5-1964

Mfour crystallographic fourier summation program

Mads Ledet
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports

Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation
Ledet, Mads, "Mfour crystallographic fourier summation program" (1964). Ames Laboratory Technical Reports. 62.
http://lib.dr.iastate.edu/ameslab_isreports/62

This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
IOWA STATE UNIVERSITY

MFOUR
CRYSTALLOGRAPHIC FOURIER
SUMMATION PROGRAM

by
Mads Ledet

AMES LABORATORY

RESEARCH AND
DEVELOPMENT
REPORT

U.S.A.E.C.

PHYSICAL SCIENCES READING ROOM
Mathematics and Computers (UC-32)
TID-4500, April 1, 1964

UNITED STATES ATOMIC ENERGY COMMISSION

Research and Development Report

MFOUR
CRYSTALLOGRAPHIC FOURIER
SUMMATION PROGRAM

by

Mads Ledet

May, 1964

Ames Laboratory
at
Iowa State University of Science and Technology
F. H. Spedding, Director
Contract W-7405 eng-82
This report is distributed according to the category Mathematics and Computers (UC-32) as listed in TID-4500, April 1, 1964.

Legal Notice

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA. Price $ 1.25. Available from the

Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.
IS-876

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>5</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td></td>
</tr>
<tr>
<td>General Program Information</td>
<td>5</td>
</tr>
<tr>
<td>Efficiency of Program</td>
<td>6</td>
</tr>
<tr>
<td>OPERATING PROCEDURES</td>
<td></td>
</tr>
<tr>
<td>Data Input</td>
<td>7</td>
</tr>
<tr>
<td>Control Card Input</td>
<td>9</td>
</tr>
<tr>
<td>Typical Run</td>
<td>12</td>
</tr>
<tr>
<td>PROGRAM ANALYSIS GUIDE</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>General Program Flow Diagram</td>
<td>12</td>
</tr>
<tr>
<td>Initialization Phase Flow Diagrams</td>
<td>13</td>
</tr>
<tr>
<td>Control Card Phase Flow Diagrams</td>
<td>15</td>
</tr>
<tr>
<td>Initialization For-Correct-Phase Flow Diagrams</td>
<td>17</td>
</tr>
<tr>
<td>X-Summation Phase (#2) Flow Diagrams</td>
<td>22</td>
</tr>
<tr>
<td>Y-Summation Phase (#3) Flow Diagrams</td>
<td>25</td>
</tr>
<tr>
<td>Multiplication Routine Flow Diagrams</td>
<td>39</td>
</tr>
<tr>
<td>Edit Routine Flow Diagrams</td>
<td>41</td>
</tr>
<tr>
<td>Sine-Cosine Table</td>
<td>46</td>
</tr>
<tr>
<td>X-Summation Tables</td>
<td>46</td>
</tr>
<tr>
<td>Y-Summation Tables</td>
<td>49</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS | 49 |
1. ABSTRACT

This program was written as a substitute for MIFR1. There are four notable differences: i) no symmetry manipulations are performed; ii) no sorting is made with regard to sine-cosine codes; iii) summation is done completely in each direction before proceeding; iv) program is for the IBM 7074 (20K).

2. GENERAL INFORMATION

2A. General Program Information

The need for a program of this type became evident when Iowa State made the transition to the IBM 7074. Several good programs have been written in Fortran but they have all been very specific programs designed for a particular crystal. It is hoped that this program is not only efficient but also general enough to be useful.

Input will be accepted in either Autocoder ten (10) card image blocks or Fortran single "card image" records. There is no practical limit to the number of input records, i.e., up to 10^8 records can be accepted. However the upper limit on the size of the Miller indices is presently set at 50.

Output is in the approximate shape of a square. Four significant digits are retained with high order zeros deleted. The smallest interval available is $1/160$ of a cube with integral multiples up to and including $8/160$ with 20 points or less per layer in either direction.

The following summation scheme is used:

$$\rho(x, y, z) = \sum \left\{ \sum_{k} \left[\sum_{h} (F_{calc 0} \cos 2\pi hx + F_{calc 1} \sin 2\pi hx) \cos 2\pi ky + \sum_{h} (F_{calc 2} \sin 2\pi hx + F_{calc 3} \cos 2\pi hx) \sin 2\pi ky \right] \cos 2\pi l z + \sum_{h} (F_{calc 4} \cos 2\pi hx + F_{calc 5} \sin 2\pi hx) \sin 2\pi ky + \sum_{h} (F_{calc 6} \cos 2\pi hx \cos 2\pi ky) \sin 2\pi l z \right\}. $$

2B. Efficiency of Program

There are three things the user can do to obtain maximum efficiency in the running of this program.

1. Because it is physically impossible to use two tape drives on one channel simultaneously the tape option control card should specify the data input on the channel not used by the X summation output. The Y summation output should be on the same channel as the data input. With these conventions the tape input-output will never be on the same channel for either the X or the Y summations. The Z summation output tape is not used until all other tapes are finished so does not enter into the above considerations.
2. The output tapes are split at approximately $T/2$ where T is the total number of blocks on the data tape. This allows one output tape to rewind to be ready for input into the next phase while the second output tape is being written. Obviously "$T/2"$ should be such that both output tapes are of similar length. This can be accomplished by having "$T/2"$ be a number such that approximately 1/2 of the "$L"$ values are in the preceding input blocks, i.e., if L goes from 0 to 10 and the value of $L = 5$ refers to the blocks 800 to 882 then $800 \leq "T/2" \leq 882$. (Note the total number of blocks may be equal to or greater than 883 in this example.)

3. After each complete XYZ summation, the Fourier program will go back only as many summations as is necessary to obtain the next XYZ summation. This means that the origin control cards should be arranged so that the repetitive summations are eliminated.

For example the following arrangement is the most efficient possible with these cards:

1. $X = 0 \quad Y = 0 \quad Z = 0 \quad 1/4 \quad 1/4 \quad 1/8$
2. $X = 0 \quad Y = 0 \quad Z = 20 \quad 1/4 \quad 1/4 \quad 1/8$
3. $X = 0 \quad Y = 20 \quad Z = 0 \quad 1/4 \quad 1/4 \quad 1/8$
4. $X = 0 \quad Y = 20 \quad Z = 20 \quad 1/4 \quad 1/4 \quad 1/8$
5. $X = 20 \quad Y = 0 \quad Z = 0 \quad 1/4 \quad 1/4 \quad 1/8$
6. $X = 20 \quad Y = 0 \quad Z = 20 \quad 1/4 \quad 1/4 \quad 1/8$

With the preceding arrangement, the Fourier program will do only two X summations (1 and 5); three Y summations (1, 3 & 5); and six Z summations. In general, the Z summation should change each time with the X summation changing the least of all three.

3. OPERATING PROCEDURES

3A. Data Input

All reflections must be on a special tape that has been prepared beforehand.
There are two types of input:

1. AUTOCODER - data must be blocked ten (10) card images per block.

2. FORTRAN - data must be in single "card image" records. Everything beyond the eighth (8) word in each record will be ignored. The first eight (8) words must be identical to one (1) AUTOCODER card image.

The format of the input is as follows:

<table>
<thead>
<tr>
<th>WORD#</th>
<th>COLUMNS</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-10</td>
<td>H</td>
</tr>
<tr>
<td>2</td>
<td>11-20</td>
<td>K</td>
</tr>
<tr>
<td>3</td>
<td>21-30</td>
<td>L</td>
</tr>
<tr>
<td>4</td>
<td>31-40</td>
<td>Fcalc</td>
</tr>
<tr>
<td>5</td>
<td>41-50</td>
<td>F-code</td>
</tr>
<tr>
<td>6</td>
<td>51-60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>61-70</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>71-80</td>
<td></td>
</tr>
</tbody>
</table>

Note that all words except #4 must have a plus sign zone punch in the units position. Also note that all input is right justified in the respective words. Fcalc will be treated as an automatic decimal number and so the implied decimal must remain fixed for all Fcalc's.

Input must be arranged according to the following procedure:

1. L indices in increasing sequence.
2. K indices in increasing sequence under each L.
3. H indices in increasing sequence under each K.

The input tape must end with a tape mark (End of File) and tape marks may not be used at any other point. Fortran segment marks will be ignored.
The last Autocoder block should be padded with zero cards
+(0000000000) to obtain a complete block of ten cards.

Word #5 has a special meaning for the program and refers to the particular summation \(F_{\text{calc}} \) belongs to as follows:

<table>
<thead>
<tr>
<th>F. Code</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>cos</td>
<td>cos</td>
<td>cos</td>
</tr>
<tr>
<td>1</td>
<td>sin</td>
<td>cos</td>
<td>cos</td>
</tr>
<tr>
<td>2</td>
<td>sin</td>
<td>sin</td>
<td>cos</td>
</tr>
<tr>
<td>3</td>
<td>cos</td>
<td>sin</td>
<td>cos</td>
</tr>
<tr>
<td>4</td>
<td>cos</td>
<td>sin</td>
<td>sin</td>
</tr>
<tr>
<td>5</td>
<td>sin</td>
<td>sin</td>
<td>sin</td>
</tr>
<tr>
<td>6</td>
<td>cos</td>
<td>cos</td>
<td>sin</td>
</tr>
<tr>
<td>7</td>
<td>sin</td>
<td>cos</td>
<td>sin</td>
</tr>
</tbody>
</table>

3B. Control Card Input

The following control cards must be used in the given sequence. Only one control card of each type except #4 (Origin Control) may be present in one run.

#1. Type of input:

The program will accept both FORTRAN and AUTOCODER. This card specifies which type of data input to expect.

<table>
<thead>
<tr>
<th>1(a)</th>
<th>1(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>Columns</td>
</tr>
<tr>
<td>0-7</td>
<td>FOURIER</td>
</tr>
<tr>
<td>11-17</td>
<td>FORTRAN</td>
</tr>
<tr>
<td>18-80</td>
<td>blank</td>
</tr>
</tbody>
</table>
#2. Header label:

This information will be printed on every sheet of output.

Columns

0-7 FOURIER

11-80 Header information

#3. Tape options:

This card specifies which tapes are to be used for all phases of the program. The last entry refers to the length of the input tape and is usually near T/2 where T is the total number of input blocks. This entry is necessary and makes the program more efficient.

Columns

0-7 FOURIER

11-15 TAPES

21-22 1st data input

26-27 Alternate data input

31-32 Xsum output

36-37 Alternate Xsum output

41-42 Ysum output

46-47 Alternate Ysum output

51-52 Final output (23 is standard)

56-57 Alternate final output (23 is standard)

61-65 T/2 (approximately)
#4. Origin control:

This card determines the final output:

Columns

<table>
<thead>
<tr>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>FOURIER</td>
</tr>
<tr>
<td>11-16</td>
<td>ORIGIN</td>
</tr>
<tr>
<td>21</td>
<td>X</td>
</tr>
<tr>
<td>26</td>
<td>P</td>
</tr>
<tr>
<td>29-30</td>
<td>Number of X points (20)</td>
</tr>
<tr>
<td>31</td>
<td>Y</td>
</tr>
<tr>
<td>33-35</td>
<td>Origin for Y (Mult. of 1/160)</td>
</tr>
<tr>
<td>36</td>
<td>P</td>
</tr>
<tr>
<td>39-40</td>
<td>Number of Y points (20)</td>
</tr>
<tr>
<td>41</td>
<td>Z</td>
</tr>
<tr>
<td>43-45</td>
<td>Origin for Z (Mult. of 1/160)</td>
</tr>
<tr>
<td>46</td>
<td>P</td>
</tr>
<tr>
<td>49-50</td>
<td>Number of Z points (20)</td>
</tr>
<tr>
<td>51-54</td>
<td>MAXH</td>
</tr>
<tr>
<td>55-56</td>
<td>Value of largest of H, K, and L.</td>
</tr>
<tr>
<td>58-60</td>
<td>Length of X edge (1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1/1)</td>
</tr>
<tr>
<td>61-62</td>
<td>SF</td>
</tr>
<tr>
<td>63</td>
<td>+ positive power of 10</td>
</tr>
<tr>
<td></td>
<td>- negative power of 10</td>
</tr>
<tr>
<td>64</td>
<td>Power of 10</td>
</tr>
</tbody>
</table>
The scale factor (columns 63-64) should not be greater than 10^{-I} where I is the largest number of digits in any Fcalc. The scale factor is merely a shift left (SL3) or a shift right and round (SRR3) so that too large a shift to the left will cause high order digits to be lost.

3C. Typical Run

A typical run will have the following cards.

1. START ACCNT
2. Remarks to operator about data input tape
3. XZLOAD TAPE 14
4. FORN
5. Fourier program
6. FORF
7. AUTOCODER control card (1 only)
8. HEADER control card (1 only)
9. TAPES control card (1 only)
10. ORIGIN control cards (variable number)
11. WTM
12. END ACCNT

Item 11 must be present so that the Fourier program can recognize the end of the control card deck.

PROGRAM ANALYSIS GUIDE

4A. Introduction

The following analysis guide consists of flow charts and explanations. The guide is fairly complete and should serve to clear up any questions as to what can be done.

4B. General Program Flow Diagram

BLOCK #

G001 Initialize program control switches.

G002 If first pass go to block G003.
G003 Get one-time-only control cards and use these to set up program flow. These control cards are the first three read and are related to input and output controls.

G004 This includes the SINCOS routine and various other checks to determine amount of computation needed.

G005 Go to correct phase.

G006 This is the X summation phase.

G007 Get X sum input data. On EOF the output is finished and the switch for this phase is turned off.

G008 This is the Y summation phase.

G009 Get Y sum input. This input is the X sum output. On EOF a check is made to determine if there is only one input tape. Output is finished and the switch for this phase is turned off.

G010 This is the Z summation phase.

G011 Get Z sum input. See G009.

G012 This is the routine that computes and stores the results for each phase. This routine is modified every time a new phase is entered since the table size and make-up varies.

G013 Branch to correct phase.

G014 Z summation is finished. Edit output into correct form, output tables, and go back to start program again.

4C. Initialization Phase Flow Diagrams

BLOCK #

H001 This block initializes various electronic switches to control program flow. The switches are as follows:

a. XSW: Controls access to Phase 2 (XSUM).
b. YSW: Controls access to Phase 3 (YSUM).
c. ZSW: Controls access to Phase 4 (ZSUM).
d. CHNGTP: Controls splitting of Phase 2 output tapes to prevent waiting for Phase 3 input.
e. CHNGTPE: Does same for Phase 3 as CHNTP does for Phase 2.
f. T1FULL: Controls output from Table 1. Switch on signifies table not completely empty.
g. T2FULL: Same control for Table 2 as T1FULL.
h. T2: Controls which table will be written out in case last table empty (T1FULL or T2FULL off).
i. CARDEND: Signals end of Phase 2 input (data input tape).

H002 A branch switch for one time initialization. Two switches are turned off:

a. FORT: On signifies FORTRAN data input.
b. ZOPEN: Controls error messages output by preventing attempts to use final output before tape file is opened.

H003 Index word ZERO will be used throughout program for zeroing areas.

H004 The control card tape file (HEADLAB) is opened.

H005 A control card is obtained.

H006 A check is made to determine if this card is a control card. If this is a control card, a branch is made to Cl. Otherwise, go to H007.

H007 Is the final output tape file open so that error messages can be written?

H008 Yes, write error message.

H009 No, type message on console log.

4D. Control Card Phase Flow Diagrams

BLOCK #

C001 A block of three branch switches that are set as each control card is read.

C002 Expecting an ORIGIN control card to determine type of output from Phase 4.

C003

C004 Data input tape file is opened. Two files are available depending on type of input.
1st control card determines type of input. If input is FORTRAN the GET routines for data are modified to refer to the FORTRAN input file.

Modify GETs.

2nd control card determines output label. Columns 21-80 are moved without processing to the output label area (LABELAREA).

3rd control card specifies channel and unit number for all tapes except HEADLAB. A check is made to determine if Basetape and Alt-tape channels are the same, if not, a warning message is given on console log and the Alt-tape channel is ignored. If input is FORTRAN, the XIN file must be last DTF. Since five files are left to be initiated, the last pass must be modified for only one file.

XCHAN and YCHAN are BCB's for buffering of output. These are set for correct channels.

LCOUNT is an index register that counts the number of data input records to determine when to split Phase 2 output. This splitting eliminates rewind waiting time. Since AUTOCODER is blocked 10 records TPLNGTH must be multiplied by 10 to give number of records.

Open all files since channels and units are specified. Set ZOPEN switch on.

Scaling is accomplished by multiplying by \(10^w\) where \(w\) is \(\pm\) an integer. If SCALSGN is negative, the operation will be SRR3 while if SCALSGN is plus the operation will be SL3. If the power of 10 \((w)\) is zero, the scaling operation is bypassed by setting the bypass branch.

Initialization For-Correct-Phase Flow Diagrams

Accumulators are loaded with the parameters for Phase 2, 3 or 4 according to index register PASCNT1. SAMESNCOS is an electronic switch that controls the entrance to the SINCOS routine. If the new starting point and cube edge is same as for last summation SAMESNCOS is on.
If this is Phase 2, we are starting a new summation so a check must be made as to how many summations are equivalent to the last XYZ summations. This allows time to be saved by using each summation as many times as is possible before changing.

If SINCOS table needed is same as old table, do not re-compute.

If this is Phase 2 of 1st XYZ summation go directly to SINCOS routine because no table present.

Compare last XYZ summation to new XYZ summation.

Is last Phase 2 equal to new Phase 2.

Is last Phase 3 equal to new Phase 3.

Is last Phase 4 equal to new Phase 4.

If all three summations are the same, ignore this control card and print warning message.

Maximum number of points in any direction is 20.

If last phase used less than 20 points, the multiplication routine has been modified by a branch so restore routine.

Modify multiplication routine if number of points is less than 20 for this phase. Also modify ADD TO STORAGE (ASI) for this phase.

Go to correct phase.

Go to correct phase.

Go to correct phase.

Halt as phase switches are all off.

Only Phase 4 must be recomputed.

All three phases must be recomputed.

All but Phase 2 must be recomputed.

Write warning about number of points requested.

See number of points equal to 20.
4F. X-Summation Phase (#2) Flow Diagrams

BLOCK #

X001 Data input is brought into storage. The specific input file was determined in Block C006 and the GET was modified accordingly.

X002 The two index registers for zeroing tables are initiated. RECDNT is a branch switch that is set after half the records have been processed. LCOUNT counts the records as they are processed. Index register TX is loaded with an RDW identical to the one specifying the first DA for X summation except that the RDW is plus and ignores the last two locations which are used for information transfer between phases.

X003 ACC3 is loaded with Fcalc.

X004 A branch switch that is on if no scale factor is needed.

X005 Scaling is obtained by shifting left or right obtaining an equivalence of powers of 10.

X006 Index register INDX will refer to the SINCOS table entry equal to \(\sin 2\pi H X \) or \(\cos 2\pi H X \) where \(0 < i < XPTS \). Input is in the form of +00000000HH.

X007 A branch switch that is on if no output from a X summation table is waiting. This eliminates several time consuming checks if they are not needed. With average to large amounts of data the last table will be completely written on tape long before a new table is ready.

X008 If output is waiting is the output channel busy. If so, no attempt is made to write on the output tape. This allows the program to do a maximum number of calculations for each tape write.

X009 Electronic switch T1FULL is checked to see if Table 1 is being written out. If not, Table 2 must be full since output is waiting.

X010 Write out one record from Table 1.

X011 Have all 21 records been written on tape.

X012 Zero Table 1 and initialize for new summation for use when Table 2 is full.
If output is to be split at this time CHNGTP, an electronic switch, is on. CHNGTP is first turned on when LCOUNT (block X002) has counted half of the records on the data tape. This allows one output tape to rewind before it is needed for Phase 3.

Same for Table 2 as Block X010.

Same for Table 2 as Block X011.

Same for Table 2 as Block X012.

Same for Table 2 as Block X013. Output tape can be signaled for splitting from either table.

F-code is checked to determine two things:
 a. Should INDX refer to the sine or cosine table.
 b. Which entry in X sum table should TX refer to. See XBLD DA for more information.

After multiplication we want TX to refer to the first entry under the particular value of K with which we are working.

Force X sum output onto alternate tape. Also turn off ONEXTP to signify that there are two X sum output tapes. Branch back to continue the program.

This is the return from the multiplication routine. OLDK and OLDL are needed to save K and L during GET.

GET a new input card.

Restore K and L.

This is a branch switch that is off if T/2 records have not been read.

Count the input records.

T/2 records have been read. Turn on switch in Block X024. Set switch to split output at the next change in L.

If the new L is smaller do not accept this record since the block for the new L has already been written on tape.

If the new L is larger prepare to write out a block. Do not check K since it belongs in new table.
BLOCK #

X029 | If the new L is equal check the new K to see if it is smaller.
 | If so do not accept this record since it cannot be entered into table.

X030 | If the new K is larger, prepare to store the old K in the table directly below the four table entries it refers to.

X031 | The new K is equal. Restore TX to refer to the first entry for this K. This is necessary since the initialization in Block X018 is dependent on this procedure. Return to Block X003 to initialize for new Fcalc.

X032 | Store old K and old L in the table directly below the four entries for old K. An electronic switch BRBACK determines whether or not we write out this table. KSAME is a branch switch that is set off if the new K is larger than old K. This allows us to store the old K in the table.

X033 | Is BRBACK off? If so prepare to write out this table.

X034 | Store record marks to signal the end of each record in the table. There are as many records as there will be X points in the final plot.

X035 | If Table #1 is not empty, go to finish writing.

X036 | If Table #2 is not empty, go to finish writing.

X037 | If T2 is on, we know that Table #1 was written out last and we must now write out Table #2. This switch is necessary because many times the last table is empty and the table switch is off so we can not determine which is the new table.

X038 | T2 is off so go to start writing out Table #1.

X039 | We must now store entries in Table #2 so initialize TX for Table #2.

X040 | If data input tape is empty, we must not go back to get a new Fcalc. Instead, finish writing out old table and go to Y summation phase.

X041 | If the table is empty, go to set up for Y phase.

X042 | T2 is on so write out Table #2.

X043 | See block X040. We do not initialize TX since we can branch to beginning of routine and load it there.
See block X041.

Finish writing out all the records remaining in this table since we must use this table for the summation because Table #1 is full.

Zero table and set T2FULL off since table is empty.

Must we split the output tape here?

Same as block X045 except for Table #1.

Same as block X046 except for Table #1.

Same as block X047 except for Table #1.

If we have only one output tape ONEXTP is on so close the file to prevent rotation of tapes. Otherwise, rotate tapes and zero core. Also set XSW off since we are done with this phase.

4G. Y-Summation Phase (#3) Flow Diagrams

Initialize the two index registers used for zeroing the tables. Five asterisks are stored at the beginning of each table to signal the start of a new table when reading the input for the Z-sum. YLPX controls the input by branching to the correct routine for each of the four entries for each K. (See the DAs for more information.)

The first record is read into core. TX is not incremented since it already refers to the first table entry.

Acc 3 and INDX are loaded as for the X sum. Acc 3 will be loaded with four consecutive entries for each value of K that is loaded into INDX.

If Acc 3 is zero, do not process. For certain summations only one of the four entries will not be zero.

This is a branch switch that is off (NOP) if output is waiting. See block X007.

Is the output tape busy? See block X008.
Output is waiting - is it Table #1? See block X009.

Write out one record from Table #1.

Was this the last record in Table #1?

Zero table and initialize for new summation for use when Table #2 is full. Turn on the branch switch to bypass checks.

If output is to be split here CHNGTPE is on. CHNGTPE is triggered by the EOF of the first input tape.

Same for Table #2 as block Y008.

Same for Table #2 as block Y009.

Same for Table #2 as block Y010.

Same for Table #2 as block Y011. The output tape can be signaled from either table.

YLPX is decremented by 3 for each entry. After the fourth entry YLPX is re-initialized.

INDX is incremented to refer to the sine table or the cosine table.

Set up YLPX to begin with four new entries.

The next entry is 5 asterisks signaling the end of a X sum table.

Set up table for output. Put the L value for this table directly behind the 5 asterisks.

If next entry is a record mark we are at the end of a record but not the end of a table.

Next entry is data so load INDX with the new K and add 5 to YINA to refer to the first of four entries. Subtract 1 from TX to refer to correct output entry.

Add 1 to TX as new record must not be summed with last one.

Get input record.

See Block Y003.
BLOCK #

Y026 Set OUTDONEY off (NOP) because output is waiting.

Y027 OUTDONEY may have already been off - is Table #2 empty?

Y028 Is Table #1 empty?

Y029 Last output table is empty - if T2 is on Table #2 is the new table.

Y030 Write out one record from Table #1.

Y031 Initialize for a new summation in Table #2.

Y032 Write out one record from Table #2.

Y033 Initialize for a new summation in Table #1.

Y034 Table #1 is not empty. Write out one record.

Y035 Is Table #1 empty?

Y036 Table is empty; zero table and go directly to Block Y032 since Table #2 must be the new table.

Y037 See Block Y011.

Y038 Same for Table #2 as Block Y034.

Y039 Same for Table #2 as Block Y035.

Y040 Same for Table #2 as Block Y036.

Y041 See Block Y011.

Y042 FEOR will alternate the Y sum output tapes. Go back to BLX-1 to continue program.

4H. Z-Summation Phase (#4) Flow Diagrams

BLOCK #

Z001 Get input from Y summation output.

Z002 Pick up first word of record.

Z003 If first word is five asterisks the new L value is the next word.
SET WAITING
B TO YES

IS TABLE 2 FULL
YES
NO

IS TABLE 1 FULL
YES
NO

IS TABLE READY 2
YES
NO

...
BLOCK #

Z004 Load INDX with L and zero BLDCNT so that TX is loaded with RDW for first output record.

Z005 Load ACC3 with third word, which is first input. Also increment ZINA to refer to first valid input word. Turn off ZBLK as for first word we do not check to see if ACC3 = 0 so assume not. Next word must be multiplied by $\frac{2\pi}{160}$ to increment INDX for next word. Go to mult. routine.

Z006 This is a valid input word since only first record of each block has asterisks. Load TX to refer to next output record. Add one to BLDCNT so that TX will be loaded correctly next time.

Z007 Is input word zero? If so do not multiply; turn off branch to multiply routine.

Z008 Turn off switch that will allow branch to multiply routine.

Z009 Was last word multiplied by a sine value?

Z010 No, so this one must be. Set switch to go to Block Z011 for next word.

Z011 Yes, so subtract difference between table entries that refer to sine and cosine. Turn off switch so that next word does not go to this block.

Z012 If ACC3 = 0 switch is turned off in Block Z008.

Z013 Branch is turned on for next word. A branch is then made to ZLOOP which is entry point from multiply routine. ACC3 is loaded with new input word. Input index register is incremented.

Z014 If ACC3 = 0 do not multiply.

Z015 ACC3 is not zero - is it loaded with a record mark? If so go for new record as record mark signals end of record.

4I. Multiplication Routine Flow Diagrams

BLOCK #

M001 This block is reached from any one of three places, one each in all three summations. Since this routine is used for all three summations, it must be modified before each summation. This is done just prior to branching to the correct summation phase from the initialization phase.
For each of 21 values of, say, x the cosine-sine routine supplies MAHX+1 values of \(\cos \frac{2\pi h x}{160} \) and MAXH+1 values of \(\sin \frac{2\pi h x}{160} \).

Each one of the values corresponds to a value of h in increasing sequence from \(h = 0 \) to \(h = \text{MAXH} \). Then the multiplication routine only has to refer to the first value, i.e., \(h = 0 \) for every one of the 21 values of x and by loading INDX correctly the correct sine or cosine value will be obtained.

For each phase. TX is always loaded with an RDW referring to one of the summation records. As an example, consider the X summation.

Provisions have been made to accept a maximum of 50 values of H, K, or L. Then, since each value of K requires 5 words in a summation record, 250 words must be provided for every value of X. Therefore, the routine is modified so that every AS1 is 250 locations above the preceding one (starting with zero). By loading TX with the RDW for the first record in either table each AS1 refers to the first word of the Xth record where AS1 is the ith AS1.

If less than 20 points are required, the branch at the end of the routine (TT20A+1) is moved up to be directly below the last needed AS1.

4J. Edit Routine Flow Diagrams

BLOCK #

E001 XSTART, YSTART, and ZSTART are edited and entered into label.

E002 Label is written on tape.

E003 TSIZE2 is loaded with ZPTS as this is the number of tables that will be written out.

E004 TSIZE1 is set up with the end of the record in (2, 5) and the end of the edit area in (6, 9). If a BCX is given later, we can determine whether the full edit area should be printed. An RDW, TSIZEDC1, is created for blanking-out if needed.

E005 YPTS determines the number of records in one table to TSIZE is loaded accordingly.
START

01
MULT
x01+TX

02
ASI
x01+TX

03
MULT
x101+TX

04
ASI
x101+TX

CONINUE

05
MULT
x101+TX

06
ASI
x101+TX

07
GO TO PHASE
The beginning of each table (each page of output) is located 21 RDWs below the beginning of the last table. We will use this index register to pick up each RDW.

Do not increment indexing portions until needed.

Set indexing portion to be 20 greater than non-indexing since BIX has already incremented once.

Load WORKX for editing of correct record.

Use EDMOV to edit one record.

Index register mentioned in Block E004 is now checked to see if part of edit should be blanked-out.

Blank-out part not needed. It is filled with alpha blanks.

Output edited record.

Index register mentioned in Block E005 is now tested to see if this is the end of a table. WORKX1 cannot be used for this purpose since YPTS may not be exactly 20.

Increment WORKX1 so that BIX in Block E019 fails.

Increment Z coordinate as new table must be started.

If we are finished do not write out label.

Output label.

If one table is finished Block E015 has incremented WORKX1 so that the BIX fails.

If this is last table do not go back. Actually this BIX never fails since Block E017 fails first.

All of the core below the output area is zeroed and the last control card is moved to an area for comparison purposes. If only one output tape was used in the X and Y summations ONEXTP will be on so go to open both files. The files were closed instead of using FEOR so that the tape units would not be rotated.
START

EDIT FIRST TYPE, COORDINATE

OUTPUT LABEL

SET UP NUMBER OF TABLES

SET UP LENGTH OF ONE RECORD

INCREMENT WORK X1

NO

LOAD WORK X1 FOR ROW

YES

SET UP NUMBER OF RECORDS FOR TABLE

LOAD WORK X1

ROW 1

WORK X1

EDIT ONE RECORD

X

10

EDIT ONE RECORD

X

11

STANDARD LENGTH

X

NO

BLANK OUT PART NOT NEEDED

X

12

12.5

GO TO

CHART B2

BLOCK 13
4K. Sine-Cosine Table

See Fig. 1 for layout of the table. This table is generated for the first X summation and, thereafter, every time a summation needs a different table of values.

The values in the table are taken from a table consisting of 161 values each of the sine and cosine going from 0 to 2π in even increments. By calculating the length of the cosine table we need only add this value to INDX to obtain the correct sine. The cosine-sine routine calculates and stores this value in various instructions throughout the program.

Although all 21 points, i.e., X₀ to X₂₀', are not always needed, the tables are generated because of convenience and simplicity.

4L. X-Summation Tables

Only one table (Fig. 2) will be shown since both tables are identical.

Note that the value of L does not change in any one table although K changes for each block of four entries. Since L does not change in any one table whenever a new value of L is reached in the data input the table must be closed by writing record marks and the five asterisks. Then while the table is being written on tape a new table is being constructed in the other area available.

The records in one table are always of the same length and may contain many blank entries. This makes it imperative to check each Y sum input entry before multiplying.

Upon reaching an input record (Y sum) having five asterisks the program expects the next record to contain a new value of L.
<table>
<thead>
<tr>
<th>X VALUE</th>
<th>H VALUE</th>
<th>TABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0</td>
<td>0</td>
<td>$\cos \left(\frac{2\pi X_0}{160} \right)$</td>
</tr>
<tr>
<td>X_0</td>
<td>1</td>
<td>$\cos \left(\frac{2\pi X_0}{160} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_0</td>
<td>MAXH</td>
<td>$\cos \left(\frac{2\pi X_0}{160} \right)$</td>
</tr>
<tr>
<td>X_1</td>
<td>0</td>
<td>$\cos \left(\frac{2\pi X_1}{160} \right)$</td>
</tr>
<tr>
<td>X_1</td>
<td>1</td>
<td>$\cos \left(\frac{2\pi X_1}{160} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_{20}</td>
<td>0</td>
<td>$\cos \left(\frac{2\pi X_{20}}{160} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_{20}</td>
<td>MAXH</td>
<td>$\cos \left(\frac{2\pi X_{20}}{160} \right)$</td>
</tr>
<tr>
<td>X_0</td>
<td>0</td>
<td>$\sin \left(\frac{2\pi X_0}{160} \right)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_{20}</td>
<td>0</td>
<td>$\sin \left(\frac{2\pi X_{20}}{160} \right)$</td>
</tr>
<tr>
<td>X_{20}</td>
<td>MAXH</td>
<td>$\sin \left(\frac{2\pi X_{20}}{160} \right)$</td>
</tr>
</tbody>
</table>

Fig. 1
<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TABLE VALUE</th>
<th>X VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record #1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCC + CCC</td>
<td>(X_0)</td>
</tr>
<tr>
<td>2</td>
<td>SSC + CSC</td>
<td>(X_0)</td>
</tr>
<tr>
<td>3</td>
<td>SSS + CSS</td>
<td>(X_0)</td>
</tr>
<tr>
<td>4</td>
<td>SCS + CGS</td>
<td>(X_0)</td>
</tr>
<tr>
<td>5</td>
<td>(K_1 L_1)</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(n)</td>
<td>SCC + CCC</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(n+1)</td>
<td>SSC + CSC</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(n+2)</td>
<td>SSC + CSC</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(n+3)</td>
<td>SGS + CGS</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(n+4)</td>
<td>(K_{\text{max}} L_1)</td>
<td>(X_0)</td>
</tr>
<tr>
<td>(n+5)</td>
<td>RECORD MARK</td>
<td>(X_0)</td>
</tr>
<tr>
<td>Record #2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCC + CCC</td>
<td>(X_1)</td>
</tr>
<tr>
<td>2</td>
<td>SSC + CSC</td>
<td>(X_1)</td>
</tr>
<tr>
<td>3</td>
<td>SSS + CSS</td>
<td>(X_1)</td>
</tr>
<tr>
<td>4</td>
<td>SGS + CGS</td>
<td>(X_1)</td>
</tr>
<tr>
<td>5</td>
<td>(K_1 L_1)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>Record #21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCC + CCC</td>
<td>(X_{20})</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(n+4)</td>
<td>(K_{\text{max}} L_1)</td>
<td>(X_{20})</td>
</tr>
<tr>
<td>(n+5)</td>
<td>*****</td>
<td></td>
</tr>
<tr>
<td>(n+6)</td>
<td>RECORD MARK</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2
A maximum of 50 values of K can be entered into one record. This means each record is a maximum of 250 words plus 2 for the record mark and five asterisks.

4M. Y-Summation Tables

Only one table (Fig. 3) will be shown since both tables are identical.

Note that L remains fixed for every record in one table. A new value of L is signaled by the five asterisks in front of a record. At this time the table is written on tape and a new table is built using the values corresponding to the new L.

ACKNOWLEDGMENTS

I would like to thank D. R. Fitzwater for technical assistance, J. Jackobs for providing me with several data tapes for testing purposes, and C. Runge for his help in locating errors and making modifications.
<table>
<thead>
<tr>
<th>ENTRY</th>
<th>TABLE VALUE</th>
<th>X VALUE</th>
<th>Y VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SCC+CCC+SSC+CSC</td>
<td>X₀</td>
<td>Y₀</td>
</tr>
<tr>
<td>3</td>
<td>SSS+CSS+SCS+CCS</td>
<td>X₀</td>
<td>Y₀</td>
</tr>
<tr>
<td>4</td>
<td>SCC+CCC+SSC+CSC</td>
<td>X₁</td>
<td>Y₀</td>
</tr>
<tr>
<td>5</td>
<td>SSS+CSS+SCS+CCS</td>
<td>X₁</td>
<td>Y₀</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>RECORD MARK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record #21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCC+CCC+SSC+CSC</td>
<td>X₀</td>
<td>Y₂₀</td>
</tr>
<tr>
<td>2</td>
<td>SSS+CSS+SCS+CCS</td>
<td>X₀</td>
<td>Y₂₀</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SCC+CCC+SSC+CSC</td>
<td>X</td>
<td>Y₂₀</td>
</tr>
<tr>
<td>42</td>
<td>SSS+CSS+SCS+CCS</td>
<td>X₂₀</td>
<td>Y₂₀</td>
</tr>
<tr>
<td>43</td>
<td>RECORD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3