2-1996

An Evolutionary Trade Network Game With Preferential Partner Selection

Leigh Tesfatsion
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/econ_las_economicrepor ts

Part of the Business Administration, Management, and Operations Commons, Graphics and Human Computer Interfaces Commons, Growth and Development Commons, and the Other Economics Commons

Recommended Citation
http://lib.dr.iastate.edu/econ_las_economicrepor ts/39

This Report is brought to you for free and open access by the Economics at Digital Repository @ Iowa State University. It has been accepted for inclusion in ISU Economic Report Series by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact digirep@iastate.edu.
An Evolutionary Trade Network Game
With Preferential Partner Selection

Leigh Tesfatsion
Department of Economics & Department of Mathematics
Iowa State University, Ames IA

Economic Report Series No. 38
An Evolutionary Trade Network Game
With Preferential Partner Selection*

Leigh Tesfatsion
Department of Economics and Department of Mathematics
Iowa State University, Ames, IA 50011-1070
tesfatsi@iastate.edu; http://www.econ.iastate.edu/tesfatsi/
February 1996

Abstract
An evolutionary trade network game (TNG) is proposed for studying the interplay between evolutionary game dynamics and preferential partner selection in various market contexts with distributed adaptive agents. The modular form of the TNG facilitates experimentation with alternative specifications for trade partner matching, trading, expectation updating, and trade strategy evolution. Experimental results obtained using a C++ implementation suggest that the conventional optimality properties used to evaluate agent matching mechanisms in static market contexts may be inadequate measures of optimality from an evolutionary perspective.

1 Introduction
Evolutionary game studies typically focus on the optimality properties of strategy configurations when agents are matched randomly or deterministically by some extraneous device. The optimality properties of the matching mechanism per se are generally not considered ([11], [14]). In contrast, optimal search studies focus on the optimality properties of preference-based agent matching mechanisms, but generally these studies are set in static contexts [18]. Since actual social interactions are often characterized both by evolutionary dynamics and by preference-based partner selection, studying both aspects together seems a logical and interesting next step to take.

This issue is addressed in Stanley et al. [20]. The standard evolutionary iterated prisoner's dilemma (IPD) is extended to an evolutionary IPD with choice and refusal (IPD/CR) by allowing players to choose and refuse game partners in each iteration on the basis of continually updated expected payoffs. The introduction of choice and refusal fundamentally alters the way in which players interact in the IPD and the characteristics that result in high payoff scores. Choice allows players to increase their chances of encountering other cooperative players, and refusal gives players a way to protect themselves from defections without having to defect themselves. The ostracism of defectors occurs endogenously as an increasing number of players individually refuse the defectors' game offers. Nevertheless, choice and refusal also permit opportunistic players to home in quickly on exploitable players and form parasitic relationships.

The computer experiments reported in [20] and in the subsequent studies by Ashlock et al. [1], Smucker et al. [19], and Hauk [8] indicate that the emergence of mutual cooperation in the standard evolutionary IPD is accelerated by the introduction of preferential choice and refusal of partners. The underlying player interaction patterns induced by choice and refusal can be complex and highly path dependent, however, even when expressed play behavior is largely cooperative. Consequently, it has proved difficult to characterize the mapping from parameter configurations to evolutionary outcomes for the IPD/CR.

A potentially useful way to proceed, then, is to focus on more concrete settings which impose problem-specific constraints on agent interactions. In Tesfatsion [22] an evolutionary trade network game (TNG) is proposed for studying the interplay between evolutionary dynamics and preferential partner selection under alternatively

1Other game theory studies focusing on the endogenous determination of player interaction patterns, e.g., by permitting avoidance of unwanted interactions, endogenously determined probabilities of interaction, or evolution of interaction lengths, include Fogel [5], Guriev and Shakhova [7], Hirshleifer and Rasmusen [9], Kitcher [12], Mallath et al. [13], and Orbell and Dawes [17]. There is also a growing body of work by economists on multi-agent systems with endogenous interactions. See, for example, Brock and Durlauf [2], De Vany [3], Durlauf [4], Ionnides [10], and Vriend [23].
specified market structures.

The player set for the TNG consists of buyer and seller tradebots who choose and refuse trade partners on the basis of continuously updated expected payoffs. Buyers make trade offers to preferred sellers which the sellers either accept or refuse. A trade offer is an invitation to engage in a risky trade modelled as a two-player game. Each buyer and seller initially associates a prior expected payoff with each potential trade partner and randomly adopts a strategy for use in subsequent trades. The buyers and sellers then enter into a trade cycle loop consisting of successive rounds of partner matching, resource-constrained trading, and updating of expected payoffs. At the end of the trade cycle loop the buyers and sellers enter into an evolutionary step in which trade strategies successful in past trades are retained while trade strategies unsuccessful in past trades are replaced with variants of more successful strategies. A new trade cycle loop then commences.

The modular form of the TNG facilitates experimentation with alternative specifications for trade partner matching, trading, expectation updating, and trade strategy evolution. This paper presents experimental results obtained for the particular TNG module specifications developed in Tesfatsion [22], using a recently completed C++ implementation (McFadzean and Tesfatsion [16]). As will be clarified in the following section, trade partners are determined in accordance with a "deferred choice and refusal" (DCR) mechanism, a modified Gale-Shapley matching mechanism [6] that retains the static optimality properties of the original Gale-Shapley mechanism. Also, expected payoffs are updated by means of a simple learning algorithm that yields consistent estimates. A trade is modelled as a prisoner's dilemma game, and trade (IPD) strategies are evolved by means of a standardedly specified genetic algorithm.

Two types of markets are considered: buyer-seller markets, and two-sided markets. In the buyer-seller market, each tradebot is both a buyer and a seller in the sense that he can both make and receive trade offers. In the two-sided market, the set of buyers (tradebots who can make offers) is disjoint from the set of sellers (tradebots who can receive offers). For each type of market, attention is focused on the average fitness score achieved by the tradebots as the market evolves and the degree to which they display mutually cooperative behavior.

One interesting finding concerns the high transaction costs that agents can suffer under Gale-Shapley type matching mechanisms due to large numbers of refused offers. Specifically, for certain parameter specifications, the refusal payoffs accumulated under the DCR mechanism in both buyer-seller and two-sided markets can result in lower average fitness scores for the tradebots relative to other less sophisticated matching mechanisms. Another interesting finding concerns the evolutionary effects of the bias of Gale-Shapley type matching mechanisms in favor of those who actively make offers. Under the DCR mechanism, which inherits this bias, buyers in two-sided markets with relatively large seller acceptance quotas appear to be able to form long-term parasitic relations with sellers that reduce seller fitnesses relative to buyer fitnesses and hinder the emergence of mutually cooperative behavior. Overall, these experimental findings suggest that the conventional optimality properties used to evaluate agent matching mechanisms in static market contexts may be inadequate measures of optimality from an evolutionary perspective.

The TNG module specifications are detailed in Section 2, and various experimental results are reported in Section 3.

2 The TNG Model

The set of players for the TNG is the union \(V = B \cup S \) of a nonempty subset \(B \) of buyer tradebots who can submit trade offers and a nonempty subset \(S \) of seller tradebots who can receive trade offers, where \(B \) and \(S \) may be disjoint, overlapping, or coincident. For example, the buyers and sellers might represent customers and retail store owners, workers and employers, borrowers and lenders, or auction traders.

Each generation of tradebots participates in a trade cycle loop consisting of a fixed number of trade cycles. In each trade cycle, each buyer \(m \) can submit up to \(O_m \) trade offers to sellers, and each seller \(n \) can accept up to \(A_n \) trade offers from buyers, where \(O_m \) and \(A_n \) are strictly positive. One interpretation for the buyer offer quota \(O_m \) is that buyer \(m \) has a limited amount of resources (credit, labor time, collateral,...) to trade in exchange for other items, and one interpretation for the seller acceptance quota \(A_n \) is that seller \(n \) has a limited amount of items (goods, job openings, loans,...) to provide.

The tradebots determine their submission, acceptance, and refusal of trade offers in each trade cycle using a modified version of the well-known Gale-Shapley deferred acceptance mechanism [6]. This modified mechanism, referred to below as the deferred choice and refusal (DCR) mechanism, presumes that each buyer and seller associates an expected payoff with each potential trade partner. (The way in which these expected payoffs are determined is clarified below.) Also, each buyer and seller is presumed to have an exogenously given minimum tolerance level, in the sense that he will not trade with anyone whose expected payoff lies below this level.

The DCR mechanism then proceeds as follows. Each buyer \(m \) first makes trade offers to a maximum of \(O_m \) most-preferred sellers he finds tolerable, with at most one offer going to any one seller. Each seller \(n \) in turn forms a waiting list consisting of a maximum of \(A_n \) of
the most preferred trade offers he has received to date from tolerable buyers; all other trade offers are refused. For both buyers and sellers, selection among equally preferred options is settled by a random draw. If a buyer has a trade offer refused, he immediately submits a replacement trade offer to any tolerable next-most-preferred seller that has not yet refused him. A seller receiving a new trade offer that dominates a trade offer currently on his waiting list substitutes this new trade offer in place of the dominated trade offer, which is then refused. A buyer ceases making trade offers when either he has no further trade offers refused or all tolerable sellers have refused him. When all trade offers cease, each seller accepts all buyer trade offers currently on his waiting list.

The buyer-seller matching outcomes generated by the DCR mechanism exhibit the usual optimality properties associated with Gale-Shapley type matching mechanisms. First, any such matching outcome is core stable, in the sense that no subset of tradebots has an incentive to block the matching outcome by engaging in a feasible rearrangement of trade partners among themselves [22, Proposition 4.2]. Second, define a matching outcome to be B-optimal if it is core stable and if each buyer matched under the matching outcome is at least as well off as he would be under any other core stable matching outcome. Then, in each TNG trade cycle, the DCR mechanism yields the unique B-optimal matching outcome. In each TNG trade cycle, tradebot v then uses a simple variable-gain criterion filter [21] to update his current expected payoffs obtained in past trades with this same partner. Each tradebot thus has a distinct trading personality even if he engages in both buying and selling activities. No tradebot knows any other tradebot’s strategy a priori; he can only learn about it by engaging the other tradebot in repeated trades and observing the payoff history that ensues. Moreover, each tradebot’s choice of an action in a current trade with a potential trade partner is determined entirely on the basis of the payoffs obtained in past trades with this same partner.

At the beginning of the initial trade cycle loop, before any actual trades have taken place, each tradebot v associates an exogenously given prior expected payoff $U_0^v(k)$ with each potential trade partner k. Throughout each trade cycle, tradebot v then uses a simple variable-gain criterion filter [21] to update his current expected payoffs on the basis of the new payoffs he obtains from interactions with his potential trade partners. In particular, if tradebot v receives a payoff P from an interaction with a potential trade partner k, then v forms an updated expected payoff for k by taking a convex combination of this new payoff P and his previous expected payoff for k, where the inverse of the weight on P is $1 + \text{tradebot } u's \text{ current payoff count with } k$. In this way, tradebot v keeps a running tab on the payoff outcomes of his interactions with k. As explained in Tesfatsion [22, Section 5], this updating procedure guarantees that the expected payoff tradebot v associates with k converges to the true average payoff v attains from interactions with k as the number of interactions between v and k becomes arbitrarily large.

At the end of a trade cycle loop, the fitness score of each tradebot is calculated as the average of all of the trade, refusal, and wallflower payoffs he received dur-

The payoff matrix for the PD game is depicted in Table 1.

Table 1. Payoff Matrix for the Prisoner’s Dilemma Game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(C,C)</td>
</tr>
<tr>
<td>d</td>
<td>(H,L)</td>
</tr>
<tr>
<td>c</td>
<td>(L,H)</td>
</tr>
<tr>
<td>d</td>
<td>(D,D)</td>
</tr>
</tbody>
</table>

The trade behavior of each tradebot, whether he is a pure buyer in $V - S$, a buyer-seller in $B \cap S$, or a pure seller in $V - B$, is characterized by a finite-memory pure strategy for playing a PD game with an arbitrary partner an indefinite number of times, hereafter referred to as a trade strategy. Each tradebot thus has a distinct trading personality even if he engages in both buying and selling activities. No tradebot knows any other tradebot’s strategy a priori; he can only learn about it by engaging the other tradebot in repeated trades and observing the payoff history that ensues. Moreover, each tradebot’s choice of an action in a current trade with a potential trade partner is determined entirely on the basis of the payoffs obtained in past trades with this same partner.

Note that the DCR mechanism requires the tradebots to pass messages back and forth to each other at event driven times.
int main () {
 tngInit();
 // Construct initial tradebots
 // with prior expected payoffs...
 For (G = 0,...,GMAX-1) {
 // Enter the generation loop.
 For (I = 0,...,IMAX-1) {
 MatchTraders();
 // Enter the trade cycle loop.
 Trade();
 // Determine trade partners,
 // given expected payoffs,
 // and record refusal and
 // wallflower payoffs.
 UpdateExp();
 // Update expected payoffs
 // using newly recorded payoffs.
 }
 AssessFitness();
 // Record fitness scores.
 If (G < GMAX-1) {
 // Genetic step: Evolve the
 // elite (the fittest tradebots) are retained while the strategies used
 // by the remaining tradebots are replaced with variants of
 // the strategies used by the elite. The finite state machine
 // (FSM) and genetic algorithm (GA) used in the genetic
 // step to represent and evolve the tradebots' trade strate-
 // gies are the same as detailed in Ashlock et al. [1, Sec-2.3] for player strategies in the IPD/CR except that
 // two-point rather than one-point cross-over is employed
 // to avoid endpoint bias effects. The particular FSM and
 // GA parameter settings used in all experiments reported
 // in this paper are detailed in the next section.
 At the end of the genetic step the memories of the
 // tradebots are reset to zero, their associated FSMs are
 // reset to a fixed initial state, and their expected payoffs
 // are reset to the prior expected payoff levels. A new trade-
 // cycle loop then commences. Table 2 depicts the overall
 // logical progression of the TNG in pseudo-code.
 Before reporting on some of the TNG computer ex-
 // periments conducted to date, three special cases of the
 // TNG will be sketched to indicate the range of economic
 // applications it encompasses.
 Case 1: A Labor Market Modelled as an Assignment
 // Game with Choice and Refusal
 The set B consists of workers and the set S consists of
 // employers, where B and S are disjoint. Each worker m
 // can make work offers to a maximum of Om employers, or
 // he can choose to be unemployed and receive the known
 // payoff W. Each employer n can hire up to An work-
 // ers, and employers can refuse work offers. Once matched,
 // a worker and employer engage in work site interactions
 // modelled as a PD game.
 This TNG special case extends the usual assignment
 // problem [18] by incorporating subsequent strategic game
 // play between matched pairs of agents and by having
 game play iterated over time. Assignment problems are
 // commonly used by economists to model job-matching in
 // labor markets as well as other economic processes, but
 // the payoff outcome for each matched pair of agents is
 // usually specified a priori.
 Case 2: A Labor Market with Endogenously Determined
 // Workers and Employers
 The subsets B and S coincide, implying that each
 // tradebot can both make and receive trade offers. Each
 // tradebot v can make up to Ov work offers to tradebots at
 // other work sites and receive up to Av work offers at his
 // own work site. The degree to which any accepted work
 // offer results in satisfactory outcomes for the participant
 // tradebots is determined by subsequent PD game play.
 Ex post, four pure types of tradebots can emerge: (1)
 // pure workers, who work at the sites of other tradebots
 // but have no tradebots working for them at their own
 // sites; (2) pure employers, who have tradebots working
 // for them at their own sites but who do not work at the
 // sites of other tradebots; (3) unemployed tradebots, who
 // make at least one work offer to a tradebot at another site
 // but who end up neither working at other sites nor having
 // tradebots working for them at their own sites; and (4)
 // inactive (out of the work force) tradebots, who neither
 // make nor accept any work offers.
 Case 3: Intermediation with Choice and Refusal
 The buyer subset B and the seller subset S overlap
 // but do not coincide. The pure buyers in V — S are the
 // depositors (lenders), the buyer-sellers in B ∩ S are the
 // intermediaries (banks), and the pure sellers in V — B
 // are the capital investors (borrowers). The depositors
 // offer funds to the intermediaries in return for deposit ac-
 // counts, and the intermediaries offer loan contracts to the
 // capital investors in return for a share of earnings. The
 // degree to which accepted offers are satisfactorily fulfilled
 // is determined by subsequent PD game play.
 Table 2. TNG Pseudo Code
 | For (G = 0,...,GMAX-1) { |
 | For (I = 0,...,IMAX-1) { |
 | MatchTraders(); |
 | Trade(); |
 | UpdateExp(); |
 | AssessFitness(); |
 | If (G < GMAX-1) { |
 | EvolveGen(); |
 | } |
 | Return 0 ; } |

 3 TNG Experiments
 Four types of computer experiments are discussed in the
 // present section: (a) buyer-seller market experiments with
 // sellers unconstrained by acceptance quotas; (b) buy er-
 // seller market experiments with seller acceptance quotas
 set to 1; (c) two-sided market experiments with sell ers
 // unconstrained by acceptance quotas; and (d) two-
 // sided market experiments with seller acceptance quotas
 set to 1. All experimental findings reported below
 were obtained using TNG, a C++ trade platform devel-
more deeply into the underlying trade patterns and the trade strategies that support these trade patterns.

For each type of experiment, multiple runs from different initial random seeds are reported. The following features are set commonly across all of these experimental runs. The wallflower payoff W is set at 0, the refusal payoff R is set at -0.6, the PD trade payoffs are set at $L = -1.6$, $D = -0.6$, $C = 1.4$, and $H = 3.4$, and each tradebot's minimum tolerance level is set at 0. Each tradebot assigns the same prior expected payoff $U^0 = C$, to each other tradebot, implying that he is initially indifferent concerning which trade partners he interacts with; and each tradebot assigns a negative prior expected payoff to himself, thus ensuring that he never trades with himself. Each buyer tradebot has an offer quota of 1, meaning that he can have at most one trade offer outstanding to sellers at any given time. The total number of tradebots is set at 24, and the 16 most fit tradebots in each generation are taken to be the elite. The number of trade cycles in each trade cycle loop is set at 150, and the number of generations is set at 50.

Each trade strategy is represented by a 16-state FSM with a fixed initial state and with memory 1. At the beginning of the first trade cycle loop, a bit string coding for each FSM is randomly generated. At the end of each trade cycle loop, the current population of trade strategies (FSMs coded as bit strings) is evolved by means of a genetic algorithm employing two-point cross-over and bit mutation. The probability of cross-over is set at 1.0 and the probability of a bit mutation is set at 0.005.

3.1 Buyer-Seller Market

Each tradebot in these experiments was both a buyer and a seller, implying that he could both make and receive trade offers.

In the first batch of buyer-seller experiments, the acceptance quota of each tradebot was set at 24, the total number of tradebots. Since offer quotas in these experiments were set at 1, the tradebots were then effectively unconstrained with regard to the number of trade offers they could have on their waiting lists at any given time.

As a benchmark, experiments were first run with random partner matching in place of the DCR matching mechanism. Random partner matching was effected by preventing the updating of the prior expected payoff $U^0 = C$ that each tradebot initially assigned to each potential trade partner, so that all tradebots remained indifferent concerning their potential trade partners and matching was accomplished by the default mechanism of a random draw. Although occasionally the average fitness score achieved by the tradebots under random matching rose to the mutual cooperation level, 1.4, a more typical outcome was a steady decline to the mutual defection level, -0.6; see Fig. 1. Note that the size of the refusal payoff is irrelevant for this finding, since refusals never occur in TNG experiments with random matching and nonbinding acceptance quotas.

When the DCR matching mechanism was restored, the average fitness score achieved by the tradebots typically evolved to the mutual cooperation level 1.4; see Fig. 2. These TNG experiments reinforce the previous IPD/CR findings of Stanley et al. [20] and Ashlock et al. [1] that a preference-based matching mechanism tends to accelerate the emergence of mutual cooperation in the IPD when each agent is permitted both to make and to refuse game offers, is unconstrained with regard to the number of received offers he can accept, and is permitted to have at most one offer outstanding at any given time.

In the second batch of buyer-seller experiments, the acceptance quotas were reduced from 24 to 1. Under random partner matching, the typical outcome was again the emergence of an average fitness score close to the mutual defection payoff level, -0.6. This same outcome obtained even when refusal payoffs were omitted from fitness scores, implying that refusal payoffs resulting from limited waiting lists were not a determining factor.

When the DCR matching mechanism was restored, however, the average fitness score typically leveled out at about 1.25 instead of evolving to the mutual cooperation level of 1.4. The explanation for this finding appears to be that the nature of the refusal payoffs changes when the acceptance quota is changed from large to small in relation to the offer quota.

In TNG experiments with relatively large acceptance quotas, a tradebot is generally refused by another tradebot only if the latter finds him to be intolerable because of past defections. Refusal payoffs received in response to defections should rightly count against the fitness of the trade strategies generating the defections, for this induces changes in these strategies in the genetic step that tend to lead to higher future fitness scores. In TNG experiments with relatively small acceptance quotas, however, each tradebot can only have a small number of trade offers on his waiting list at any one time no matter how many desirable trade offers he receives. Consequently, the tradebots tend to amass large numbers of negative refusal payoffs as a consequence of the low acceptance quotas in combination with the DCR mechanism, regardless of their trade strategies. Since the exogenously given acceptance quotas and DCR mechanism are not evolved in

3As previously noted, the initial population of strategies for each TNG experiment was randomly generated and each run consisted of only 50 generations with interactions between any two players limited to at most 150 separate encounters per generation. Thus, this evolution of mutual defection is not in conflict with the evolution of mutual cooperation observed for the IPD with random or round-robin matching by previous researchers when the initial strategy population was sufficiently seeded with cooperatively inclined strategies such as Tit-for-Tat or when much longer player interaction lengths were permitted.
Figure 1: Buyer-seller average fitness with random matching and seller quotas equal to 24.

Figure 2: Buyer-seller average fitness with DCR matching and seller quotas equal to 24.
Figure 3: Buyer-seller average fitness with DCR matching, seller quotas equal to 1, and refusal payoffs omitted from fitness scores.

Figure 4: Two-sided market average fitness with random matching and seller quotas equal to 12.
Figure 5: Two-sided market average fitness with DCR matching and seller quotas equal to 12.

Figure 6: Two-sided market average fitness with DCR matching, seller quotas equal to 1, and refusal payoffs omitted from fitness scores.
the current implementation of the TNG, penalizing the tradebots for these quota and DCR effects by including refusal payoffs in their fitness scores tends to lower their current average fitness score without inducing a higher average fitness score in the future.

As expected, the average fitness scores attained by the tradebots markedly improved when refusal payoffs were removed from the calculation of the tradebots' fitness scores; see Fig. 3. Additional improvement occurred when the refusal payoffs were reduced in magnitude from −0.60 to −0.30; but a further reduction in magnitude to −0.06 and then to 0.0 resulted in increasingly volatile maximum and minimum average fitness scores with no discernible improvement in average fitness scores.

The probable cause of the increased volatility is that tradebots receiving refusals during initial trade cycles may have no incentive to direct their offers elsewhere in subsequent trade cycles if the magnitude of the refusal payoff is small. With a strictly negative refusal payoff, the continually updated expected payoff that a tradebot associates with another tradebot who repeatedly refuses him eventually falls below 0, the minimum tolerance level, at which point he ceases making offers to this other tradebot; but this learning process is slow when refusal payoffs are small in magnitude.

3.2 Two-Sided Market

In each of these experiments, 12 of the tradebots were pure buyers and the remaining 12 were pure sellers.

In the first batch of experiments, the acceptance quota of each seller was set at 12 so that sellers were effectively unconstrained regarding the number of trade offers they could have on their waiting lists at any one time. Experiments were first run with random partner matching in place of the DCR matching mechanism to obtain a benchmark for comparison. Interestingly, in contrast to buyer-seller experiments with nonbinding acceptance quotas and random matching, the average fitness score attained by the tradebots tended to fall to a level between the wallflower payoff 0 and −0.4 rather than dropping all the way down to the mutual defection payoff level −0.6; compare Fig. 4 with Fig. 1.

When the DCR matching mechanism was restored, the average fitness score of the tradebots typically evolved to about 1.2, a payoff level markedly below the mutual cooperation level 1.4 obtained in buyer-seller experiments with nonbinding acceptance quotas and DCR matching. Moreover, the maximum fitness score, the average fitness score, and the minimum fitness score attained by the successive tradebot generations persistently deviated from one another. Compare Fig. 5 with Fig. 2.

As discussed in Section 2, the DCR mechanism is only guaranteed to be optimal for buyers (active makers of trade offers). Consequently, it is conjectured that the DCR matching mechanism in two-sided markets with buyer offer quotas equal to 1 and with nonbinding seller acceptance quotas results in a "separating equilibrium" in which the buyers are generally achieving high fitness scores and the sellers are generally achieving low fitness scores. In particular, the extreme pickiness of buyers combined with the acceptance by sellers of all tolerable received trade offers appears to allow buyers to form long-run parasitic relations with sellers, i.e., relations characterized by successful defections within the limits permitted by the sellers' 0 minimum tolerance levels.

In the second batch of two-sided market experiments, the seller acceptance quotas were decreased from 12 to 1. Under random partner matching, the typical outcome was the emergence of an average attained fitness score close to the mutual defection payoff, −0.6, whether or not refusal payoffs were counted in the calculation of fitness scores.

When the DCR matching mechanism was restored, with refusal payoffs counted in the calculation of fitness scores, the accumulation of refusal payoffs tended to result in average attained fitness scores that were markedly below the mutual cooperation payoff level. When refusal payoffs were then omitted from the calculation of fitness scores, the average attained fitness scores tended to evolve to the mutual cooperation level and to be close to the maximum attained fitness scores; see Fig. 6.

Comparing Fig. 6 with Fig. 5, it appears that having equal buyer and seller quota levels better enables sellers to protect themselves against potentially parasitic buyers, thus ameliorating the bias of the DCR mechanism in favor of buyers. On the other hand, having seller acceptance quotas that are large relative to the number of buyers tends to reduce the occurrence of refusal payoffs due purely to the limited length of waiting lists. Indeed, in various two-sided market experiments with 12 pure buyers, 12 pure sellers, and equal buyer and seller quotas ranging from 3 to 12, the average attained fitness scores tended to evolve to the mutual cooperation payoff level and to be close to the maximum attained fitness scores even when refusal payoffs were included in the calculation of individual fitness scores.

4 Concluding Remarks

The experimental findings reported in Section 3 suggest several extensions of the TNG. Ideally, the choice and refusal mechanism should be allowed to evolve conjointly with the tradebots' trade strategies. Also, the exogenously specified offer and acceptance quotas should be allowed to change over time to reflect both changing strategic considerations and changing budget and production relations. Finally, the trade strategies for pure buyers and for pure sellers should be separately evolved since these tradebots face intrinsically asymmetric choice
problems. It will be interesting to see how Gale-Shapley type matching mechanisms fare in these less structured evolutionary contexts.

References

