The Determination of Tensile Stresses Using the Temperature Dependence of Ultrasonic Velocity

K. Salama

Follow this and additional works at: http://lib.dr.iastate.edu/cnde_yellowjackets_1981

Recommended Citation
http://lib.dr.iastate.edu/cnde_yellowjackets_1981/47

This 9. Acoustic Emission and Material Property Measurements is brought to you for free and open access by the Interdisciplinary Program for Quantitative Flaw Definition Annual Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the DARPA/AFWAL Review of Progress in Quantitative NDE, October 1979-January 1981 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
THE DETERMINATION OF TENSILE STRESSES USING THE TEMPERATURE DEPENDENCE OF ULTRASONIC VELOCITY

K. Salama, A. L. W. Collins and Jen-Jo Wang
Department of Mechanical Engineering
University of Houston
Houston, TX 77004

ABSTRACT

The effects of applied tensile stresses on the temperature dependence of 10 MHz ultrasonic longitudinal velocity have been studied in three types of commercial aluminum alloys, 6064-T4, 2024-T351, and 3003-T251. In all measurements, it is found that the velocity decreases linearly with temperature, and the slope of the linear relationship changes considerably as a function of applied tensile stresses within the elastic limit of the specimen used. Furthermore, the results indicate that the relative changes in the temperature dependence of the velocity due to stress is insensitive to composition and texture, and the data obtained on the different types of aluminum alloys can be represented by a single relationship. The sensitivity of the temperature dependence of the ultrasonic velocity to applied elastic stress is estimated to be \(\pm 2 \) MPa which compares favorably with those obtained by other techniques.

EXPERIMENTAL

The temperature dependence of the ultrasonic velocity was measured on three aluminum specimens of types 6064-T4, 2024-T351, and 3003-T251 at temperatures ranging between 30 and 260K, using the pulse-echo-overlap method. Figure 1 displays the experimental system used in this work, which is capable of measuring changes in the ultrasonic velocity with an accuracy of better than 1 part of 10\(^{-5}\). This system has been described in detail elsewhere. The velocity measurements were made while the specimen was subjected to various amounts of tensile stresses using the arrangements shown in Figure 2. In this arrangement, the specimen is gripped in an Instron machine where a predetermined load is applied and its value is kept constant during the entire velocity measurements.

RESULTS

In all measurements, the velocity was found to decrease linearly with temperature, and the slope of the linear relationship decreased as the amount of applied tensile stress is increased within the elastic limit of the specimen. A typical example of the results obtained on the type 3003-T251 aluminum is shown in Figure 3, where the longitudinal velocity is plotted vs temperature at stress 0, 32.8, 48.6, and 85.1 MPa. The values of the temperature dependence of ultrasonic velocity (\(\text{dV}_L/\text{dT} \)) obtained
Fig. 1. Pulse-echo-overlap system for measuring ultrasonic velocity.

Fig. 2. System used for the application of stress during the ultrasonic measurement.

at various amounts of stress on the three specimens are listed in Table I. Because the values of \(\frac{dV_t}{dT} \) at zero stress were found to vary from one type of aluminum to the other, the relative change in the temperature dependence, \(\Delta \), due to the application of stress was calculated, and its values are listed in Column 4 of the Table.

TABLE 1

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Applied Stress (MPa)</th>
<th>(-\frac{dV_t}{dT}) (m/s k)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6060-T4 #1</td>
<td>0</td>
<td>1.304</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36.5</td>
<td>1.205</td>
<td>7.59</td>
</tr>
<tr>
<td></td>
<td>60.8</td>
<td>1.155</td>
<td>11.44</td>
</tr>
<tr>
<td></td>
<td>91.2</td>
<td>1.091</td>
<td>16.33</td>
</tr>
<tr>
<td>2024-T351 #2</td>
<td>0</td>
<td>1.187</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24.2</td>
<td>1.137</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>73.0</td>
<td>1.073</td>
<td>9.6</td>
</tr>
<tr>
<td>3003-T251 #3</td>
<td>0</td>
<td>1.251</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32.8</td>
<td>1.187</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>48.6</td>
<td>1.117</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>85.1</td>
<td>1.039</td>
<td>16.9</td>
</tr>
</tbody>
</table>
Fig. 3. Effect of applied tensile stress on the temperature dependence of ultrasonic longitudinal velocity in aluminum. Stress is applied in a perpendicular direction to the direction of propagation of the ultrasonic waves.

The relative changes in the temperature dependence \((dV/dT)_0 - (dV/dT)/_0 (dV/dT)_0\) obtained on the three specimens are plotted as a function of applied tensile stress in Figure 4. The figure shows that the data points can be represented by a straight line which passes through the origin. This indicates that, regardless of the type of aluminum used, the relative change in the temperature dependence is a linear function of the applied stress and can be represented by,

\[
\frac{(dV/dT)_0 - (dV/dT)/_0}{(dV/dT)_0}
\]

where \(K\) is a constant equals \(1.9 \times 10^{-3}\) per MPa (\(1.3 \times 10^{-2}\) per KSI). This value of \(K\) is about 20\% smaller than that obtained when compressive stresses are used in the measurements.

Fig. 4. Percentage of the relative change in the temperature dependence of ultrasonic longitudinal velocity as a function of applied stress in aluminum.

ACKNOWLEDGEMENT

The authors would like to thank the Electric Power Research Institute for the support of this investigation under Grant No. RP823-3.

REFERENCES

SUMMARY DISCUSSION

Martin Scott (Stanford): What was the temperature range in your measurement?

Kamel Salama (University of Houston): We measured from about 280 down to 220K. We are in the process of using higher temperatures that go from 300 degrees to 350 or 360K. Usually, somewhere between 50 and 70 degrees is quite adequate to give you a good determination for the slope of the velocity as a function of temperature.

Christian Burger (Iowa State): You were making your measurements through the thickness, so you were essentially looking at the plane-stress problem?

Kamel Salama: In all cases used in the calibration, the stress applied turned out to be axial. The component of stress which affected the change in the temperature dependence is the axial component. We confirmed this conclusion by having a specimen in an Instron machine where you are applying a pure uniaxial stress and do the velocity-temperature measurements, and, as I said, it was about 15 percent smaller than what we got in the previous measurements.

Christian Burger: My difficulty is really with this interference problem you have on the board. How did you get rid of interference?

Kamel Salama: These measurements were done using shear waves. We made three measurements, one longitudinal, which turned out to be constant, where the temperature dependence had no change or no considerable change as a function of the distance. The second measurement was where the particle velocity was in the tangential direction, the third measurement was where the particle velocity is toward the radius. And these measurements were obtained from the temperature dependence where the particle velocity is perpendicular to that line.

Christian Burger: Thank you.

William Pardee, Chairman (Science Center): I would like to offer Professor Salama my congratulations. We are less than 15 minutes behind, in spite of having one extra talk. There has been some complaint at previous sessions that the stampede towards the door at the end of the session has made it impossible to hear the questions. I would ask you to offer the last Speaker the courtesy of a few brief questions, if necessary.