3-23-2009

Soy Protein Isolate Extruded with High Moisture Retains High Nutritional Quality

Ruth S. MacDonald
Iowa State University, ruthmacd@iastate.edu

Joseph Pryzbyszewski
Iowa State University

Fu-Hung Hsieh
University of Missouri - Columbia

Follow this and additional works at: http://lib.dr.iastate.edu/fshn_ag_pubs

Part of the Food Chemistry Commons, Human and Clinical Nutrition Commons, Other Animal Sciences Commons, and the Other Plant Sciences Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/fshn_ag_pubs/61. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Soy Protein Isolate Extruded with High Moisture Retains High Nutritional Quality

Abstract
High-moisture extrusion of soy protein isolate generates a highly palatable meat substitute. No systematic evaluation of the nutritional quality of soy processed in this manner has been performed. This study compared the growth rate of male and female mice fed diets containing soy protein isolate without extrusion or with high-moisture extrusion. Other measures of overall growth and animal health were examined. Minor differences in the parameters were observed. Overall, the extruded soy protein was equally nutritious as the unextruded soy protein for the animals. Hence, high-moisture extrusion may be considered a useful method to generate high-quality protein foods. A longer term feeding trial may be recommended to further define the nutritional adequacy of this protein.

Keywords
Soy protein isolate, high-moisture extrusion, animal growth, bone mineral content, serum hormones

Disciplines
Food Chemistry | Food Science | Human and Clinical Nutrition | Other Animal Sciences | Other Plant Sciences

Comments
Reprinted with permission from Journal of Agricultural and Food Chemistry, 57(9): 3550-3555. doi:10.1021/jf803435x. Copyright 2009 American Chemical Society.
Soy Protein Isolate Extruded with High Moisture Retains High Nutritional Quality

RUTH S. MACDONALD,*† JOSEPH PRYZBYSZEWSKI,† AND FU-HUNG HSIEH§

†Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011 and §Biological Engineering, University of Missouri, Columbia, Missouri 65211

High-moisture extrusion of soy protein isolate generates a highly palatable meat substitute. No systematic evaluation of the nutritional quality of soy processed in this manner has been performed. This study compared the growth rate of male and female mice fed diets containing soy protein isolate without extrusion or with high-moisture extrusion. Other measures of overall growth and animal health were examined. Minor differences in the parameters were observed. Overall, the extruded soy protein was equally nutritious as the unextruded soy protein for the animals. Hence, high-moisture extrusion may be considered a useful method to generate high-quality protein foods. A longer term feeding trial may be recommended to further define the nutritional adequacy of this protein.

KEYWORDS: Soy protein isolate; high-moisture extrusion; animal growth; bone mineral content; serum hormones

INTRODUCTION

Proteins are an essential component of the human diet, and high-quality protein is required for adequate growth and health (1). Meat in the form of animal flesh or fish is the most common source of high-protein food for many people. However, the high cost of meat may prohibit its affordability in some parts of the world (2). In addition, there are people who, for health or religious reasons, choose to not eat meat. Although soy protein is an excellent source of high-quality protein and is readily supplied in a nutritional form, such as powders in health foods stores, it is often unacceptable because of taste and texture. Advances have been made in improving the taste characteristics of soy protein through plant breeding (3) and processing technology (4). Soy protein has characteristics that allow it to be processed through extrusion to alter the texture. A highly palatable soy protein-based food, such as a fibrous meat analogue from a high-moisture twin-screw extrusion process, would be much more acceptable to most consumers (5).

In the manufacture of protein meat analogues, most proteins must be made insoluble during extrusion cooking and given structural integrity and viscoelastic properties similar to those of meat. It has long been assumed that the protein is insoluble and aggregated into a macroscopic structure due to molecular changes in the protein fraction (6). These changes are complex, involving alteration of both covalent and non-covalent interactions (5, 7). Liu and Hsieh (8) concluded recently that disulfide bonding plays a more important role than non-covalent interactions in forming not only the rigid structure but also the fibrous texture of soy protein meat analogue.

Alteration of disulfide and non-covalent interactions in the meat analogue formation during extrusion cooking may lead to changes in the nutritional value of final products (9). There have been many studies conducted to monitor such changes in extruded foods. Yet, almost all studies regarding the effects of the extrusion process on nutritional values of soy protein were carried out under low- to moderate-moisture extrusion conditions that cause significant reduction in protein digestibility due to decreased bioavailability of lysine resulting from the Maillard reaction (10, 11). Under high-moisture extrusion conditions, these changes would be expected to be different from traditional extrusion methods because extrusion at higher moisture would reduce viscous dissipation, which lowers the extrusion temperature. The texture and chemical and sensory characteristics, but not nutritional value, of a soy meat protein analogue extruded at high moisture have previously been reported (5, 7). The objectives of this study were to evaluate the nutritional value of a meat analogue derived from high-moisture extrusion. The study involved comparison of overall growth, circulating indicators of muscle and bone growth, organ weights, intestinal tract measures, and bone strength and composition in both male and female mice fed the experimental diets for 90 days.

MATERIALS AND METHODS

Soy Protein Extrusion. The soy protein isolate (Profam 974) was obtained from Archer Daniels Midland Co. (Decatur, IL), and unmodified wheat starch (Midsol 50) was from MGP Ingredients (Atchison, KS). The ingredients were blended in a 9:1 ratio using an 18.9 L Hobart mixer (model A-200-F, Hobart Corp., Troy, OH) for 10 min. This blend was extruded using an APV Baker MPF 50/25 twin-screw extruder (APV Baker Inc.,
Grand Rapids, MI) with a cooling die attached at the end of the extruder. The dimensions of the cooling die were 30 × 10 × 300 mm (W × H × L), and refrigerated cold water (4 °C) was used as the cooling medium for the die. The screw profile (from feeder to die) used was as follows: 250 mm twin-lead screws, 25 mm 90° paddles, 75 mm single-lead screws, 50 mm 30° reverse kneading pitch, 100 mm single-lead screws, 50 mm 30° forward kneading pitch, 100 mm single-lead screws, 50 mm 30° forward kneading pitch, and 75 mm single-lead screws. The feed rate was fixed at 6.8 kg/h, and the screw speed was 150 rpm. Water was injected 0.108 m downstream from the center of the feed port to the extruder and adjusted to give a feed moisture content of 60% (wt basis). The temperature profile in the extruder from the first zone to the fourth zone preceding the cooking temperature was 26.6, 60.0, 107.2, and 129.4 °C. The last two zones were maintained at 160 °C. These extrusion conditions were selected because the resulting meat analogue was more fibrous and had a more orderly directional structure than that extruded at higher moisture (65 or 70%) or lower temperature (137.8 and 148.9 °C) reported previously ([7, 7]). Furthermore, 60% feed moisture and 160 °C represent severe high-moisture extrusion conditions, and therefore if changes in nutritional quality were not observed under these conditions, it would be expected that less severe treatments would also not have a negative effect. Extruded products were collected and stored in airtight plastic containers without dehydration in a walk-in freezer at −18 °C. Once frozen, the products were freeze-dried using a laboratory freeze-dryer (LyphLock 12, Labconco Grand Rapids, MI) with a cooling die attached at the end of the extruder. The dimensions of the cooling die were 30 × 10 × 300 mm (W × H × L), and refrigerated cold water (4 °C) was used as the cooling medium for the die. The screw profile (from feeder to die) used was as follows: 250 mm twin-lead screws, 25 mm 90° paddles, 75 mm single-lead screws, 50 mm 30° reverse kneading pitch, 100 mm single-lead screws, 50 mm 30° forward kneading pitch, 100 mm single-lead screws, 50 mm 30° forward kneading pitch, and 75 mm single-lead screws. The feed rate was fixed at 6.8 kg/h, and the screw speed was 150 rpm. Water was injected 0.108 m downstream from the center of the feed port to the extruder and adjusted to give a feed moisture content of 60% (wt basis). The temperature profile in the extruder from the first zone to the fourth zone preceding the cooking temperature was 26.6, 60.0, 107.2, and 129.4 °C. The last two zones were maintained at 160 °C. These extrusion conditions were selected because the resulting meat analogue was more fibrous and had a more orderly directional structure than that extruded at higher moisture (65 or 70%) or lower temperature (137.8 and 148.9 °C) reported previously ([7, 7]). Furthermore, 60% feed moisture and 160 °C represent severe high-moisture extrusion conditions, and therefore if changes in nutritional quality were not observed under these conditions, it would be expected that less severe treatments would also not have a negative effect. Extruded products were collected and stored in airtight plastic containers without dehydration in a walk-in freezer at −18 °C. Once frozen, the products were freeze-dried using a laboratory freeze-dryer (LyphLock 12, Labconco Freeze-Dry System, Kansas City, MO). The resulting powdered protein was used for the animal feeding trial.

Isoflavone Extraction and Analysis. The extraction and determination of isoflavones in the protein samples were made according to the procedure of Klump et al. ([2]). In brief, test samples were extracted first at 65 °C for 2 h with methanol/water (80:20). Extracts were then saponified for 15 min at room temperature (23 °C) with dilute (0.13 M) sodium hydroxide solution, filtered, centrifuged at 7000 g, and analyzed in triplicate by reversed-phase liquid chromatography with UV detection at 260 nm. All chemical standards including diadzin, diadzein, genistein, and genistin were ordered from Fisher Scientific (Minneapolis, MN), and Linco Research Inc. (St. Charles, MO), respectively. Samples were analyzed in duplicate on a single 96-well plate containing internal standards and controls according to the manufacturer’s instruction.

Intestine and Organ Preparation. Colon and small intestine were cleaned of adhering fat and flushed with cold phosphate-buffered saline. The tissues were weighed, then flushed with 10% neutral-buffered formalin, and placed in a glass beaker containing formalin for fixation. After 30 min, a 0.7 cm long midsection of the colon and small intestine were cut with a scalpel and placed into a tissue cassette, which was incubated in formalin for 2 h, and then transferred into 95% ethanol until they were embedded in paraffin on end to obtain ring-shaped slices. Paraaffin embedding and section preparation were done by the ISU Veterinary Medical Clinical Pathology Department. The following organs were dissected and weighed: heart, lung, liver, kidney, spleen, retroperitoneal fat pads, abdominal fat and reproductive fat pads, gastrocnemius muscle, triceps muscle, reproductive tract, and pancreas.

Bone Preparation. At termination, the hind quarters of each mouse were removed and frozen. The femurs were collected after removal of adhering skin and muscle. Bones were prepared and injected to breaking strength analysis as defined by Yannicelli and Medieros ([14]). Muscle and soft tissue were cleaned from the right femur, and the width and the length (including trochanter) were measured. Breaking strength was determined at room temperature using a TA-XT2i texture analyzer (Texture Technologies Corp., Algonquin, IL) with a Warner-Bratzler shear. Each femur was placed on two lower supports (10 mm apart), and a 0.5 N force was applied at the mid-diaphysis on the anterior surface (to measure compression force) at a test speed of 0.4 mm/s over a distance of 1.2 mm. The point of rapid decrease in force (measured in newtons, N) was used as the point of fracture force from force–strain curves using instrument software. After testing for breaking, bones were dried in an oven and then placed in a high-temperature oven to remove organic materials. The remaining ash was weighed and used to estimate the total mineral content per bone ([15]). Mineral content is expressed as the ratio of weight of the residual ash to total bone weight.

Statistical Analysis. The data were analyzed with SAS using two-way ANOVA to determine effects of gender, diet, and the interaction of gender × diet. One-way ANOVA was used to evaluate effects of diet within each gender.

RESULTS

As expected, male mice grew at a faster rate than female mice (Figure 1; P < 0.006). Within gender, the ESP diet provided...
similar rates of growth as the CSP diet. In males, mice fed the ESP diet began to show a slight decrease in rate of gain starting at 35 days compared to the CSP-fed mice; however, this did not reach statistical significance. When combined across gender (data not shown), the growth rate of mice fed the diet containing the ESP was not statistically different from that of mice fed the CSP. Food consumption was also similar within gender for the ESP and CSP diets (Figure 2). Overall, females had a tendency to consume less of the ESP than the CSP diet, but this reached statistical significance only on days 7 and 10. For the males, the food consumption was similar for both diets throughout the study.

Twelve organs were dissected and weighed and expressed as a percent of body weight (Figure 3). For 11 of these, no effect of diet was observed in either gender. In females only, liver weight was significantly less in mice fed the ESP compared to the CSP diet.

The histological analysis of the colon and small intestine revealed no differences due to dietary protein source (data not shown). The number and height of colon crypts were similar in the mice fed the two proteins. All sections examined appeared normal with no obvious pathology.

Femur length and width were found to be unaffected by the dietary treatments in either gender (Table 2). In females, breaking strength was significantly reduced in mice fed the ESP compared to the CSP diet. Males did not show this effect. No differences in mineral concentration were observed in either gender.

Diet had no effect on growth hormone, IGF-I, insulin, or glucose/insulin ratio in either the male or female mice (Table 3). Growth hormone levels were significantly higher in female than male mice. In male mice, cortisol levels were significantly higher when fed the ESP compared to the CSP diet. This response was not observed in female mice, although there was a nonsignificant trend for a higher mean in females fed the ESP compared to the CSP diet. Hematocrit concentration was slightly lower in males fed ESP compared to CSP, but this effect was not present in females.

DISCUSSION AND CONCLUSIONS

To test our hypothesis that a high-moisture extruded soy protein was nutritionally equivalent to an unextruded soy protein, we used the rapidly growing mouse model. The parameters were selected to provide an overall view of the nutritional quality of the soy protein and to determine if physiological regulators of growth and metabolism were affected. The experimental diets were well tolerated by both male and female mice and supported growth and development similarly. No pathological effects due to diet were observed during the 90 day feeding trial. The protein quality of soy has been found to be similar to that of cow’s milk and egg white, which are the standards for protein quality (16). The extruded soy protein in our study provided growth rates in the male and female mice similar to those provided by the nonextruded protein, which suggests no loss of protein quality occurred during the processing procedure. In some cases, the digestibility of extruded soy protein has been found to be higher than for nonextruded protein (17). In our study, we did not directly determine digestibility; however, the similar rate of growth suggests digestibility was not reduced by the extrusion process. Using a corn–soy flour mixture, Baskaran and Bhattacharaya (18) reported an increase in food intake and body weight gain in rats fed diets containing an extruded compared to a nonextruded mixture. No difference in protein efficiency ratio was found for the diets; therefore, the enhanced growth was likely a consequence of increased food intake due to greater palatability of the diet.

Bone breaking strength in females fed the ESP diet was lower compared to females fed the CSP diet. None of the other bone parameters were different, including bone length, width, and mineral content; hence, this difference in breaking strength may not be of physiological significance. Comparison of the data showed that breaking strength of males on both diets was similar to that of females fed the ESP; hence, the results may be due to a slightly higher breaking strength in females fed the CSP diet. Given that the breaking strength of females fed the ESP was similar to that of the males, this suggests the ESP diet did not negatively affect bone strength in the females. However, it may be of value to determine effects of the ESP diet on bone strength over a longer time. In other studies, soy protein consumption has been reported to improve bone strength and mineralization, when compared to other dietary protein sources. Female rats fed a diet...
containing soy protein isolate had higher bone mineral density (BMD) than mice fed a casein-based diet (19). Because estrogens play a role in bone maintenance, isoflavones in soy may affect bone response to soy diets. Chen et al. (19) observed the response to SPI and estrogens to be bone specific in that ovariectomized rats fed SPI and treated with estrogen had higher tibial bone BMD, but trabecular BMD was lower, compared to casein-fed mice with estrogen treatment. In our study, the isoflavone concentrations of the two diets were similar upon chemical analysis. Daidzin, genistin, daidzein,
and genistein in concentrations in mice fed experimental diets.

Table 3. Serum Hormone Concentrations in Mice Fed Experimental Diets

<table>
<thead>
<tr>
<th></th>
<th>Cortisol (ng/mL)</th>
<th>Growth Hormone (ng/mL)</th>
<th>IGF-1 (ng/mL)</th>
<th>Insulin (ng/mL)</th>
<th>Glucose/Insulin Ratio</th>
<th>Hematocrit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSP</td>
<td>22.5 ± 3.1</td>
<td>5.0 ± 2.0</td>
<td>454.8 ± 47.1</td>
<td>0.28 ± 0.06</td>
<td>7.7 ± 1.0</td>
<td>43.6 ± 0.5</td>
</tr>
<tr>
<td>ESP</td>
<td>43.3 ± 6.0</td>
<td>8.8 ± 3.1</td>
<td>489.3 ± 34.4</td>
<td>0.36 ± 0.07</td>
<td>6.4 ± 0.7</td>
<td>41.9 ± 0.8</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSP</td>
<td>68.6 ± 9.9</td>
<td>32.5 ± 8.1</td>
<td>421.1 ± 41.1</td>
<td>0.29 ± 0.04</td>
<td>4.2 ± 0.9</td>
<td>41.4 ± 1.4</td>
</tr>
<tr>
<td>ESP</td>
<td>79.3 ± 17.9</td>
<td>27.0 ± 7.7</td>
<td>441.7 ± 56.2</td>
<td>0.28 ± 0.04</td>
<td>6.2 ± 0.5</td>
<td>43.7 ± 0.8</td>
</tr>
</tbody>
</table>

- Values are mean ± standard error, n = 10 per group. By gender, values within a column with different letters are significantly different as determined by ANOVA (P < 0.01).

Abbreviations Used

- CSP, commercial soy protein; ESP, extruded soy protein; BMD, bone mineral density.

Literature Cited

(13) Reeves, P. Comparison of the AIN-93 diets as improvements to the AIN-76A diet. *J. Nutr.* 1997, 127, 838S–841S.

Received for Review November 3, 2008. Accepted February 25, 2009. Revised manuscript received February 6, 2009. This project was funded by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, Grant 2005-35503-15401.