Genomic Expression Dominance in Allopolyploids

Thumbnail Image
Date
2009-05-01
Authors
Rapp, Ryan
Udall, Joshua
Wendel, Jonathan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wendel, Jonathan
Distinguished Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Allopolyploid speciation requires rapid evolutionary reconciliation of two diverged genomes and gene regulatory networks. Here we describe global patterns of gene expression accompanying genomic merger and doubling in inter-specific crosses in the cotton genus (Gossypium L.). Employing a micro-array platform designed against 40,430 unigenes, we assayed gene expression in two sets of parental diploids and their colchicine-doubled allopolyploid derivatives. Up to half of all genes were differentially expressed among diploids, a striking level of expression evolution among congeners. In the allopolyploids, most genes were expressed at mid-parent levels, but this was achieved via a phenomenon of genome-wide expression dominance, whereby gene expression was either up- or down-regulated to the level of one of the two parents, independent of the magnitude of gene expression. This massive expression dominance was approximately equal with respect to direction (up- or down-regulation), and the same diploid parent could be either the dominant or the recessive genome depending on the specific genomic combination. Transgressive up- and down-regulation were also common in the allopolyploids, both for genes equivalently or differentially expressed between the parents. Our data provide novel insights into the architecture of gene expression in the allopolyploid nucleus, raise questions regarding the responsible underlying mechanisms of genome dominance, and provide clues into the enigma of the evolutionary prevalence of allopolyploids.

Comments

This article is from BMC Biology 7 (2009): 18, doi:10.1186/1741-7007-7-18. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections