tp. For this reason, a commonly used criterion for planning accelerated

tests is to minimize Avar(t̂p), the large sample approximate variance of the maximum likelihood

(ML) estimator of the specified failure-time quantile. We use this criterion in our work. Because

ht(tp) is a monotone function of tp, minimizing Avar[ht(t̂p)] gives the same test plan as minimizing

Avar(t̂p).

As explained in Appendix A.3, the optimization criterion is equivalent to finding the test plan ξ

that maximizes the objective function

Ψ[I(ξ)] = −c′[I(ξ)]−1c (4)

where c = ∂ht(tp)/∂θ, θ = (β0, β1, β2, σ)′, and I(ξ) is the scaled information matrix of the model

parameters. This criterion is closely related to C optimality (see Pukelsheim 1993). Details are

given in Appendix A.
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5 Optimum ADDT Plan

5.1 Optimum ADDT Plan Structure

The degradation model described in (1) has three regression parameters. This suggests that a non-

degenerate optimum ADDT plan for an application with this degradation model should be a 3-point

plan (i.e., the test plan should have three factor level combinations). For most practical situations

in which accelerated tests are used, an optimum plan will allocate test units on the boundaries of

the experimental region. To minimize the large sample approximate variance for the ML estimator

of a specified quantity, an optimum ADDT plan should spread the three factor level combinations

as much as possible, providing better estimates of the regression coefficients than closely-spaced

test conditions. Figure 3 presents an ADDT optimum plan structure in terms of the experimental

variables τ and x. Under the practical constraints of a maximum transformed time τM and a

maximum transformed accelerating variable level xM, one particular optimum plan will have some

test units allocated at v∗

1 (baseline test condition) with τ = 0, some at the v∗

2 test condition with τM

and xM, and some at the v∗

3 test condition with τM and an optimized value x∗. The x∗ for the v∗

3

test condition and the proportional allocations π∗

1 , π∗

2 of test units are chosen to optimize the plan.

Note that π∗

3 = 1 − π∗

1 − π∗

2 and the degradation model at τ = 0 (and thus test plan properties)

does not depend on the level of x. Using notation similar to that used in Section 4.2, this particular

optimum test plan is denoted by

ξ∗ =




v∗

1, π∗

1

v∗

2, π∗

2

v∗

3, π∗

3




=




(0, •), π∗

1

(τM, xM), π∗

2

(τM, x∗), π∗

3




(5)

where • indicates that at τ = 0, the level of x is arbitrary. In the next section a variation of Whittle’s

(1973) general equivalence theorem (GET) is used to verify the optimality of this test plan.
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5.2 Checking the Initial Optimum Plan

Here we check the optimality of the test plan ξ
∗ using the GET. The directional derivative, Λ, of Ψ

at ξ and in the direction of an alternative plan η is defined as

Λ(ξ, η) = lim
δ→0+

Ψ[(1 − δ)ξ + δη] − Ψ(ξ)

δ
.

As shown in Appendix B.1, Λ(ξ, η) = c ′[I(ξ)]−1I(η)[I(ξ)]−1 c − c ′ [I(ξ)]−1 c, where c, I(ξ), and

I(η) are evaluated at the planning values. Let ξv be a singular test plan that puts all units at

the v test condition. From the results in Appendix B.1, the plan ξ∗ is an optimum plan if it

satisfies Λ(ξ∗, ξv∗

1
) = Λ(ξ∗, ξv∗

2
) = Λ(ξ∗, ξv∗

3
) = 0 and Λ(ξ∗, ξv) ≤ 0 for any singular plan ξv in the

experimental region.

For the Adhesive Bond B application, a particular optimum plan (obtained numerically) is

ξ∗ =




(0, •), π∗

1

(τM, xM), π∗

2

(τM, x∗), π∗

3




=




(0, •), 0.20374

(4,−33.819), 0.16160

(4,−35.390), 0.63466




(6)

where −33.819 and −35.390 are the transformed temperatures corresponding to the maximum 70 ◦C

and optimized 54.764 ◦C, respectively. In terms of the the original variables (Weeks and ◦C), this
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plan is shown in Table 2.

Table 2: Initial Optimum Plan. The • indicates that at time 0, the level of temperature is arbitrary.

Optimum Weeks Temperature Proportional
Test Condition ◦C Allocations

v∗

1 0 • 0.20374

v∗

2 16 70 0.16160

v∗

3 16 54.764 0.63466

Figure 4 shows the directional derivatives Λ(ξ∗, ξ
v
) of this optimum plan as a function of tem-

perature and time, where ξ
v

is a plan that puts all units at the v test condition. Observe that, as

required, the directional derivatives are zero at the three test conditions of the optimum plan. Also,

the directional derivatives are zero at all the test conditions with temperature equal to 70 ◦C. This

suggests the existence of alternative optimum plans.
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Figure 4: Directional derivatives Λ(ξ∗, ξv) of the initial optimum plan as a function of temperature
and time.

5.3 Alternative Optimum Plans

From Figure 4 and (20) in Appendix B.2, Λ(ξ∗, ξv2
) = 0 where ξv2

is a test plan putting all units

at v2 = (τ, xM), for all 0 ≤ τ ≤ τM . This result suggests that we can move the v∗

2 test condition

to the left along the horizontal line with x = xM, as shown in Figure 3. Using the GET, it can be

shown that, for fixed τa, τL ≤ τa ≤ τM, and τL = τMπ∗

2/(π∗

1 + π∗

2), an alternative optimum plan can
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be expressed as

ξa =




v1 = (0, •), π1 = π∗

1 + π∗

2 − π∗

2

τM

τa

v2 = (τa, xM), π2 = π∗

2

τM

τa

v3 = (τM, x∗), π3 = π∗

3




. (7)

See Appendix B.2 for the details.

For the Adhesive Bond B application, τL = 4π∗

2/(π∗

1 + π∗

2) = 1.77. The lower boundary of time

for the v2 test condition in Weeks is tL = τ2
L = 3.13. A particular alternative optimum plan can be

obtained by substituting the values τM = 4, xM = −33.819, x∗ = −35.390, π∗

1 = 0.20374, π∗

2 =

0.16160, and π∗

3 = 0.63466 from (6) into the expression (7) and choosing a value of τa, 1.77 ≤ τa ≤ 4.

Figure 5 describes how the large sample approximate standard error of t̂0.01 and the proportional

allocations of test units change for different optimum plans as the time component of the v2 test

condition varies in the experimental time range. Figure 5 illustrates the characteristics of the

multiple optimum plans, the changing trend of proportional allocations of test units for different

optimum plans, and the lower time bound tL. Note that the directional derivatives in Figure 4 and

the large sample approximate standard errors of t̂0.01 in Figure 5 were computed for the continuous

test plan with a sample size of 88 (a continuous test plan is one that has non-integer allocations

because optimization was done without integer constraints on the number of units allocated to the

test conditions).

Figure 5 and the results in (7) show that the optimized values of x and π3 for the v3 test condition

are the same for all optimum plans. However, as the value of τa for the v2 test condition increases,

the π1 increases and π2 decreases, as shown in Figure 5. These results are not surprising because as

the value of transformed time τa for the v2 test condition approaches τL, v2 provides information

that is similar to the baseline v1 test condition. As the value of τa for v2 increases, the v2 test

condition is further away from v1 so that more units are allocated to v1 to get more information

about the degradation distribution. Also, when the value of transformed temperature x for the v3

test condition is too small, the information from v3 will be similar to that from v1 (i.e., both v1

and v3 behave like a unit tested at low temperature). When the value of x for v3 is too close to xM,

there will not be good information separating the effect that time and the accelerating variable have

on the degradation rates. It is interesting that the optimized values of x for the v3 test condition

14



for different optimum plans are the same. Also, as τa approaches τL from above, the limiting plan

is degenerate and will not allow estimation of all of the model parameters, even though it will allow

estimation of the lifetime distribution at the use conditions. Of course, such “degenerate” test plans

have little practical value.
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Figure 5: Proportional allocations and large sample approximate standard error of t̂0.01 as a function
of time in Weeks showing different optimum plans (Time ≥ 3.13 Weeks) and optimized plans (Time
< 3.13 Weeks) arising from the constraint π1 ≥ 0.

6 Other ADDT Plans

6.1 Traditional ADDT Plans

A traditional plan is one that uses equally-spaced levels of the experimental conditions and equal

allocations to all factor level combinations. In applications involving extrapolation, like accelerated

testing, such traditional plans may not be statistically efficient, which results in less precise estimates.

6.2 Motivation for Compromise ADDT Plans

An optimum plan provides the smallest large sample approximate variance of the maximum likeli-

hood estimator of a specified quantity. Optimum plans, however, have practical deficiencies (e.g.,

only a small number of factor level combinations) and provide no information to check the adequacy

of the model. Generally, optimum plans tend to be highly sensitive to model specification errors and
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thus are suitable only if the degradation model is correct. Also, planning values that are appreciably

in error may result in test plans that are far from optimum. It is highly desirable for a test plan to

be robust (i.e., the plan should give useful results even if the assumed model and planning values

are inaccurate). A traditional plan with more factor level combinations tends to be robust, but it is

less precise than an optimum plan. In general, a compromise plan will be more useful in practical

applications. A compromise plan combines the advantages of optimum and traditional test plans.

6.3 Traditional and Optimized Compromise Plans for the Application

A traditional test plan for the Adhesive Bond B application is presented in Table 3. This plan has

some baseline units at the beginning of the experiment and 12 other combinations using equally

spaced levels of time and temperature, each with the same number of test units.

Table 3: Traditional ADDT Plan

Temperature Weeks Totals
◦C 0 10 12 14 16

— 4 4

50 7 7 7 7 28

60 7 7 7 7 28

70 7 7 7 7 28

Totals 4 21 21 21 21 88

To find compromise between the optimum and the traditional test plans, the number of factor

level combinations for a compromise plan should be greater than the optimum plan but less than the

traditional plan. As suggested by the traditional plan, a compromise plan for the Adhesive Bond B

allocates some test units at the beginning of the experiment and some units at each of nine equally

spaced factor level combinations. The nine combinations have three equally spaced time levels and

three equally spaced temperature levels. We can not optimize the times for the compromise plan

because the optimization would degenerate to a plan with all units (other than the baseline units)

allocated to the temperatures at the longest test time. Also, we can not optimize allocations because

the optimum allocations would degenerate to a 3-point optimum plan. Therefore, the compromise

plan uses three time levels at 12, 14, and 16 weeks respectively and the highest temperature level

at 70 ◦C, as in the traditional plan. The lowest temperature of the compromise plan is chosen to

minimize the large sample approximate variance of the estimated 0.01 failure-time quantile, which
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is similar to the optimum plan. The middle temperature is the mean of the other two temperature

levels. After rounding in allocating the 88 test units, the compromise plan has 9 units at each of

the nine equally spaced factor level combinations and 7 test units at the baseline. The optimum

lowest temperature for the compromise ADDT plan is 54 ◦C and the middle temperature is 62 ◦C,

as presented in Table 4.

Table 4: Compromise ADDT Plan

Temperature Weeks Totals
◦C 0 12 14 16

— 7 7

54 9 9 9 27

62 9 9 9 27

70 9 9 9 27

Totals 7 27 27 27 88

6.4 Comparison of ADDT Plans

As explained in Section 4.3, the purpose of the test is to estimate tp, the p quantile of the failure-time

distribution. Denote the ML estimate of tp by t̂p. An approximate 100(1− α)% confidence interval

for log(tp) is

log(t̂p) ± z(1−α/2)

√
V̂ar

[
log(t̂p)

]
= log(t̂p) ± log(R̂).

Exponentiation yields an approximate confidence interval for tp

[t̂p/R̂, t̂pR̂]

where

R̂ = exp

[
z(1−α/2)

√
V̂ar

[
log(t̂p)

] ]
. (8)

The estimated variance V̂ar
[
log(t̂p)

]
can be obtained from the local information matrix in the

usual way (see, for example, Appendix B.3 of Meeker and Escobar 1998). We call R̂ the “observed

precision factor.” To estimate tp precisely, the confidence interval for tp should be as narrow as

possible.
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For test planning purposes, V̂ar
[
log(t̂p)

]
in (8) is replaced with Avar

[
log(t̂p)

]
, the large sample

approximation for Var
[
log(t̂p)

]
, in the evaluations. This gives the precision factor

R = exp

[
z(1−α/2)

√
Avar

[
log(t̂p)

]]

which can be used in test planning because it is a function of the model and its parameters (planning

values) and does not depend on the data. Because R is an increasing function of Avar
[
log(t̂p)

]
,

minimizing the R precision factor is equivalent to minimizing Avar
[
log(t̂p)

]
and approximately

equivalent to minimizing Var
[
log(t̂p)

]
. R is easier to interpret as a measure of precision for a

positive parameter when compared with Avar
[
log(t̂p)

]
, so we will use it for the comparisons among

different ADDT plans. The upper (lower) endpoint of the confidence interval for tp is approximately

100(R − 1)% larger (smaller) than the ML estimate t̂p.

For the Adhesive Bond B application, Table 5 compares four ADDT plans: the optimum plan

(in Table 2), the compromise plan (in Table 4), the original plan (in Table 1), and the traditional

plan (in Table 3) in terms of the R precision factors for estimating the 0.01 failure-time quantile at

normal use conditions of 25 ◦C.

Table 5: Comparison of the R precision factors of the approximate 95% confidence intervals for
estimating t0.01 and other properties among four ADDT plans.

ADDT Plan Number of Factor Levels Lowest Temperature ◦C Precision Factor
Combinations at the Maximum Time R

Optimum 3 54.764 1.910

Compromise 10 54 2.208

Original 16 50 2.465

Traditional 13 50 2.512

The optimum ADDT plan has the smallest R precision factor and provides the most precise esti-

mate of t0.01. The original test plan has a smaller R precision factor than the traditional plan. This

is because the original plan has more factor level combinations spaced over the whole experimental

region, which can give more information about the failure-time distribution. As expected, the R

precision factor for the compromise plan is smaller than that for the traditional plan but larger than

that for the optimum plan. We would recommend the compromise plan in Table 5 or a similar

compromise plan.
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7 Effect of Test Plan Changes

The precision of estimating a specified quantity depends on the constraints of the application, such as

sample size, maximum accelerating variable level (temperature in the Adhesive Bond B application),

maximum test time, etc. In this section, we evaluate the effects that changes in the sample size and

the factor-level (time and temperature) constraints have on the R precision factors (for estimating

the 0.01 failure-time quantile at the 25 ◦C use conditions) for the Adhesive Bond B experiment. We

also conduct a sensitivity analysis to study the effect of misspecification of the planning information.

For some of these analyses, we omit details for the original and tradational test plans when they

would require extra space.

7.1 Effect of Sample Size Changes

As noted in Section 6.4,

R = exp

[
z(1−α/2)

√
Avar

[
log(t̂p)

]]
.

The variance factor, defined as nAvar
[
log(t̂p)

]
, depends on the actual values of the parameters but

does not depend on the sample size n. Thus the R precision factor for any sample size can be

predicted from large sample approximation theory once we know one such factor. Relative to the

precision factor for a sample size of 88, the precision factor as a function of n can be written as

Rn = exp

[√
88

n
× log(R88)

]
= R

√
88/n

88

where R88 is the precision factor with n = 88. Figure 6 shows the R precision factors as a function

of n for the four ADDT plans.

7.2 Effect of Maximum Temperature and Time Changes

Table 6 presents the R precision factors that would be obtained from the optimum and compromise

plans if we were to change the maximum temperature and maximum test time. Note that in the

actual application, 80 ◦C is thought to be too high, but we want to show the potential improvement

in precision if temperature could be increased. The results for the initial optimum and compromise

plans are marked in bold. The compromise plans have a fixed lower time level at 12 weeks, a changing

maximum time, and a third time level which is the halfway between 12 weeks and the maximum
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Figure 6: The R precision factors for estimating t0.01 as a function of n for the four ADDT plans.

time.

Table 6: The R precision factors for estimating t0.01 for optimum and compromise plans with
changing maximum temperature and range of time.

Maximum Maximum Weeks
Temperature Optimum Plan Compromise Plan

◦C 14 16 18 20 14 16 18 20
60 3.004 2.780 2.610 2.475 4.266 3.957 3.690 3.463

70 2.003 1.910 1.837 1.778 2.302 2.208 2.127 2.057

80 1.559 1.519 1.487 1.466 1.642 1.612 1.588 1.568

As the maximum temperature or time increases, the observations are spread out so that the

variance for the estimated failure-time quantile becomes smaller, which results in a decrease in the

R precision factor.

7.3 Sensitivity to Misspecification of the Planning Information

Our method of assessing sensitivity to misspecification of the planning information follows the general

approach used in Meeker (1984). From (2), the probability that an observational unit at the test
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condition (τ, x) will fail is

Φ

[
yf − µ(τ, x)

σ

]
= Φ

[
hd(Df) − β0 − β1 exp(β2x)τ

σ

]

= Φ

[
hd(Df) − β0

σ
− ω50

σ
exp [β2(x − x50)] τ

]
(9)

where, x50 is the transformed temperature of 50 ◦C, and ω50 is the degradation slope at 50 ◦C, as

described in Section 4.1. Instead of being a function of the four parameters β0, β1, β2 and σ, the

probability in (9) only depends on the three standardized parameters (hd(Df)−β0)/σ, ω50/σ, β2 and

the two explanatory variables τ and x. This implies that n/σ2 times the large sample approximate

variance of the estimated failure-time quantile can be expressed in terms of these three standardized

parameters. Using the standardized parameters makes it possible to do a general evaluations of the

robustness of ADDT plans to misspecifications of the planning values by perturbing values in only

three dimensions.

The idea of sensitivity analysis is to explore the effect of planning value misspecification across

some plausible region of the parameter space. We chose nine sets of standardized parameter values

in the parameter space (as shown in Tables 7 and 8) to evaluate the sensitivity of the test plans to

misspecification of the planning information. The first set corresponds to the planning values given

in Section 4.1 which were used for getting the optimum plan (6) for the application of interest. The

other eight sets were chosen as the verticies of a cube in the parameter space that would not lead

into nonsense degenerate optimized test plans.

For each set of actual parameter values, the optimum plan for estimating the 0.01 failure-time

quantile was obtained. For comparison, another eight “optimum” plans were found for misspecifi-

cation of ± 0.5 in (hd(Df) − β0)/σ and ± 0.2 in both ω50/σ and β2. Table 7 shows the worst and

best ratios of the precision factors R for the “optimum” plans obtained with the misspecified values

to the precision factor for the correct optimum plan. Similar comparisons for compromise plans are

given in Table 8. Comparisons of the ratios in the two tables show that the compromise plans, when

compared to the optimum plans, are much more robust to misspecified planning values.
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Table 7: Effects of misspecifying (hd(Df) − β0)/σ, ω50/σ and β2: worst and best precision factor
ratios of the optimum plans for estimating the p = 0.01 failure-time quantile.

Misspecification of (hd(Df) − β0)/σ by ±0.5

Misspecification of ω50/σ and β2 by ±0.2

Deviation Yielding Deviation Yielding

Actual Values Worst Ratio Best Ratio

hd(Df)−β0

σ
ω50

σ β2 Worst Ratio hd(Df )−β0

σ
ω50

σ β2 Best Ratio hd(Df)−β0

σ
ω50

σ β2

−5 −0.65 0.6 1.20 +0.5 −0.2 −0.2 1.03 −0.5 −0.2 +0.2

−5 −0.5 0.5 1.31 +0.5 −0.2 −0.2 1.06 −0.5 −0.2 +0.2

−5 −0.5 0.6 1.19 +0.5 −0.2 −0.2 1.04 −0.5 −0.2 +0.2

−5 −0.6 0.5 1.30 +0.5 −0.2 −0.2 1.05 −0.5 −0.2 +0.2

−5 −0.6 0.6 1.19 +0.5 −0.2 −0.2 1.03 −0.5 −0.2 +0.2

−6 −0.5 0.5 1.23 +0.5 −0.2 −0.2 1.06 −0.5 −0.2 +0.2

−6 −0.5 0.6 1.14 +0.5 −0.2 −0.2 1.04 −0.5 −0.2 +0.2

−6 −0.6 0.5 1.20 +0.5 −0.2 −0.2 1.05 −0.5 −0.2 +0.2

−6 −0.6 0.6 1.12 +0.5 −0.2 −0.2 1.03 −0.5 −0.2 +0.2

Table 8: Effects of misspecifying (hd(Df) − β0)/σ, ω50/σ and β2: worst and best precision factor
ratios of the compromise plans for estimating the p = 0.01 failure-time quantile.

Misspecification of (hd(Df) − β0)/σ by ±0.5

Misspecification of ω50/σ and β2 by ±0.2

Deviation Yielding Deviation Yielding

Actual Values Worst Ratio Best Ratio

hd(Df)−β0

σ
ω50

σ β2 Worst Ratio hd(Df )−β0

σ
ω50

σ β2 Best Ratio hd(Df)−β0

σ
ω50

σ β2

−5 −0.65 0.6 1.08 +0.5 −0.2 −0.2 1.00 +0.5 −0.2 +0.2

−5 −0.5 0.5 1.13 +0.5 −0.2 −0.2 1.01 +0.5 −0.2 +0.2

−5 −0.5 0.6 1.09 +0.5 −0.2 −0.2 1.00 +0.5 −0.2 +0.2

−5 −0.6 0.5 1.12 +0.5 −0.2 −0.2 1.00 +0.5 −0.2 +0.2

−5 −0.6 0.6 1.08 +0.5 −0.2 −0.2 1.00 +0.5 −0.2 +0.2

−6 −0.5 0.5 1.10 +0.5 −0.2 −0.2 1.02 +0.5 −0.2 +0.2

−6 −0.5 0.6 1.07 +0.5 −0.2 −0.2 1.01 +0.5 −0.2 +0.2

−6 −0.6 0.5 1.09 +0.5 −0.2 −0.2 1.02 +0.5 −0.2 +0.2

−6 −0.6 0.6 1.06 +0.5 −0.2 −0.2 1.01 +0.5 −0.2 +0.2

8 Monte Carlo Simulation to Evaluate Test Plans

Monte Carlo simulation is a powerful tool to provide visualization of the results that might be

obtained from a given test plan, and to check the large sample approximations used to evaluate and

optimize ADDT plans.
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Simulation and analytical evaluation, based on the large sample approximations, are comple-

mentary tools for test planning. Simulation is best suited for exact evaluation of test plans and

for providing useful insight through visualization of sampling variability in the parameter estimates.

Simulation also provides a check on the adequacy of the large sample approximations. The large

sample approximations are, however, important for doing computations quickly, as is needed in

optimization or comparing a large number of different alternative test plans to assess sample size

needs. Generally it takes orders of magnitude more computer time to evaluate a plan with simulation

relative to the use of a large sample approximation.

For each test plan in Table 5, a simulation trial consists of a set of 88 observations obtained

according to the test plan, the given model, and the planning information. The simulated data are

used to obtain the maximum likelihood estimates of the parameters, the estimate of the covariance

matrix for the ML estimates, and the observed precision factor of an approximate 95% confidence

interval for estimating t0.01. The simulation was repeated 1000 times for each test plan.

Figure 7 shows estimates of the 0.01 failure-time quantile versus temperature for the first 50

realizations of the simulation for each test plan. The longer lines represent the values computed

from the planning values, which we call the “true” values. The geometric mean and the 0.9 quantile

of the 1000 observed precision factors R̂, denoted by R̄ and R0.90 respectively, are given in the figure

caption for each plan.

The R̄ values tend to be close to the R values obtained from the large sample approximations

given in Table 5. The optimum plan has the narrowest group of simulated lines. The spread of

the group of simulated lines for the compromise plan is wider than that for the optimum plan but

narrower than that for the traditional plan or for the original plan. This is consistent with our

previous comments about the estimation precision of different test plans, based on the R precision

factors. We have studied the distribution of R̂ for all of the test plans in Table 5. The distributions

are similar although there tends to be less spread in the distribution with the optimum plan and

more spread with the traditional plan. This is not surprising given that the variability in R̂ is related

to the variability of the ML estimators of the model parameters.

To assess the effectiveness of the test plan to estimate the 0.01 failure-time quantile at 25 ◦C, the

1000 simulated estimates of t0.01 for the compromise plan are depicted in Figure 8. The geometric

mean of these estimates is 775.01 weeks, relative to the “true” value of t0.01 = 755.48 weeks from the

planning values. The distribution of the t0.01 values is skewed to the right. Although the probability
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Figure 7: Simulation of 0.01 failure-time quantile estimates versus temperature for the optimum
plan, the compromise plan, the original plan, and the traditional plan.

is small (estimated to be about 0.019 from the simulation results), if the planning values were correct,

it would be possible that one could get an estimate of t0.01 exceeding 2000 weeks.
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Figure 8: Histogram of the simulated estimates of 0.01 failure-time quantile for the compromise
plan.

9 Conclusions and Extensions

Accelerated destructive degradation testing is an important tool for making reliability inferences

and predictions, especially when test time is limited and few or no failures are expected at lower

levels of the accelerating variables. The methodology presented in this paper can be extended in

several important directions, suggesting areas for future research. These include the following:

1. For some products, there may be more than one failure mechanism. This can cause observations

to be right censored. For such observations, the strength is unknown and is greater than the

censoring value.

2. A model with multiple accelerating variables (e.g., temperature and humidity) could be devel-

oped.

3. As explained in Section 2.1, the relationship between the mean transformed degradation path

and the transformed time is linear at a fixed accelerating variable level. The work in this paper

can be extended to the degradation models that have a nonlinear relationship.

4. While the basic ideas and numerical methods in this paper hold for any log-location-scale

distribution, the results in the appendix are for the normal distribution as in our example. It

may be possible to derive similar results in general for other log-location-scale distributions,

but it will be more difficult when the information matrix is not block diagonal.
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5. For some applications, prior knowledge about the failure mechanism might provide information

about some model parameters that could be useful to improve the precision of estimating

specified quantities. Bayesian methods could be used in such situations.

6. If one is going to use prior information in the estimation of model parameters, then generally,

it is important that prior information should also be used in test planning. It would be useful

to apply methods like those described in Zhang and Meeker (2006) for ADDT planning.
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A Appendix

A.1 ADDT Model Large Sample Approximate Covariance Matrix

Let θ̂ be the ML estimate of θ = (β0, β1, β2, σ)′ based on n observations. Under the usual regularity

conditions (for example, see Appendix B.4 of Meeker and Escobar 1998), the following results hold

for large samples.

• θ̂ ∼̇ MVN(θ, Σ
θ̂
), where Σ

θ̂
= I−1

θ
, and the Fisher information matrix Iθ with r test conditions

is

Iθ = E

[
− ∂2L

∂θ∂θ′

]
= n

r∑

i=1

πiE

[
− ∂2Li

∂θ∂θ′

]
= n

r∑

i=1

πiIi. (10)

Li = log[Li(θ)] is the contribution of a single observation at test condition vi = (τi, xi) to

the log-likelihood, and Li(θ) = 1
σ φ [(Yi − µi)/σ]. E(•) is the expectation operator and the

expectation is with respect to the data to be collected in the ADDT. Ii is the contribution

of one observation at vi to Iθ. Let I(ξ) denote the large sample scaled Fisher matrix for a

particular test plan ξ, then I(ξ) = 1
nIθ (see B.3 of Meeker and Escobar 1998).
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• For a scalar ĝ = g(θ̂) ∼̇ NOR[g(θ), Avar(ĝ)], the delta method gives

Avar(ĝ) =

[
∂g(θ)

∂θ

]′
Σ

θ̂

[
∂g(θ)

∂θ

]
,

allowing us to compute the large sample approximate variance for a desired function of θ.

A.2 ADDT Model Fisher Information Matrix

The contribution Ii to the Fisher information matrix (10) in terms of parameters θ is

Ii =
1

σ2




f11(ζ)uiu
′

i f12(ζ)ui

f12(ζ)ui f22(ζ)




where f11(ζ), f12(ζ), f22(ζ) elements can be computed using the LSINF algorithm (see Escobar and

Meeker 1994). In a situation where there is censoring, ζ depends on the test conditions. For the

normal distribution and no censoring, it can be shown that f11 = 1, f12 = 0, and f22 = 2. ui is the

vector of partial derivatives of the degradation with respect to the β parameters. That is

ui =




∂µi

∂β0

∂µi

∂β1

∂µi

∂β2




=




1

exp(β2xi)τi

β1 xi exp(β2xi)τi




where µi = β0 + β1 exp(β2xi)τi, τi = ht(ti), and xi = ha(AccVari). For ADDT planning, the Fisher

information matrix is evaluated at planning values θ2.

A.3 Large Sample Approximate Variance of ht(t̂p) and t̂p

We can write Avar[ht(t̂p)] as a function of Σ
θ̂
. Define c = ∂ht(tp)/∂θ. Then direct computations

yield

Avar[ht(t̂p)] = c′Σ
θ̂
c = c′I−1

θ
c =

1

n
c′ [I(ξ)]

−1
c. (11)
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For decreasing degradation, ht(tp) = ν + ςΦ−1(p) for p ≥ Φ (−ν/ς). The elements of c are:

∂ht(tp)

∂β0
= − 1

β1 exp(β2x)

∂ht(tp)

∂β1
= − ht(tp)

β1

∂ht(tp)

∂β2
= − xht(tp)

∂ht(tp)

∂σ
= − Φ−1(p)

β1 exp(β2x)

For increasing degradation, ht(tp) = −
[
ν + ςΦ−1(1 − p)

]
for p ≥ 1 − Φ (− ν/ς). The elements of c

are the same as those for decreasing degradation expect for

∂ht(tp)

∂σ
= − Φ−1(1 − p)

β1 exp(β2x)
.

Using the delta method,

Avar(t̂p) =


∂h−1

t (z)

∂z

∣∣∣∣∣
ht(t2p )




2

Avar[ht(t̂p)].

B Appendix

B.1 General Equivalence Theorem

The following results apply to the ADDT planning problem:

1. The objective function Ψ [I(ξ)] defined in (4) is strictly concave. That is, if 0 < α < 1 and ξ,

η are two test plans (ξ 6= η) then

Ψ [αI(ξ) + (1 − α)I(η)] > αΨ[I(ξ)] + (1 − α)Ψ[I(η)]. (12)

2. The directional derivative, Λ, of Ψ at ξ and in the direction of an alternative plan η is

Λ(ξ, η) = c ′[I(ξ)]−1I(η)[I(ξ)]−1 c − c ′ [I(ξ)]−1 c (13)

where c, I(ξ), and I(η) are evaluated at the planning values.

3. For fixed ξ, the directional derivative Λ(ξ, η) is linear in η in the following sense (Whittle
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1973, equation 7). For ai ≥ 0,
∑

i ai = 1

Λ

(
ξ,
∑

i

aiηi

)
=
∑

i

aiΛ(ξ, ηi)

where the ηis are alternative test plans. That is, for an alternative test plan specified by the

convex combination
∑

i aiηi, the directional derivative is the corresponding convex combina-

tion of the Λ(ξ, ηi).

4. Consider the directional derivative Λ(ξ, ξ
v
) in the direction of the plan that puts all units at v.

Then the plan ξ∗ is optimal if and only if sup
v

Λ(ξ∗, ξ
v
) = 0.

5. The test conditions v∗

i in the optimal plan are a subset of the conditions v satisfying Λ(ξ∗, ξv) =

0.

Proof of Results

To prove (12), the concavity of the objective function, use (4) to get

Ψ [αI(ξ) + (1 − α)I(η)] − αΨ[I(ξ)] − (1 − α)Ψ[I(η)]

= c′
{
α[I(ξ)]−1 + (1 − α)[I(η)]−1 − [αI(ξ) + (1 − α)I(η)]

−1
}

c > 0

where the inequality on the right hand side of the last equation follows from the fact that the matrix

α[I(ξ)]−1 + (1 − α)[I(η)]−1 − [αI(ξ) + (1 − α)I(η)]
−1

is positive definite; see Moore (1973).

To prove (13), start with the definition

Λ(ξ, η) = lim
δ→0+

Ψ[(1 − δ)ξ + δη] − Ψ(ξ)

δ
. (14)

From (14), using l’Hôpital’s rule for limits, the chain rule for derivatives, and

∂Ψ(ξ)

∂ξ
= [I(ξ)]−1cc′[I(ξ)]−1

one gets

Λ(ξ, η) = −tr

[
I(ξ)

∂Ψ(ξ)

∂ξ

]
+ tr

[
I(η)

∂Ψ(ξ)

∂ξ

]
= c′[I(ξ)]−1I(η)[I(ξ)]−1c − c′[I(ξ)]−1c. (15)
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To show the linearity of Λ(ξ, η) with respect to η, use (15) to write

Λ

(
ξ,
∑

i

aiηi

)
= c′[I(ξ)]−1I

(∑

i

aiηi

)
[I(ξ)]−1c − c′[I(ξ)]−1c. (16)

Using the fact that I (
∑

i aiηi) =
∑

i aiI(ηi), expanding the first term on the right hand side of (16),

and after some simplications, one obtains Λ (ξ,
∑

i aiηi) =
∑

i aiΛ(ξ, ηi).

Because the objective function Ψ[I(ξ)] is concave and its directional derivative Λ(ξ, η) is linear in

η, Results 4 and 5 follow immediately from Theorem 1 parts (i), (ii), (iii), and (c) in Whittle (1973,

page 125).

B.2 Alternative Optimum Plans

This section shows an alternative plan ξa in (7) is optimum. The information matrix for the optimal

plan ξ∗ given in equation (5) is

I(ξ∗) = π∗

1I(v∗

1) + π∗

2I(v∗

2) + π∗

3I(v∗

3)

(17)

= π∗

1




1 0
′ 0

0 00
′

0

0 0
′ 2




+ π∗

2




1 τMe∗′

2 0

τMe∗

2 τ2
Me∗

2e
∗′

2 0

0 0
′ 2




+ π∗

3




1 τMe∗′

3 0

τMe∗

3 τ2
Me∗

3e
∗′

3 0

0 0
′ 2




where e∗

2 = [exp(β2x
∗

2), β1x
∗

2 exp(β2x
∗

2)]
′ and e∗

3 = [exp(β2x
∗

3), β1x
∗

3 exp(β2x
∗

3)]
′.

For the alternative plan ξa, π3 = π∗

3 , π2 = π∗

2τM/τa, and π1 = π∗

1 + π∗

2 − π∗

2τM/τa, then

after some simplifications, one obtains I(ξa) = I(ξ∗) − m0u
∗

2u
∗′

2 , where m0 = π∗

2(τ2
M − τMτa) and

u∗′

2 = (0, e∗′

2 , 0). Consequently, using a result to compute the inverse of a sum of matrices (see

Problem 2.8 on page 33 of Rao, 1973), one gets

c ′ [I(ξa)]−1 c = c′ [I(ξ∗) − m0u
∗

2u
∗′

2 ]
−1

c

= c′ [I(ξ∗)]
−1

c +
m0c

′ [I(ξ∗)]
−1

u∗

2u
∗′

2 [I(ξ∗)]
−1

c

1 − m0u
∗′

2 [I(ξ∗)]
−1

u∗

2

= c′ [I(ξ∗)]
−1

c. (18)

The last step in obtaining (18) above follows from the fact that c′ [I(ξ∗)]
−1

u∗

2 = 0 (see details

below). Equation (18) shows that the alternative plan ξa is optimum.

Now we prove that c′ [I(ξ∗)]
−1

u∗

2 = 0. First we derive a simple general expression for the direc-
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tional derivatives. Consider the test plan ξv with v = (τ, x). Define e = [exp(β2x), β1x exp(β2x)]′.

Then using the fact that Λ(ξ∗, ξ
v
∗

1
) = 0 (recall that v∗

1 is a test condition in the optimum plan),

after simple manipulations, one gets

Λ(ξ∗, ξv) = τc′ [I(ξ∗)]
−1




0 e′ 0

e τee′
0

0 0
′ 0




[I(ξ∗)]
−1

c = τr′

2e (2r1 + τr′

2e) (19)

where r1 is a scalar and r2 is a vector with two components defined by (r1, r
′

2, r3) = c′ [I(ξ∗)]
−1

.

Because ξ∗ is optimum, Λ(ξ∗, ξ
v
∗

1
) = Λ(ξ∗, ξ

v
∗

2
) = Λ(ξ∗, ξ

v
∗

3
) = 0. Then in view of (19)

r′

2e
∗

2(2r1 + τMr′

2e
∗

2) = 0 (20)

r′

2e
∗

3(2r1 + τMr′

2e
∗

3) = 0. (21)

Because x∗

3 is optimum, the directional derivative function must have a relative maximum at

that point. Then

∂Λ(ξ∗, ξv)

∂x
= 2τM (r1 + τMr′

2e
∗

3)

(
r′

2

∂e

∂x

)∣∣∣∣
x∗

3

= 0. (22)

Equations (20), (21), and (22) imply r′

2e
∗

2 = 0, r′

2e
∗

3 = −r1/2, and r′

2∂e/∂x|x∗

3
= 0. Consequently,

c′ [I(ξ∗)]
−1

u∗

2 = 0 as required.
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