Flaw Detection and Characterization in Ceramics with the Scanning Laser Acoustic Microscope (SLAM)

D. E. Yuhas
Sonoscan, Inc.

L. W. Kessler
Sonoscan Inc.

Follow this and additional works at: http://lib.dr.iastate.edu/cnde_yellowjackets_1978

Part of the Materials Science and Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/cnde_yellowjackets_1978/42

This 7. NDE for Advanced Materials is brought to you for free and open access by the Interdisciplinary Program for Quantitative Flaw Definition Annual Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, July 1977–June 1978 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
FLAW DETECTION AND CHARACTERIZATION IN CERAMICS
WITH THE SCANNING LASER ACOUSTIC MICROSCOPE (SLAM)*

D. E. Yuhas and L. W. Kessler
Sonoscan, Inc.
Bensenville, Illinois 60106

ABSTRACT

The high resolving power coupled with the real time capability of the SLAM make it a useful technique for characterization of materials including ceramics. The elastic structure of ceramics is often dependent upon the details of the fabrication process, e.g., sintering, hot pressing, amount of binder, etc. Accordingly, acoustic micrographs and acoustic interferograms which reveal characteristic sonic transmission patterns and sonic velocity variations, respectively, can be used to nondestructively evaluate ceramics to ensure material uniformity. In addition, the ability to nondestructively detect flaws and inclusions is important in fracture toughness studies and in the evaluation of finished components.

This presentation will survey a series of acoustic micrographs obtained at 100 MHz. Micrographs illustrating the characteristic acoustic signatures of a variety of hot pressed and reaction sintered components will be presented. In addition to this characterization data, micrographs showing specific defects in silicon nitride and silicon carbide will be presented. The "library" of flaws includes implanted inclusions and induced surface flaws, as well as buried inclusions and surface flaws which occur as the result of the normal processing cycle. Work was done on fabricated test samples as well as molded parts, e.g., turbine blades. The ultrasonic detectability of defects is dependent upon many factors including acoustic frequency, acoustic energy mode, elastic properties of the flaw, and the background structure of the material under investigation. Because of the large acoustic impedance difference between some flaws and the host material, defects an order of magnitude smaller than the 25 micron resolution element at 100 MHz are easily detected. For example, the presence of micron-sized pores in reaction sintered turbine blades is readily discernable although individual pores are not resolved. The importance of SLAM real time capability, the influence of acoustic background structure, and the use of different acoustic energy modes, e.g., bulk waves vs. surface waves on defect detectability and characterization will be discussed.

*This research was sponsored in part by the Center for Advanced NDE operated by the Science Center, Rockwell International, for the Advanced Research Projects Agency and the Air Force Materials Laboratory under contract F33615-74-C-5180, and in part by the Argonne National Laboratory.