Differential expression of sheep beta-defensin-1 and -2 and interleukin 8 during acute Mannheimia haemolytica pneumonia

Mark R. Ackermann
Iowa State University, mackerma@iastate.edu

Jack M. Gallup
Iowa State University, eag@iastate.edu

Joseph Zabner
University of Iowa

Richard B. Evans
Iowa State University

Charles W. Brockus
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/vpath_pubs

Part of the [Large or Food Animal and Equine Medicine Commons](http://lib.dr.iastate.edu/vpath_pubs), and the [Veterinary Pathology and Pathobiology Commons](http://lib.dr.iastate.edu/vpath_pubs/28)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/vpath_pubs/28. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Differential expression of sheep beta-defensin-1 and -2 and interleukin 8 during acute Mannheimia haemolytica pneumonia

aDepartment of Veterinary Pathology, College of Veterinary Medicine, 2738 Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
bDepartment of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
cDepartment of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
dRespiratory Diseases of Livestock Research Unit, USDA-Agriculture Research Service, National Animal Disease Center, Ames, IA 50010, USA

Received 23 February 2004; accepted 15 April 2004

Abstract

Beta-defensins are antimicrobial peptides produced by several cell types, including respiratory epithelia and leukocytes. Expression of some beta-defensins is increased by bacterial-induced inflammatory responses whereas expression of other beta-defensins is constitutive. Two beta-defensins are expressed in lungs of sheep (sheep beta-defensin-1 and -2; SBD-1/-2) and expression of SBD-1 is increased during parainfluenza virus type 3 (PI-3) infection. The effect of Mannheimia haemolytica, a Gram-negative bacteria known to induce expression of bovine beta-defensins and NF-kappa B in lung, has not been determined for SBD-1/-2. In this study, different concentrations of M. haemolytica were inoculated into pulmonary bronchi of lambs. SBD-1 and SBD-2 mRNA levels detected by real time reverse transcriptase polymerase chain reaction in lung homogenates did not increase. In fact, SBD-1 mRNA levels were significantly decreased with the highest administered inoculum concentration (109). In contrast, mRNA levels of interleukin-8 (IL-8) were significantly increased over controls and progressively increased with M. haemolytica concentrations. Co-inoculation of M. haemolytica with xylitol, an osmotic agent, did not alter mRNA levels of SBD-1, SBD-2 or IL-8. SBD-1 mRNA expression was detected in lung epithelia, but not in leukocytes. This study suggests that SBD-1 expression occurs in epithelia and decreases during severe bacterial pneumonia, which is in contrast to the increase that occurs with PI-3 infection.

Keywords: Antimicrobial peptides; Innate immunity; Interleukin-8; Mannheimia haemolytica; Pneumonia; Sheep beta-defensin

1. Introduction

Antimicrobial peptides are an integral component of the innate immune system. Defensins are cationic antimicrobial peptides produced by a wide range of species and have microbicidal activity against bacteria, fungi and enveloped viruses [1–5], including HIV-1 [6]. Alpha-defensins are produced by paneth cells and leukocytes and beta-defensins are produced by epithelia and leukocytes [3,5]. Antimicrobial activity of beta-defensins can be decreased by high salt concentrations [4,7–9]; however, recent studies indicate that osmotic agents such as xylitol may enhance defensin activity, even in high salt conditions [10]. Over 26 human beta-defensins have been identified [11,12]. Expression of some beta-defensins, such as human beta-defensin-1 (HBD-1), is constitutive, whereas expression of other beta-defensins, such as HBD-2, 3, and 4, [4,8,13], mouse beta-defensin-2 [14], tracheal antimicrobial peptide (TAP) and lingual antimicrobial peptide (LAP) of cattle, is inducible [15–18]. Induction often occurs secondary to activation of Toll-like receptor 4 (TLR 4) and NF-kappa B signaling [4,5]. Sheep beta-defensin-1 and -2 (SBD-1 and -2) are also members of the beta-defensin family. SBD-1 is developmentally regulated in late gestation through the neonatal period with maximal expression in trachea, lung and rumen reached shortly after birth [19–21]. Although SBD-1 appears to lack NF-kappa B responsive elements,
SBD-1 expression is increased during infection with ovine parainfluenza virus type 3 (PI-3) [22]. SBD-2 is also developmentally regulated and expressed primarily in the alimentary tract [20,23]; however, only low levels of SBD-2 mRNA are present in lung relative to SBD-1 [20,23]. Expression of SBD-1 and SBD-2 in response to bacterial infection has not been determined.

Mannheimia haemolytica is a common respiratory pathogen of sheep and cattle [24–27]. *M. haemolytica* can cause serious outbreaks of acute pneumonia in neonates, weaned and growing animals as well as adults [24]. Vaccination against *M. haemolytica* can enhance resistance to infection; however, these vaccines are not completely effective [25,26]. Experimentally, *M. haemolytica* activates NF-kappa B signaling [15,28] and enhances expression of two inducible bovine defensins, TAP and LAP in cattle [16–18].

The purpose of this study was to: (1) determine the extent to which *M. haemolytica* infection in sheep alters SBD-1 and -2 gene expression in vivo by real time reverse transcriptase polymerase chain reaction (real time RT-PCR), (2) determine if xylitol treatment alters SBD-1 and -2 expression, 3) compare SBD-1 and -2 expression to interleukin 8 (IL-8), a cytokine known to have increased gene expression during *M. haemolytica* pneumonia in the bovine [29,30].

2. Results

2.1. Gross lesions

Animals inoculated with *M. haemolytica* developed characteristic, gross lesions for this agent in sheep at the site of bacterial deposition. These areas were consolidated and deep red/blue in color.

2.2. Histopathology

Animals inoculated with *M. haemolytica* developed characteristic microscopic lesions for this agent in sheep at the site of inoculation. Lesions included dense infiltrates of neutrophils, seroproteinaceous fluid, accumulation of polymerized fibrin and small amounts of cell debris within the airways, interlobular septae and lymphatic vessels. Non-inoculated areas and lungs from control animals lacked lesions or contained minimal multifocal peribronchial and peribronchiolar infiltrates of lymphocytes.

2.3. Quantitative plate counts in lung tissue and bronchoalveolar lavage fluid (BALF)

M. haemolytica was cultured from BALF and lung tissue from all animals inoculated with *M. haemolytica* and not from control animals (Table 1). Numbers of *M. haemolytica* in BALF (cfu/ml) increased progressively with increased concentration of inoculated bacteria and were present at both 20 min and 24 h post-inoculation (PI). Numbers of bacteria in lung tissue at 24 h PI (cfu/g tissue) also increased progressively with increased concentration of inoculated bacteria.

2.4. IL-8 mRNA levels

IL-8 expression is known to increase during *M. haemolytica* pneumonia [29–31]. As expected, mRNA levels of IL-8 increased with increasing concentrations of *M. haemolytica*, and significantly so \((P = 0.03) \) when compared to controls (Fig. 1). Xylitol treatment did not alter IL-8 mRNA levels.

![IL-8 mRNA Levels](image)

Fig. 1. Interleukin-8 (IL-8) mRNA levels (normalized to Ribo 18S) in lungs of sheep determined by real time RT-PCR. Group 1, controls; Group 2, \(10^{6} \) *M. haemolytica*; Group 3, \(10^{7} \) *M. haemolytica*; Group 4, \(10^{8} \) *M. haemolytica*; Group 5, \(10^{9} \) *M. haemolytica* (\(n = 3 \) group). IL-8 mRNA levels progressively increase with increased bacterial concentrations and are significantly increased in Group 5 versus controls (Group 1).
2.5. SBD-1 and SBD-2 mRNA levels

In contrast to the increase in IL-8 mRNA expression, mRNA levels of SBD-1 decreased significantly \((P = 0.01)\) in lambs that received the highest amounts of *M. haemolytica* (Fig. 2). Xylitol treatment did not alter SBD-1 mRNA levels. SBD-2 mRNA levels were not significantly altered (Fig. 3) in animals inoculated with *M. haemolytica* compared to controls. mRNA levels of SBD-1 and, to a greater extent, SBD-2, were somewhat variable as seen previously.

2.6. Levels of SBD-1 mRNA in ovine epithelial cells retrieved by laser capture microdissection (LCM)

SBD-1 mRNA levels in respiratory epithelia were determined in epithelial cells retrieved by LCM in order to define the contribution of respiratory epithelia (versus leukocytes) in SBD-1 expression. By real time RT-PCR assessment of mRNA isolated from lung epithelial cells (bronchi) retrieved by LCM, SBD-1 PCR amplification resulted in linear amplification that was well within the suggested threshold levels. SBD-1 mRNA levels were significantly higher than levels observed in lung homogenates when normalized to the reference signal (Fig. 4).

2.7. Levels of SBD-1 and IL-8 mRNA in LPS-stimulated ovine buffy coat cells

In order to determine if circulating leukocytes, which infiltrate the lung during pneumonia, contribute to SBD-1 and IL-8 expression, mRNA levels were determined in LPS-stimulated and control buffy coat cells. LPS-treated cells had roughly three fold increases in raw total RNA content at 3 and 24 h incubation with LPS as compared to control cells (which lacked LPS treatment). SBD-1 mRNA levels were not detectable at 3 and 24 h in buffy coat cells with or without LPS-treatment. In contrast, IL-8 had robust expression in both LPS-treated and control buffy coat cells. IL-8 expression was slightly increased at 3 h in LPS-treated
cells and moderately increased again at 24 h post-incubation with LPS as compared to controls (Fig. 5). Because SBD-2 levels were nearly undetectable in control and M. hemolytica-infected lung, and bronchiolar epithelial cells, SBD-2 was not assessed in buffy coat cells. The lack of SBD-1 expression in buffy coat cells along with the detection of SBD-1 in LCM retrieved epithelia, suggest that respiratory epithelia cells, and not leukocytes, are primarily responsible for SBD-1 mRNA expression in lung.

3. Discussion

Our observed increase in the expression of IL-8 during M. haemolytica infection in lambs is consistent with similar, previous findings in cattle [29–31]. M. haemolytica is a Gram-negative bacteria that causes an intense inflammatory reaction characterized in the acute stages (first 24 h) by vascular leakage of protein, polymerization of fibrin, and dense infiltrates of neutrophils [24]. Virulence factors released by M. haemolytica include lipopolysaccharide and capsular polysaccharide (both of which can incite inflammatory responses) and a leukotoxin that binds the CD18 subunit of the beta-2 integrins of leukocytes, resulting in apoptosis/necrosis [24]. The severity of pneumonia can be reduced with dexamethasone, suggesting that the inflammatory response induced by M. haemolytica can be considered excessive [32]. Indeed, several studies have demonstrated a marked increase in IL-8 and other inflammatory cytokines including IL-1 and TNF-alpha during M. haemolytica pneumonia [29–31]. The inability of xylitol to alter IL-8 mRNA levels was not altogether surprising since the high numbers of bacteria in inoculate likely overwhelm any potentially observable localized effect(s) of xylitol. The expression of IL-8 mRNA in buffy coat cells suggests that infiltrating leukocytes may contribute significantly to IL-8 levels detected in whole lung homogenates. The lack of SBD-1 mRNA expression in buffy coat cells in combination with the proportionally high SBD-1 mRNA expression in respiratory epithelial cells retrieved by LCM suggests that SBD-1 is expressed primarily by pulmonary epithelia of the lung.

The lack of increase in mRNA levels for SBD-1 and SBD-2 suggests that these beta-defensins are not responsive or regulated by the acute inflammatory conditions induced by M. haemolytica. Additional work is needed to determine if SBD-1 and SBD-2 expression is affected similarly by other microbial pathogens and their products. As with IL-8, xylitol did not alter SBD-1 or SBD-2 mRNA levels. Although SBD-2 expression was slightly elevated in Groups 3 and 4, SBD-2 expression in these animals was highly variable, not statistically significant, and occurred at much higher cycle points during real time RT-PCR (>45 cycles and often reaches the allowed maximum [50]) than observed for SBD-1 (<40 cycles) or IL-8 (<32 cycles); suggesting that SBD-2 mRNA levels are very low in comparison to SBD-1 or IL-8. In our experience, rare mRNA signals (cDNA signals which generally appear above the threshold of detection at 40 cycles and above), when detected by real-time RT-PCR, seem prone to generate variable target amplification data. Such has been the case with SBD-2 signal in lung—and the reason it cannot be fully interpreted to any acceptable degree of statistical confidence. However, in sheep gastrointestinal tract tissues (e.g. ileum, jejunum, cecum, spiral colon and rectum), SBD-2 expression is much more abundant [20,23].

The inability for M. haemolytica infection to induce SBD-1 expression stands in sharp contrast to bovine defensins, TAP and LAP, both of which are highly expressed during M. haemolytica pneumonia [15–19]. The lack of SBD-1 expression suggests that signaling pathways such as NF-kappa B, which is induced by M. haemolytica pneumonia [15,28], do not induce or regulate expression; however, the mechanistic basis underlying the regulation of SBD-1 and SBD-2 requires further characterization. It is also reasonable that M. haemolytica may suppresses SBD-1 expression, since expression of HBD-1 and the cathelicidin LL37 are both inhibited/reduced during Shigella ssp.-induced bacillary dysentery and with Shigella spp. infection of cultured epithelial cells and monocytes [33].

The lack of observable increase in lung SBD-1 mRNA levels during experimental pneumonia caused by M. haemolytica is contrary to our findings that demonstrate increased SBD-1 and surfactant protein A and D mRNA expression during viral (PI-3) infection [22]. The different levels of SBD-1 and surfactant protein A and D expression that occurs in M. haemolytica and PI-3 infections may influence the degree of clearance/persistence of each of these pathogens during pneumonia and may also influence susceptibility/resistance to secondary pathogens. The divergent response of SBD-1 expression as demonstrated by a decrease with M. haemolytica infection and increase with PI-3 infection presents an interesting regulatory process biologically. Other constitutively expressed beta-defensins include HBD-1 and mouse beta-defensin-1 (MBD-1) [7,9,34]. Although HBD-1 expression is constitutive, HBD-1 production in some tissues, such as breast, is relatively high [35] and HBD-1 mRNA levels can increase with certain infections, which is somewhat analogous to the increased SBD-1 expression seen with PI-3 infection.

HBD-1 expression occurs in macrophages and the lack of SBD-1 mRNA expression in buffy coat cells was somewhat unexpected. The majority of buffy coat cells were neutrophils and lymphocytes; however, a small number of monocytes were also present. It is possible that the lack of SBD-1 mRNA expression by buffy coat cells could be due to several reasons: (1) the number of monocytes in the buffy coat samples was too low for significant SBD-1 mRNA detection, (2) monocytes in the buffy coat may have different expression characteristics of SBD-1 than fully differentiated macrophages, even under LPS
stimulation, and (3) SBD-1 expression may simply not occur or is limited in resting monocytes and LPS-stimulated monocytes, but may be increased by other stimuli (such as viral infection or interferons). Also, because lung tissues in this study were collected at one time point (24 h), it cannot be ruled out that defensin expression may have risen prior to or after this time point.

Levels of SBD-1 and SBD-2 mRNA expression in lung homogenates were quite variable. We have noted variability of SBD-1 expression among similar control animals before, and variable expression is a feature of other beta-defensins as well. Such inter-animal variability in defensin expression is not currently understood, but may be simply due in part to potentially varying amounts of bronchi, bronchiolar and alveolar epithelium in each whole lung tissue homogenate. Exposure to small airborne particles from feed grains, airborne LPS, or subclinical infections with agents such as PI-3, or slight differences in lung development or age between animals could also result in alterations in SBD-1 expression.

This work demonstrates differential expression of IL-8 and SBD-1 and SBD-2 during acute M. haemolytica pneumonia. The decreased SBD-1 expression that occurs during M. haemolytica pneumonia contrasts sharply with the increased SBD-1 expression, that occurs with PI-3 infection. This contrast identifies an interesting and potentially unique biological regulatory pathway in defensin gene expression.

4. Materials and methods

4.1. Bacterial inoculum

M. haemolytica serotype 1 strain 82-25, was originally isolated from a sheep with pneumonia. It was grown overnight on blood agar containing trypticase soy agar (Lab Supply Co., Des Moines, IA) as described [27]. The overnight growth was transferred to 35 ml of tryptose broth (Difco Laboratories, Detroit, MI) and incubated at 37 °C for 3 h on a magnetic stirrer. The culture was centrifuged at 5860 g (SS-34 rotor) for 10 min at 4 °C, suspended in 140 mM NaCl, and adjusted to 0.108 OD at 600 nm in a spectrophotometer (Coleman model 35, Bacharach Instrument Co.) to contain approximately 1.0 × 10⁸ CFU/ml. The bacterial cells in 150 ml of suspension were split and then pelleted by centrifugation at 10,000 g for 10 min at 4 °C and re-suspended in 300 mM saline or 300 mM xylitol. An exact viable bacterial concentration was determined by standard plate count on blood agar. The inoculum was kept on ice throughout the procedure.

4.2. Lambs and inoculation

Twenty-seven, 8-month old lambs (approximately 60 kg each), were housed in isolation rooms and treated by methods approved by the National Animal Disease Center Animal Care and Use Committee. In order to assess the ability of xylitol to reduce microbial viability in situ, lambs were first randomly assigned to eight groups of three. Just prior to inoculation, lambs were lightly sedated with 20 mg xylazine (Rompun, Bayer Corp., Shawnee Mission, KS). A small plastic tube was inserted into the oral cavity and served as a speculum for inoculation as performed and described previously [27,36]. A bronchoscope (Model administered to ease the scope past the larynx. The tip of the bronchoscope was moved to the dorsum of the caudal portion of the cranial lobe of the right lung (pulmonary deposition site) in each animal for deposition of inocula. After inoculation, the effect of xylazine was reversed by intravenous injection of 100 mg tolazoline HCl (Tolazine, Lloyd Laboratories, Shenandoah, IA).

Lambs in Group 1 were saline-inoculated controls (n = 3). Lambs in Group 2 received 10⁶ CFU *M. haemolytica* (n = 3) in 1 ml 300 mM NaCl and 300 mM xylitol (n = 3), respectively. Lambs in Group 3 received 10⁷ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively. Lambs in Group 4 received 10⁸ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively. Lambs in Group 5 received 10⁹ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively.

4.3. Bronchoalveolar lavage (BAL) and necropsy

At 20 min PI, the lungs of all lambs were lavaged five times with 20 ml saline per lavage, then pooled (100 ml total). At 24 h PI, all lambs were euthanized with pentobarbital and exsanguinated. At necropsy, lungs were evaluated grossly, and affected lobes were lavaged with 100 ml saline. Pieces of tissue were taken from pulmonary deposition sites, fixed in 10% neutral buffered formalin and served as a speculum for inoculation as previously described (27,36). A bronchoscope (Model administered to ease the scope past the larynx. The tip of the bronchoscope was moved to the dorsum of the caudal portion of the cranial lobe of the right lung (pulmonary deposition site) in each animal for deposition of inocula. After inoculation, the effect of xylazine was reversed by intravenous injection of 100 mg tolazoline HCl (Tolazine, Lloyd Laboratories, Shenandoah, IA).

Lambs in Group 1 were saline-inoculated controls (n = 3). Lambs in Group 2 received 10⁶ CFU *M. haemolytica* (n = 3) in 1 ml 300 mM NaCl and 300 mM xylitol (n = 3), respectively. Lambs in Group 3 received 10⁷ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively. Lambs in Group 4 received 10⁸ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively. Lambs in Group 5 received 10⁹ CFU *M. haemolytica* in 1 ml 300 mM NaCl (n = 3) and 300 mM xylitol (n = 3), respectively.

4.4. Real time RT-PCR

SBD-1 and IL-8 gene expression were determined by two-step fluorogenic real time RT-PCR using primers and probe sequences (Table 2) listed, and according procedures previously described in our laboratory [15,22]. Briefly, real time RT-PCR was carried out according to manufacturer’s specifications using the GeneAmp 5700
SBD-1 and SBD-2 mRNA levels were determined by real time RT-PCR as described previously [15,22] and outlined above. Real time RT-PCR mRNA levels were compared for significance (controls and infected) from both groups were assessed. Real time RT-PCR as described previously [15,22] and outlined above.

4.7. Statistical analysis

Statistical analysis was performed using the means of the three replicate wells for each cDNA sample being analyzed for the presence of SBD-1, -2 and IL-8 levels normalized to their respective ribosomal 18S RNA reference ('housekeeping') signals. To determine if there were significant treatment and time effects, a two-factor analysis of variance (ANOVA) (SPSS, SPSS Inc., Version 9.0, Chicago, Ill.) was used on all samples. Frozen lung tissues from all animals (controls and infected) from both groups were assessed. Real time RT-PCR mRNA levels were compared for significance with the Kruskal–Wallis ANOVA.

Acknowledgements

The authors acknowledge the assistance of Rachel Derscheid and Erin Costello for their assistance with RNA and cDNA-related laboratory procedures. This work is partially funded by the J.G. Salsbury Endowment, Iowa State University, USDA/CSREES/NRI-CGP (2003-35204-13492) (Ackermann); USDA/ARS-NADC Respiratory Disease Unit CRIS (Brogden); and NIDDK (DK54759) (Zabner).

References

