Identification of a Key Amino Acid of LuxS Involved in AI-2 Production in Campylobacter jejuni

Thumbnail Image
Date
2011-01-01
Authors
Zhu, Jinge
Akiba, Masato
Pei, Dehua
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Plummer, Paul
Associate Dean for Research and Graduate Studies
Person
Zhang, Qijing
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Microbiology and Preventive Medicine
Our faculty promote the understanding of causes of infectious disease in animals and the mechanisms by which diseases develop at the organismal, cellular and molecular levels. Veterinary microbiology also includes research on the interaction of pathogenic and symbiotic microbes with their hosts and the host response to infection.
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Microbiology and Preventive MedicineVeterinary Diagnostic and Production Animal Medicine
Abstract

Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2− variant with a plasmid encoded copy of the wild-typeluxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ∼100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.

Comments

This article is from PLoS One 6 (2011): e15876, doi:10.1371/journal.pone.0015876. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections