Compost mineralization in soil as a function of composting process conditions

Thumbnail Image
Date
2003-07-01
Authors
Cambardella, Cynthia
Richard, T. L.
Russell, Ann
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Russell, Ann
Adjunct Associate Professor
Research Projects
Organizational Units
Organizational Unit
Natural Resource Ecology and Management
The Department of Natural Resource Ecology and Management is dedicated to the understanding, effective management, and sustainable use of our renewable natural resources through the land-grant missions of teaching, research, and extension.
Journal Issue
Is Version Of
Versions
Series
Department
Natural Resource Ecology and Management
Abstract

Compost has been shown to have a range of positive impacts on soil quality and can provide an important source of nutrients for plants. While these benefits have been documented for many finished composts, there is presently little understanding of the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. This study evaluated the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. Dried, ground composts were blended with equal parts of quartz sand and soil and incubated aerobically for 28 d at 30 °C. Cumulative respired CO2–C and net mineralized N were quantified. Results indicate that (1) organic substrates that did not degrade due to sub-optimal conditions during the composting process can readily mineralize after incorporation in soil; (2) C and N cycling dynamics in soil after compost incorporation can be affected by compost feedstock, processing conditions, and time; and (3) denitrification after compost incorporation in soil can limit N availability from compost.

Comments

This article is from European Journal of Soil Biology 39 (2003): 117, doi:10.1016/S1164-5563(03)00027-X.

Description
Keywords
Citation
DOI
Copyright
Collections