Gossypium anapoides (Malvaceae), a New Species from Western Australia

James McD. Stewart
University of Arkansas - Main Campus

Lyn A. Craven
CSIRO Plant Industry

Curt L. Brubaker
CSIRO Plant Industry

Jonathan F. Wendel
Iowa State University, jfw@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/eeob_ag_pubs
Part of the [Botany Commons](http://lib.dr.iastate.edu/eeob_ag_pubs), and the [Ecology and Evolutionary Biology Commons](http://lib.dr.iastate.edu/eeob_ag_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/eeob_ag_pubs/70. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Gossypium anapoides (Malvaceae), a New Species from Western Australia

Author(s): James McD. Stewart; Lyn A. Craven; Curt Brubaker; Jonathan F. Wendel

Published By: Missouri Botanical Garden

DOI: http://dx.doi.org/10.3417/2007140

URL: http://www.bioone.org/doi/full/10.3417/2007140

BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
Gossypium anapoides (Malvaceae), a New Species from Western Australia

James McD. Stewart†
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701, U.S.A.

Lyn A. Craven†
Australian National Herbarium, Centre for Plant Biodiversity Research (CPBR), Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australia.

Curt Brubaker
Centre for Plant Biodiversity Research, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia. Current address: Bayer CropScience, 108 Pasir Panjang Road #05-12, Golden AgriPlaza, Singapore 1185353. Curt.Brubaker@bayer.com

Jonathan F. Wendel
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, U.S.A.

Author for correspondence: jfw@iastate.edu

ABSTRACT. Gossypium anapoides J. M. Stewart, Craven, Brubaker & Wendel (Malvaceae), a new species of Gossypium L. endemic to the north Kimberley region of Western Australia, is described. The species is erect, with multiple, unbranched stems arising from the crown of a woody lignotuber. This trait, along with the presence of an elaiosome on each seed and the results of molecular analyses, places it with the species of Gossypium sect. Grandicalyx (Fryxell) Fryxell and makes it phylogenetically sister to the geographically disjunct species G. cunninghamii Tod. The species is named for the unique raised venation on the adaxial leaf surface that imparts the appearance of an abaxial surface.

Key words: Australia, Gossypium, Gossypium sect. Grandicalyx, IUCN Red List, Malvaceae.

The monsoonal north Kimberley region of Australia is climatically distinct within the Australian continent, being characterized by wet and dry climatic cycles. During the wet cycle that usually begins in late November monsoonal rains are frequent, often occurring daily. However, when the rains cease, usually in March, little to no rain falls until the next wet season. As a result, the lush vegetation, which is rich in grasses that grow during the wet period, becomes dry and prone to burning. Consequently, all vegetation in the region either possesses adaptation to fire or grows in niches that escape fire (e.g., rock outcrops). This unique habitat hosts a distinctive and diverse flora that is high in endemics. Several taxa of note form a diverse and morphologically distinctive group of cotton relatives (Gossypium L. spp.) that are endemic to the Kimberley Plateau and nearby region.

The Gossypium species occurring in this region, all of which are included within subgenus Sturtia (R. Br.) Tod., section Grandicalyx (Fryxell) Fryxell, are clearly adapted to this climatic regime with a number of morphological elaborations unique to the genus: (1) an herbaceous perennial growth habit in which the stems grow from the crown of a woody lignotuber, (2) a capsule whose peduncle becomes recurved shortly after anthesis such that the capsule is pendent and upon opening drops the seeds to the ground, and (3) development of an elaiosome from the seed rachis so that ants disperse the seed to underground nests when they fall to the ground,

1 This paper is dedicated to James McD. “Mac” Stewart (1941–2012) and Lyn A. Craven (1945–2014), both of whom passed away prior to its completion. Both Mac and Lyn made major contributions to our understanding of Gossypium diversity and taxonomy.

where they may escape fire or possibly predation by birds. The stems of the plants most frequently die during the dry cycle and resprout from the crown of the lignotuber at the onset of the wet cycle or following a fire. In the absence of fire, the stems of some of the more robust species may survive the dry period and regrow from lateral buds.

Based on the short branch lengths obtained in molecular analyses (Seelanan et al., 1999), speciation in *Gossypium* sect. *Grandicalyx* appears to have been rapid. Evidence to date suggests two evolutionary lineages within the section. One lineage consists mostly of the prostrate to decumbent species, whereas the second lineage contains the more upright species (Seelanan et al., 1999; Liu et al., 2001).

During 1981–1985, explorations for germplasm related to cotton (*Gossypium hirsutum* L.) resulted in numerous collections that led to a revision of *Gossypium* sect. *Grandicalyx* and recognition of six new species (Fryxell et al., 1992). In 1993, Wendel, Bruhaker, Craven, and Fryxell undertook another expedition to areas of the Kimberley region of Western Australia not visited during previous expeditions. During this 1993 collecting expedition, a new *Gossypium* morphotype that was clearly attributable to section *Grandicalyx*, but that could not be ascribed to any of the known species, was collected from several populations.

The new morphotype possesses the diagnostic features of the *Gossypium* sect. *Grandicalyx* species: large, nearly naked seeds carrying a prominent elaiosome, white flowers with deep maroon petal spots, recurved fruit pedicels, and an underground elaiosome, white flowers with deep maroon petal spots, recurved fruit pedicels, and an underground elaiosome. Leaves very short petioles but a prominent petiolo brevi (usque ad 14 mm longo) distinguitur. The stems of the plants most frequently die during the dry cycle and resprout from the crown of the lignotuber at the onset of the wet cycle or following a fire. In the absence of fire, the stems of some of the more robust species may survive the dry period and regrow from lateral buds.

The possibility of shared ancestry between the lineage leading to modern *Gossypium anapoides* and *G. cunninghamii* is noteworthy. The latter species possesses the morphological features typical of the section, but it is unique in having sessile leaves and a cytoplasmic genome more similar to that of *G. sturtianum* J. H. Willis (subgenus *Sturtia*, section *Sturtia* (R. Br.) Tod.) than to the other species of section *Grandicalyx* (Wendel & Albert, 1992). The species described here has very short petioles but a cytoplasmic genome similar to that of the other section *Grandicalyx* species (Wendel & Albert, 1992; Seelanan et al., 1999).

Haec species a speciebus omnibus ceteris *Gossypii* sect. *Grandicalycis* (Fryxell) Fryxell foliorum venis majoribus adaxialiter abaxialiterque aequaliter prominentibus atque petiolo brevi (usque ad 14 mm longo) distinguitur.

Shrubs erect, multistemmed to 1.5 m, persisting in absence of fire and regenerating from a basal crown following fire or severe drought; stems appearing glabrous but with scattered, minute stellate hairs, denser around leaf attachments and on apical buds; black punctae (lysigenous cavities, or "gossypol glands") abundant, more apparent in younger stems than in older stems due to bark pigmentation. Leaves alternate and in vivo often ascending and partially encircling stem, leaf size typically decreasing in size toward apex of each stem, coriaceous; stipules 1–2 mm, caducous. Lamina ovate to orbicular, as broad long (< 7 cm) especially in proximal leaves; adaxial surface with abundant minute stellate hairs, abaxial surface and margin nearly glabrous; apex variously obtuse, apiculate, cuspidate, or acuminate with base mostly cuneate or sometimes rounded to attenuate; margin entire with an occasional minute stellate hair; black punctae numerous throughout; trichomes minute, pigmented, globose, claviform, or linear, common, more so adaxially, especially near base of lamina; nectary 8–12 mm, linear, positioned abaxially on...
midvein approximately 5 mm from base of leaf; major veins equally raised abaxially and adaxially; petioles ca. 10 mm (5–14 mm), 1/10 to 1/5 the length of lamina in older leaves; sepals basally connate into a cup, 4–7 mm in length, lobes acuminate to linear, equal to or slightly longer (4–8 mm) than cup, sinuses between lobes broadly rounded, trichomes numerous on the adaxial (inner) surface of lobes, black punctae

Figure 1. Sheet 1 of the holotype of *Gossypium anapoides* J. M. Stewart, Craven, Brubaker & Wendel from L. A. Craven, J. M. Stewart & J. F. Wendel 9192 (CANB).
numerous throughout and 2 to 3 times larger than the foliar punctae; petals pink to red where exposed in bud, white with basal burgundy spots when open, senescing to pink within 12 hours of anthesis, 45–65 mm, basal spots 10–15 mm, black punctae scattered throughout, stellate trichomes numerous, the longest on basal portions of petal margins; staminal column white, epunctate; filaments 1–1.5 mm; anthers occasionally with one to several black punctae, pollen cream-colored at anthesis and drying to yellow; style clavate, 15–22 mm, extending 6–8 mm beyond staminal column, with scattered black punctae; stigmata fused and decurrent on style; epicalyx lobes 10–15 mm, black punctae scattered on basal portions of petal margins; staminal column, with scattered black punctae; staminal column, with scattered black punctae; stigmatic heads numerous, the longest and refers to the leaves being of quite similar appearance on each surface; that is, they approach being isobilateral, being distinguishable only by a small nectary on the main vein of the abaxial side of the leaf. The leaves of all other species of section Grandicalyx are distinctly dorsiventral.

Etymology. The epithet is arbitrarily derived from the Greek combining forms *ana-* (back or bottom), *apo-* (front or top), and *eidos* (resemblance) and refers to the leaves being of quite similar appearance on each surface; that is, they approach being isobilateral, being distinguishable only by a small nectary on the main vein of the abaxial side of the leaf. The leaves of all other species of section Grandicalyx are distinctly dorsiventral.

Discussion. The lengths of the inflorescence branches are related to the growth cycle. The peduncle plus pedicel may exceed 50 mm early in the cycle, but branches developing later in the reproductive season are shorter, generally ranging from 25 to 45 mm. The articulation between the peduncle and pedicel is ca. half of their combined length and is subtended by a small bract (to 3 mm in length), which in late-developing buds is further reduced or may be wanting. The elaiosome arises as an elaboration of the rachis and is fleshy and white on fresh seed, becoming shriveled and brownish when dried.

Paratypes. AUSTRALIA. Western Australia: E of Cape Talbot, ca. 90 km N of Kalumburu, 13°46’S, 126°49’E, 24 May 1993, Craven, Stewart & Wendel 9193 (A, CANB, DNA, NA, PERTH); near Curran Point, ca. 80 km from Kalumburu, 13°54’S, 126°48’E, 24 May 1993, Craven, Stewart & Wendel 9188 (A, BRI, CANB, DNA, I, MEL, NA, NSW, P, PERTH); Craven, Stewart & Wendel 9191 (CANB, DNA, NA, PERTH); ca. 2 km S of Honeycomb Bay, ca. 35 km N of Kalumburu on track to Pago Pago, 14°07’02”S, 126°40’47”E, 5 June 1996, Mitchell 4432 (CANB, PERTH not seen); Honeycomb Beach, betw. Bluff Point & Tate Point, ca. 30 km N of Kalumburu, 28 July 1995, Fraser s.n. (CANB).

Acknowledgments. We gratefully acknowledge the funding from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), the National Geographic Society, and the U.S. Department of Agriculture, which enabled the collecting effort in the north Kimberley area of Western Australia during which this new species was discovered, and the U.S. National Science Foundation, which provided funding for the phylogenetic analysis.

Literature Cited

