Molecular Characterization of the Non-biotin-containing Subunit of 3-Methylcrotonyl-CoA Carboxylase

Thumbnail Image
Date
2000-01-01
Authors
Ke, Jinshan
Song, Jianping
Achenbach, Sara
Nikolau, Basil
Wurtele, Eve
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nikolau, Basil
Emeritus Faculty
Person
Wurtele, Eve
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Biochemistry, Biophysics and Molecular Biology

The Department of Biochemistry, Biophysics, and Molecular Biology was founded to give students an understanding of life principles through the understanding of chemical and physical principles. Among these principles are frontiers of biotechnology such as metabolic networking, the structure of hormones and proteins, genomics, and the like.

History
The Department of Biochemistry and Biophysics was founded in 1959, and was administered by the College of Sciences and Humanities (later, College of Liberal Arts & Sciences). In 1979 it became co-administered by the Department of Agriculture (later, College of Agriculture and Life Sciences). In 1998 its name changed to the Department of Biochemistry, Biophysics, and Molecular Biology.

Dates of Existence
1959–present

Historical Names

  • Department of Biochemistry and Biophysics (1959–1998)

Related Units

Organizational Unit
Botany
The Botany Graduate Program offers work for the degrees Master of Science and Doctor of Philosophy with a graduate major in Botany, and minor work for students majoring in other departments or graduate programs. Within the Botany Graduate Major, one of the following areas of specialization may be designated: aquatic and wetland ecology, cytology, ecology, morphology, mycology, physiology and molecular biology, or systematics and evolution. Relevant graduate courses that may be counted toward completion of these degrees are offered by the Departments of EEOB and GDCB, and by other departments and programs. The specific requirements for each student’s course distribution and research activities are set by the Program of Study Committee established for each student individually, and must satisfy all requirements of the Graduate College (See Index). GRE (and if necessary, TOEFL) scores are required of all applicants; students are encouraged to contact faculty prior to application.
Journal Issue
Is Version Of
Versions
Series
Department
Biochemistry, Biophysics and Molecular BiologyBotany
Abstract

The biotin enzyme, 3-methylcrotonyl-CoA carboxylase (MCCase) (3-methylcrotonyl-CoA:carbon-dioxide ligase (ADP-forming), EC 6.4.1.4), catalyzes a pivotal reaction required for both leucine catabolism and isoprenoid metabolism. MCCase is a heteromeric enzyme composed of biotin-containing (MCC-A) and non-biotin-containing (MCC-B) subunits. Although the sequence of the MCC-A subunit was previously determined, the primary structure of the MCC-B subunit is unknown. Based upon sequences of biotin enzymes that use substrates structurally related to 3-methylcrotonyl-CoA, we isolated the MCC-B cDNA and gene ofArabidopsis. Antibodies directed against the bacterially produced recombinant protein encoded by the MCC-B cDNA react solely with the MCC-B subunit of the purified MCCase and inhibit MCCase activity. The primary structure of the MCC-B subunit shows the highest similarity to carboxyltransferase domains of biotin enzymes that use methyl-branched thiol esters as substrate or products. The single copy MCC-B gene of Arabidopsis is interrupted by nine introns. MCC-A and MCC-BmRNAs accumulate in all cell types and organs, with the highest accumulation occurring in rapidly growing and metabolically active tissues. In addition, these two mRNAs accumulate coordinately in an approximately equal molar ratio, and they each account for between 0.01 and 0.1 mol % of cellular mRNA. The sequence of theArabidopsis MCC-B gene has enabled the identification of animal paralogous MCC-B cDNAs and genes, which may have an impact on the molecular understanding of the lethal inherited metabolic disorder methylcrotonylglyciuria.

Comments

This research was originally published in The Journal of Biological Chemistry. McKean AL, Ke J, Song J, Che P, Achenbach S, Nikolau BJ, Wurtele ES. Molecular characterization of the non-biotin-containing subunit of 3-methylcrotonyl-CoA carboxylase. The Journal of Biological Chemistry. 2000; 275:5582-5590, doi: 10.1074/jbc.275.8.5582. © the American Society for Biochemistry and Molecular Biology

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections