Influence of dietary phytochemicals and microbiota on colon cancer risk.

Ruth S. MacDonald
Iowa State University, ruthmacd@iastate.edu

Kelly Wagner
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/fshn_ag_pubs
Part of the Food Science Commons, Human and Clinical Nutrition Commons, and the Oncology Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/fshn_ag_pubs/75. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Influence of Dietary Phytochemicals and Microbiota on Colon Cancer Risk

Ruth S. MacDonald* and Kelly Wagner

Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, United States

ABSTRACT: Colon cancer is the third most commonly diagnosed type of cancer in the United States. Lifestyle and dietary patterns influence colon cancer risk both positively and negatively. Among the dietary factors, several plant-derived compounds have been found to afford colon cancer protection. These compounds potentially influence all aspects of colonic cellular regulation and develop complex interrelationships with the colonic microbiome. Increasing understanding of the role of microorganisms in determining the colonic environment has led to awareness of this important interrelationship among dietary factors and the microbial population. Plant-derived polyphenols are active mediators of cellular events, target key carcinogenic pathways, and modulate colonic microbial populations. In turn, the colonic microorganisms metabolize dietary compounds and mediate cellular events. In addition, the role of estrogen receptors in colon cancer and the importance of dietary components that mediate estrogen receptor-β are increasingly being discovered. Hence, dietary bioactive compounds and the intestinal microbiota create a complex milieu that directly affects the carcinogenic events of the colon. These relationships must be carefully characterized in future research to provide dietary recommendations that will reduce colon cancer risk.

KEYWORDS: diet, colon cancer, polyphenols, estrogen receptor, bioactive components

INTRODUCTION

Colon cancer remains the third most commonly diagnosed type of cancer in the United States, with lung topping the list and either breast in women or prostate in men, second (NCI statistics, www.seer.cancer.gov). For 2010, approximately 142,570 men and women were diagnosed with colon cancer, and about a third will die from the disease, therefore making this an important health problem. The lifetime risk of developing colon cancer is around 5% and the average age at diagnosis is 70. Because of the later age of onset of colon cancer, and the direct interaction of colonic cells with dietary components, cancer of the colon is highly responsive to lifestyle and environmental factors, especially diet. In an extensive review of the epidemiological evidence through 2007, it was concluded that there was probable evidence that foods containing folate, selenium, or vitamin D were protective against colorectal cancers in humans. Lifestyle factors have been found to a moderate extent influence colon cancer risk, including low physical activity and abdominal fatness. More controversial is the link between intake of red meat and colon cancer. Large meta-analyses have found both increased or no increased risk associated with red meat consumption.

The positive link between diet and colon cancer was first recognized over four decades ago when it was observed that consumption of high amounts of fiber by African populations was associated with low incidence of colon cancer. Over the subsequent years, diets high in dietary fiber and whole grains have been consistently linked with reduced colon cancer risk. More recently, protective dietary associations with high frequency of consumption of fruits and vegetables, green tea, and soy have also been linked to reduced colon cancer risk. Because these foods are rich sources of bioactive phytochemicals, there is active research to identify these compounds and describe their function in the colon. A partial list of the most well-studied phytochemicals associated with reducing colon cancer and proposed mechanisms of action for dietary compounds is shown in Table 1.

Table 1. Potential Food Components and Mechanisms for Reducing Colon Cancer Risk

<table>
<thead>
<tr>
<th>Potential Cancer Protective Dietary Bioactive Compounds</th>
<th>Potential Anticarcinogenic Mechanisms for Bioactive Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>curcumin</td>
<td>cell growth arrest</td>
</tr>
<tr>
<td>epigallocatechin gallate</td>
<td>induction of apoptosis</td>
</tr>
<tr>
<td>resveratrol</td>
<td>inhibition of COX-2</td>
</tr>
<tr>
<td>quercetin</td>
<td>regulation of inflammation</td>
</tr>
<tr>
<td>genistein</td>
<td>modification of microbial population</td>
</tr>
<tr>
<td>sulforaphane</td>
<td>signaling pathway regulation (e.g., Wnt)</td>
</tr>
<tr>
<td>lignans</td>
<td>epigenetic changes</td>
</tr>
<tr>
<td></td>
<td>estrogen receptor</td>
</tr>
</tbody>
</table>

Received: October 17, 2011
Accepted: May 25, 2012
Published: May 25, 2012
COLON CANCER ETIOLOGY

The etiology of colon cancer has been well studied, and genetic mutations have been identified. Approximately 15–30% of colon cancer occurrence is associated with a hereditary component. Among these, familial adenomatous polyposis coli (FAP) is rare, but carriers have an almost 100% risk of adenocarcinoma. Hereditary nonpolyposis colorectal cancer (HNPCC) associated with mutation to DNA mismatch repair genes also correlates with high risk of cancer. Despite these known genetic factors, the majority of colon cancer cases are considered to be sporadic and associated with lifestyle or environmental factors.

Specific molecular events associated with the progression of both hereditary and sporadic forms of colon cancer have been reviewed previously; therefore, a full description is beyond the scope of this review. Briefly, among the first changes are in the adenomatous polyposis coli (APC) gene, which result in dysregulation of the Wnt pathway. In the intestine, the Wnt pathway is centrally involved in regulatory aspects of cellular proliferation and organization. The APC protein directly modulates the transcription factor β-catenin such that when APC is lost or truncated, β-catenin translocates to the nucleus and up-regulates transcription of Wnt target genes. Experimentally induced stabilization of Wnt signaling correlates with dysplasia, cellular overgrowth, and loss of structure. It has been documented that abnormal cellular proliferation within early cancer lesions, known as aberrant crypt foci (ACF), is associated with Wnt up-regulation. Subsequent mutations within the intestine ultimately lead to aneuploidy, methylation of CpG islands, cyclooxygenase-2 (COX-2) activation, and microsatellite instability. Additionally, tumor growth is promoted by up-regulated angiogenesis associated with dysregulation of the Wnt pathway, vascular endothelial growth factor (VEGF), COX-2, and a wide range of other signaling systems. As a result of the loss of cellular regulation, adenomatous polyps, or adenoma, arise from the epithelium. Adenomas are present in about 25% of people over the age of 50 and 50% of those over age 70. Polypectomy, which can be done during screening colonoscopies, reduces the risk of cancer. On the basis of the known pathways associated with colon cancer etiology, finding dietary components that alter the Wnt/β-catenin pathway, COX-2, methylation, and microsatellite instability would be the most beneficial for cancer prevention. Also, dietary factors that inhibit cell proliferation and angiogenesis and/or induce apoptosis would also be beneficial.

INFLAMMATORY BOWEL DISEASE AND COLON CANCER

Ullman et al. described the scenario of how inflammation in the colon can lead to cancer. Following an environmental trigger, a host of events ensue, which create an inflammatory situation in the colonic environment. Enhanced production of reactive oxygen and nitrogen species, presumably from the innate and adaptive immune systems, may lead to damage to DNA, RNA, proteins, and lipids. An important mediator in this process may be TNF-α, which is released from activated macrophages and T cells and binds to the TNF-receptor. TNF-α has been associated with promotion of DNA damage, inducing angiogenesis, and induction of COX-2. TNF-α activates NF-κB, a transcription factor, and NF-κB can also be activated by bacteria in the colon, presumably via the Toll-like receptors. Activation of NF-κB in immune cells leads to increase release of cytokines including IL-6, which, through binding to IL-6-receptors, initiates signaling pathways leading to inflammation. The important role of inflammation in colon cancer development has been documented from both human studies and animal models.

Recently, the number of Americans who have been diagnosed with inflammatory bowel disease (IBD), which is the umbrella term for colitis and Crohn’s disease, has increased significantly. Patients with IBD have an elevated risk of colon cancer, which is compounded by the length of time with the disease and its severity. In animal studies, inflamed mucosal cells are more likely to progress to cancer. The mechanisms through which inflammation in the colon progresses to cancer are not fully understood; however, it has been proposed that hypermethylation of tumor suppressors and DNA mismatch repair genes are likely early events. Several years ago it was clearly shown that anti-inflammatory drugs such as aspirin and those that inhibit COX-2 were protective against colon cancer in humans. Hence, a major focus of research is to understand these inflammatory pathways and to find dietary components that protect and reduce inflammation.

COLONIC MICROBIOTA AND COLON CANCER

Notable in the development of colon cancer is the intimate involvement of colonic microbiota. The intestinal tract is the largest source of microorganisms in the body. The entire intestinal tract harbors microorganisms, but the population density occurs along a gradient, with the stomach containing 10^2; the jejunum, 10^6; the terminal ileum, 10^9; and the colon, around 10^11 microorganisms per gram of intestinal content. It has been estimated that humans have over 1000 different bacterial species in the gastrointestinal (GI) tract, most of which have never been fully characterized. A phylogenetic analysis of microorganisms from 107 samples of human colon found that the majority of bacterial sequences were associated with the same four phyla of bacteria: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. This is consistent among patients with IBD and controls. The relative ratios of these bacteria phyla differ between the colon and small intestine. Studies have found differences among patients with and without colorectal cancer in the population of bacteria phyla. Some phyla are increased, whereas others are decreased. Exactly how these changes affect the cancer process, however, is not clear.

The microflora of the colon contributes significantly to the colonic environment. Microorganisms produce, digest, and metabolize colonic compounds, which influence their bioavailability; they compete for nutrients with each other; they communicate with the colonic mucosa to sense changes in the colonic environment and mediate the immune system; and they secrete a host of enzymes and other compounds. For example, colonic microorganisms may provide the β-glucuronidase enzymes that generate carcinogenic metabolites from compounds consumed in the diet. It has been reported that patients with colorectal cancer (CRC) have higher β-glucuronidase activity in fecal samples compared to noncancer patients. In several animal models of IBD, specific bacteria have been found to be essential for developing inflammation and cancer, and in a sterile colon neither of these pathologies develops. Thus, colonic microorganisms clearly are involved in the carcinogenic process. They provide protective roles...
including creating a barrier to reduce interaction of toxins with the mucosal layer and induce IgA and IL10, which act as anti-inflammatory agents. On the negative side, however, some intestinal microbes may act to promote cancer by inducing pro-inflammatory agents such as reactive oxygen species (ROS), IL-6, IL-17, and TNF-α.

DIETARY BIOACTIVES AND COLONIC MICROBIOTA

The interaction between diet and the intestinal microflora directly affects the risk of colon cancer (Figure 1). For example, when a high-fat diet is consumed, more bile acids are present in the colon, which can be acted upon by 7α-hydroxylating bacteria to produce secondary bile acids, such as deoxycholic acid and lithocholic acid, which are known to be mutagenic. A high-meat diet, which provides sulfur amino acids, may contribute to promoting the growth of sulfur-reducing bacteria. These produce hydrogen sulfide, a toxic compound that generates free radicals, impairs cytochrome oxidase, inhibits mucus synthesis and suppresses DNA methylation, thereby increasing the risk of cancer. Fermentable compounds in the colon also generate hydrogen, which is used by methane-producing bacteria to produce methane. The role of methanogenic bacteria in colon cancer is not well described but does not seem to be strongly linked. However, the beneficial effects of short-chain fatty acids (SCFA) on colon health has been well documented. Butyrate and propionate likely enhance the defense mechanisms of the colon and intestinal motility. In cultured cells, butyrate induces apoptosis, decreases NF-xB, and blocks histone hyperacetylation, which induces tumor cell growth arrest.

Among plant foods, phenolic compounds are ubiquitous and are especially high in coffee, tea, berries, nuts, vegetables, and cereals. Because plant phenolics are poorly absorbed, they may accumulate in the colon up to the millimolar range and become subjected to conversion by microorganisms into metabolites with potential biological activity. Phenolic compounds in the colon have been found to alter the microbial population by suppressing the growth of *Clostridium* and *Bacteroides* species. These compounds also may have direct effects on cancer-related events in the colon. The stilbene resveratrol has received significant attention relative to colon cancer. The anti-inflammatory activity of resveratrol includes inhibition of pro-inflammatory mediators, modification of eicosanoid synthesis, and inhibition of enzymes including COX-2, NF-xB, and AP-1, and TNF-α, IL6, and VEGF. Rimando et al. summarized studies of resveratrol in animal models of colon cancer. Most studies showed inhibition of chemically induced ACF in the colons of mice when resveratrol was given orally. However, the form of resveratrol is critically important. When transgenic alfalfa containing resveratrol glucoside was fed to mice, no inhibition of ACF was observed; however, when the diet contained the aglycone ACF, the number was reduced, which suggests the glucoside may not be effective, and further illustrates the need to understand bioavailability and interaction with intestinal microorganisms. In cell culture, several phenolic compounds inhibit COX-2 activity, presumably by binding to the enzyme. Whether the concentration of these compounds can be sufficiently achieved in human diets to affect these pathways is not known.

Coffee is a rich source of phenolic compounds, including caffeic and chlorogenic acids. Kang et al. recently reported that coffee and caffeic acid specifically inhibited colon cancer metastasis in mice and neoplastic cell transformation by inhibiting MEK1 and TOPK and phosphorylation of ERKs. They also showed in histology samples from colon cancer patients that pERK was decreased in patients who consumed one or more cups of either regular or decaffeinated coffee. This suggests that phenolic compounds may have more specific effects and that these compounds may bind directly to target molecules, hence providing new potential therapeutic strategies. Several animal and cell culture studies have shown that tea-derived catechins, such as epigallocatechin-3-gallate (EGCG), possess anticancer activity and mediate many cellular events that could be protective against cancer. However, a meta-analysis of 13 human studies found a slight increase in colon cancer risk associated with tea consumption in persons consuming about four cups of tea per day. The study could not distinguish the type of tea consumed. It was proposed by the authors that although tea does contain antioxidant compounds such as the catechins, other components of tea may be procarcinogenic, including nitrosamines and heterocyclic aromatic amines and tannins. Non-tea flavonoids, specifically quercetin, were suggested to provide colon cancer protection. Fruits such as apples and vegetables including...
Table 2. Definitions of Probiotics, Prebiotics, and Synbiotics

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probiotic</td>
<td>Live microorganisms that, when administered in adequate amounts, confer a beneficial health effect on the host</td>
</tr>
<tr>
<td>Prebiotic</td>
<td>Food ingredients that cannot be digested by the human digestive system but are metabolized by discrete enteric microbes, thus stimulating the proliferation of selected gastrointestinal (GI) bacteria species thought to be beneficial for human health</td>
</tr>
<tr>
<td>Synbiotic</td>
<td>Supplement composed of a mixture of probiotics and prebiotics aimed at enhancing survival and colonization of the supplemented species in the GI tract</td>
</tr>
</tbody>
</table>

Probiotics, Prebiotics, and Colon Cancer

With the realization of the importance of microorganisms in the intestine, there has been substantial interest in finding beneficial microbes that will enhance health and prevent inflammation and cancer. The terms prebiotic, probiotic, and symbiotic have been recently defined (Table 2). The most studied probiotics have been strains of both Lactobacillus and Bifidobacteria. Probiotic species of Lactobacillus include L. rhamnosus, L. acidophilus, L. plantarum, L. paracasei, and L. casei; those of Bifidobacterium include B. infantis, B. animalis, B. longum, and B. bifidum. Some other probiotics include Escherichia coli strain Nissle 1917 and Saccharomyces boulardii, among others. In a recent meta-analysis, the role of probiotics in alleviating the symptoms of irritable bowel syndrome was found to be generally positive. A wide range of biological responses, including influencing cell cycle and apoptosis, inhibition of enzymes, modifying immune factors, and activation of mucosal barrier components such as defensins, mucins, and trefoil factors, have been associated with probiotics. Evidence that probiotics are beneficial for human colon cancer is limited at this time; however, animal studies have shown promising effects. Lactic acid bacteria have been shown to induce apoptosis and reduce hydrogen peroxide concentration in the colon as possible mechanisms that reduce colon cancer risk. but it is not clear if commercially marketed probiotic products have any real efficacy. Currently, characterization of the intestinal microbiome is underway, and this work should lead to improved understanding of these bacteria and how they change with diet and disease.

Intestinal microorganisms are in constant flux depending upon the colon environment. A major factor contributing to the relationship between host and microflora is the presence of prebiotics. Prebiotics have been found to generate saccharolytic activity in the colon with SCFA as a primary product. Prebiotics can lead to enhanced growth and/or survivability of selected microorganisms, which promotes changes in the overall microbial population. These changes could be protective if beneficial bacteria out-compete pathogenic ones, but the opposite may also occur. Inulin, a term that covers all β(2-1) linear fructans, is a well-characterized prebiotic. Inulin stimulates colonic production of SCFA, favors the growth of Lactobacilli and Bifidobacteria, and is associated with reduced mucosal inflammation and lesion scores in a rat model of IBD. Providing probiotics with selective fermentable substrates that support their growth (i.e., synbiotics) has been found to produce greater health impacts than either alone. Prebiotics such as nondigestible carbohydrates (e.g., galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), resistant starch, polydextrose, and inulin), dietary fibers, and conjugated fatty acids have also been investigated for their role in IBD. In a European study, SYNCAN, a probiotic mixture of Lactobacillus rhamnosus GG (LGG) and B. lactis Bb12 along with the prebiotic oligofructose-enriched inulin was administered to patients who had undergone a polypectomy or been diagnosed with CRC. After 12 weeks, fecal water from the subjects given the symbiotic treatment was found to have reduced DNA-damaging capacity and colon biopsy tissue showed reduced DNA damage compared to the placebo-treated subjects. This study demonstrated a protective effect of the symbiotic treatment on biomarkers of colon cancer in humans. However, few systematic assessments, using a defined mechanistic approach, have been done to characterize the relationships between pre- and probiotics on colon cancer risk. It is clearly evident that pre- and probiotics have potential to affect colonic inflammation and cancer risk, but only by characterizing these relationships will there be development of effective applications for patients.

The barrier function of the colon is critical as the first line of defense. Within the colon, the mucosal layer provides the barrier for the underlying mucosal cells to inflammatory agents in the lumen. The barrier is composed of a variety of compounds, including mucin, which forms a physical deterrent to pathogens and antigens. Within the mucin are a variety of compounds with specific protective functions, such as the mucins (MUC1, 2, 3, and 4) and trefoil factors (TFF 1, 2, and 3), which are secreted by goblet cells. In a rat model of colitis, feeding probiotics inulin and resistant starch individually were found to increase MUC2 in colon, but when fed together the effect was significantly greater. Dietary proteins are typically considered true prebiotics; however, there is some evidence that some proteins may provide direct or synergistic effects on colonic barrier function. Spray-dried porcine plasma fed to weaning pigs provided enhanced colonic barrier and reduced inflammation. Whey protein has been found to promote LGG survival in the human colon and to protect rats from dextran sodium sulfate (DSS) induced inflammation. These studies suggest that proteins may play a role as prebiotics for some
which activation of the ligand-binding domain leads to associated with estrogen receptors are the genomic responses in composition a models. This and other studies clearly demonstrate that diet food components may in ER receptors. The response of a given cell to estrogen activation is dependent upon the relative proportion of the two subtypes downstream regulators. The most well-defined events associated with estrogen receptors are the genomic responses in which activation of the ligand-binding domain leads to conformational change in the receptors, nuclear translocation, and binding to estrogen response elements on DNA. However, many effects of estrogen can have a more rapid onset. These events, presumably mediated by membrane-tethered receptors, signal cell proliferation (ERα) or antiproliferation (ERβ). Within cancer cells there is substantial evidence that the nongenomic regulation of cell cycle events by estrogens is important. Although colon cancer is common in both men and women, an early hypothesis suggested the incidence of colon cancer in premenopausal women was actually lower than in age-matched men. After menopause, this difference disappears, and because colon cancer is more common in older adults, the link with estrogen was not as obvious. However, over the past decade there has been growing evidence that ERβ is a dominant factor in the colon, with expression throughout the intestinal tract. From studies of colon tumors and in cultured cells, it has been shown that the loss of ERβ is associated with uncontrolled cell growth, failure in cell differentiation, and decreased apoptosis. For these reasons ERβ is now a prime target for colon cancer therapy, as are compounds that interact with ERβ.

Phytoestrogens in the diet have been proposed to play a role in colon cancer. Using ERαKO mice, it has been shown that the phytoestrogen genistein, derived from soy, altered colon cancer progression, presumably through ERβ. Genistein is the most abundant phytoestrogen in soy and is structurally similar to 17β-estradiol. Two other phytoestrogens, daidzein and glycitein, are also present in soy and have weak estrogenic activity. Several studies have demonstrated that phytoestrogens such as genistein or ERβ-specific antagonists mediate colon cancer. Acting as a selective estrogen receptor modulator, resveratrol may also affect colon cancer via the estrogen receptor. Using in vitro assays, it was found that quercetin binds to ERα as an estradiol antagonist and also binds to ERβ, leading to apoptosis. Dietary lignans, found in whole grains, have also been found to possess estrogenic activity, which may be one mechanism through which these foods reduce colon cancer risk. It is not fully clear whether these phytoestrogens

Figure 2. Simplified model of ERβ regulation of tumor cell growth. Phytoestrogens bind to either the membrane-tethered receptors, which are associated with transcription factors SP-1 and AP-1, or nuclear receptors, which are associated with heat shock proteins (HSP). Activation of the membrane-tethered receptors is associated with rapid signaling, potentially via the p38/MAPK pathway. This leads to antiproliferative and pro-apoptotic effects. Activation of the nuclear receptor results in recruitment of cofactors that bind to estrogen receptor elements (ERE) on DNA, thereby modifying gene expression and inducing protein synthesis. The outcome of activation of ERβ in the colon is suppression of carcinogenic pathways.

ESTROGENIC BIOACTIVES AND COLON CANCER

A current interest in colon cancer regulation is the role of estrogen. Estrogen and the estrogen receptors ERα and ERβ mediate a plethora of biological responses and participate in the initiation and progression of cancers. Several dietary bioactive compounds directly interact with the estrogen receptors. The response of a given cell to estrogen activation is dependent upon the relative proportion of the two subtypes and downstream regulators. The most well-defined events associated with estrogen receptors are the genomic responses in which activation of the ligand-binding domain leads to...
compounds activate the genomic or nongenomic receptors; however, the role of ERβ in colon cancer is now well accepted.29 The evidence that ERβ provides a protective effect against colon cancer is strong, and development of therapies targeting ERβ is likely.96 However, there is currently no understanding of how phytoestrogens may interact with the colonic microbiome. Given the potential for phytochemicals to selectively interact with this receptor, there is a promising role for dietary components in colon cancer prevention via this mechanism (Figure 2). More research is needed to understand fully the role of ERβ and how phytochemicals modulate its activity.

In summary, the very important interactions among dietary components and the intestinal microbiome in mediating colon cancer risk are now clearly evident. Future research of the role of dietary components in colon cancer must be carefully designed to ensure these relationships are fully considered. There are likely to be many phytochemicals with important anticancer potential, and curcumin is a prime example that is now in clinical trials. The role of estrogen receptors, especially ERβ in colon cancer is increasingly being understood and provides another target for dietary bioactive components.

■ AUTHOR INFORMATION

Corresponding Author
*Postal address: 2312 Food Sciences Building, Iowa State University, Ames, IA 50011. E-mail: ruthmacd@iastate.edu.
Phone: (515) 294-5991. Fax: (515) 294-8181.

Notes
The authors declare no competing financial interest.

■ ABBREVIATIONS USED

ACF, aberrant crypt foci; CRC, colorectal cancer; DSS, dextran sodium sulfate; ECGC, epigallocatechin gallate; ERα, ERβ, estrogen receptor alpha and beta; FAP, familial adenomatous polyposis; FOS, fructo-oligosaccharides; GOS, gluco-oligosaccharides; HNPC, hereditary nonpolyposis colorectal cancer; IBD, inflammatory bowel disease; MUC, mucin; ROS, reactive oxygen species; SCFA, short-chain fatty acids; TFF, trefoil factor.

■ REFERENCES

