Impacts of Cattle Grazing Management on Sediment and Phosphorus Loads in Surface Waters

Matthew M. Haan
Iowa State University

James R. Russell
Iowa State University

Steven K. Mickelson
Iowa State University, estaben@iastate.edu

Richard Schultz
Iowa State University

John L. Kovar
USDA National Soil Tilth Laboratory

Follow this and additional works at: https://lib.dr.iastate.edu/ans_air

Part of the Agriculture Commons, and the Animal Sciences Commons

Recommended Citation

DOI: https://doi.org/10.31274/ans_air-180814-736

Available at: https://lib.dr.iastate.edu/ans_air/vol650/iss1/80

This Environment is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Impacts of Cattle Grazing Management on Sediment and Phosphorus Loads in Surface Waters

A.S. Leaflet R1921

Iowa State University, Ames, IA
J.L. Kovar, USDA National Soil Tilth Laboratory, Ames, IA

Summary and Implications
In 2001 (year 1) and 2002 (year 2), three blocks of five 1-ac paddocks were grazed by beef cows on hills at the Iowa State University Rhodes Research and Demonstration Farm to determine the effects of grazing management on phosphorus (P) and sediment runoff from pastureland. Grazing management treatments included an ungrazed control, summer hay harvest with winter stockpiled grazing, grazing by continuous stocking to a residual sward height of 2 in., rotational stocking to a residual sward height of 2 in., and rotational stocking to a residual sward height of 4 in. At four times (late spring, mid-summer, early autumn, and early the subsequent spring) in each year, rainfall simulations were conducted at 6 sites within each paddock and 6 sites in a buffer zone down slope of each paddock. Rainfall simulators dripped at a rate of 2.8 in./hr over a 5.4-ft² area for a period of 1.5 hours. Runoff was collected and analyzed for total sediment, total P, and total soluble P. Simultaneous to each rainfall simulation, ground cover, penetration resistance, surface roughness, slope, the contents of P and moisture of the soil, sward height and forage mass were measured. Losses of sediment, total P, and total soluble P were greater from grazed paddocks than ungrazed paddocks in year 1. However, in year 2, losses of sediment, total P, and total soluble P from paddocks grazed by rotational stocking to a sward height of 4 in. were no different from ungrazed paddocks. In both years, losses of sediment, total P, and total soluble P from the buffer area immediately or 30 ft below the paddocks were lower than within the paddocks. Of the physical measurements, the proportion of ground cover was most highly related to sediment loss. Soil Bray-1 P concentrations did not differ between treatments, but were related to the losses of total and total soluble P. Results imply that sediment and phosphorus losses in pasture runoff may be reduced by managing rotational stocking to maintain adequate sward height and/or using vegetative buffer strips along pasture streams. Such management practices are particularly important in pastures on soils with high P concentrations.

Introduction
The amounts of sediment and P in water runoff from agricultural lands are of concern because of the potential for siltation and eutrophication of surface waters. Because of these problems, the U.S. Environmental Protection Agency will implement regulations to control the total maximum daily loads of nutrients in watersheds in the near future. Currently, there is limited information about the total sediment and P loads in runoff coming from pastureland in the Midwest. Because vegetation limits soil disruption caused by the impact of raindrops and forage roots hold soil particles, forages harvested at an appropriate height through suitable management practices should maintain water infiltration and minimize sediment and P losses in water runoff from pastures. The objectives of this experiment were to quantify the amounts of sediment and P in the runoff from pasturelands managed by different systems and evaluate the effectiveness of vegetative filter strips at controlling sediment and phosphorus loss in runoff from the different forage management systems.

Materials and Methods
Site Description
The research was conducted at the Iowa State University Rhodes Research and Demonstration Farm (42°00’ N, 93°25’ W). Pastures were located on hills with slopes up to 15° and were primarily composed of smooth bromegrass (Bromus inermis). Thirty year average annual rainfall for the area is 35 in., year one was slightly above average (36.7 in.) and year two was slightly below average (28.2 in.).

Three blocks of approximately 6.8 ac were subdivided into five 1-ac paddocks, with an 18-ft wide lane at the top of the hill for cattle movement and a 30-ft wide buffer area at the bottom of the hill. Prior to the initiation of grazing in 2001, soil samples were collected to depths of 0 to 2.5 in. and 2.5 to 5 in. to determine soil P and K levels. Diammonium phosphate was applied in the spring of 2001 so that all pastures were at least at an optimum level (11 - 15 ppm P) of P. Soils in all paddocks contained an optimum level (81 - 120 ppm K) or greater of K; therefore, no additional K was applied. In both years, urea was applied at a rate of 180 lb/ac before the start of grazing in the spring and 100 lb/ac at the initiation of the forage stockpiling period, in August, to all pastures. Sandbags were placed around the perimeter of the pastures and between each paddock to prevent contamination from runoff by natural rainfall events from outside the experimental area and
between neighboring paddocks. Prior to the initiation of the study the research area was managed for hay harvest and moderate grazing of beef cattle.

Grazing Management

Grazing treatments were randomly assigned to each of the 5 paddocks in each plot. Treatments included: an ungrazed control (U), summer hay harvest with winter stockpiled grazing to a residual sward height of 2 in. (HS), continuous stocking to a residual sward height of 2 in. (2C), rotational stocking to a residual sward height of 2 in. (2R), and rotational stocking to a residual sward height of 4 in. (4R). Grazing was initiated on May 29, 2001, and May 7, 2002 with 3 mature Angus cows (body weight 1430±185 lbs. in 2001 and 1350±207 lbs. in 2002) in each grazed paddock. Cattle received no supplemental P while stocked on pastures.

In the continuous stocking system, cattle were removed from the paddocks after the sward height decreased to 2 in. Paddocks were allowed a rest period of 35-days to allow regrowth, and thereby, simulate continuous stocking. In the rotational stocking systems, cattle were removed from the paddocks after the sward height decreased to 2 or 4 in.

Paddocks were allowed rest periods of 35-days to allow plant regrowth. Forage sward heights were measured with a rising plate meter (8.8 lb/yd²) twice weekly during the grazing seasons. During the 2001 grazing season, mean total grazing days were 199, 153, and 117 cow-days/ac and during 2002 grazing season, mean total grazing days were 162, 128, and 104 cow-days/ac for the 2C, 2R, and 4R stocking systems, respectively.

First-cutting hay was harvested from the HS treatment in June of 2001 and 2002, yielding 2375 and 3326 lb/ac forage dry matter, respectively. Regrowth from these paddocks was clipped in early August of each year to initiate forage stockpiling, but the yield of clipped forage was inadequate to harvest. Paddocks in the HS system were stockpiled in mid-November of each year, with animals that had been used during the summer grazing period, and grazed to a residual sward height of 2 in., allowing grazing for 19 and 24 cow-days/ac in 2001 and 2002, respectively.

Rainfall Simulations

To determine sediment and P loss in water runoff, rainfall simulations were conducted 4 times per year for 2 years (2001 and 2002). Simulations were conducted in the late spring, mid-summer, and autumn of each year and early spring of the following year. Six simulation sites were selected within each paddock; 3 within a low slope range (1° to 7°) and three in a high slope range (7° to 15°). Six simulation sites were selected within the buffer zone below each paddock. Three of these sites were at the base of the paddock and 3 were 30-ft within the buffer strip (Figure 1). Rainfall simulation locations were identified with the geographical positioning system (GPS) so that the same locations could be used during each sampling period.

Rainfall simulators were 5.4-ft² and assembled so that the uphill side of the simulator was 3.3 ft high. Each rainfall simulation ran for 1.5 hours at a precipitation rate of 2.8 in./hr. The water source used was rural water that had been filtered through an additional 0.45 µm filter, to remove particulate matter. During simulations, the amount of rainfall and runoff was measured at 10-minute intervals, and a sample of runoff was collected and added to a composite sample that was used to determine total sediment, total P, and total soluble P. Surface roughness was measured by digital photography of a 41-pin meter with a length of 6.5 ft, and ground cover was determined by the percentage of pins on the pin meter striking plant material. During simulations, soil samples were taken adjacent to each site at depths of 0 - 2 in. and 2 - 6 in., for determination of Bray-1 P and soil moisture. Penetration resistance was measured at 1.4-in. intervals to a depth of 14-in. using a Bush Recording Penetrometer; readings from the 0 to 5 in. depth, 5 to 8 in. depth, and 8 to 14 in. depth were averaged for statistical analysis. Sward height was measured using a rising plate meter (8.8 lb/yd²), and a forage sample was clipped from a 2.7 ft² area adjacent to the rainfall simulation site to determine the mass of forage dry matter.

Figure 1. Block 2 Layout.

Laboratory Analysis

Water samples were analyzed for sediment, total P, and total soluble P. Sediment was determined by filtering the water sample through a 0.45 µm filter. Total P was determined by digestion followed by the Ascorbic Acid Method. Total soluble P was determined by filtering through a 0.45 µm filter followed by digestion and the Ascorbic Acid Method.

Soil samples were analyzed for P and moisture. Phosphorus levels were determined using the Bray-1 P procedure. Soil moisture was determined by drying samples at 105°C for 24-hours. Surface roughness was calculated as the standard deviation in pin height determined by image analysis.
Results and Discussion

Grazing Effects in Paddocks

The proportion of rainfall lost as runoff was less ($P<0.05$) in the U paddocks than in all other treatments during both years 1 and 2. In year 1, the proportion of rainfall lost as runoff was greater ($P<0.05$) in the late spring (36%) than in mid-summer (11.8%), autumn (13.1%) or early spring (7.1%) across all treatments. Similarly, in year 2, the proportion of rainfall lost as runoff in late spring (19.4%) was greater ($P<0.05$) than the mid-summer (7.5%), autumn (11.8%) and early spring (12.6%) periods.

There were no differences in mean concentrations of sediment in runoff from paddock between stocking treatments in either year. Mean total P concentrations in the runoff were greater in paddocks with the 2C and 2R treatments than other treatments in both years ($P<0.05$). Mean sediment and total P concentrations did not differ between months in year 1, but total soluble P concentrations were greater ($P<0.05$) in the late spring than the other sampling periods. In year 2, mean sediment and total P concentrations in runoff did not differ between sampling periods. However, total soluble P concentration in runoff was less in the early spring than it was in other sampling periods.

Losses of total P were greater ($P<0.05$) from paddocks with the 2C and 2R treatments than U paddocks in year 1 (Table 1) while the HS and 4R treatments were intermediate and not significantly different from any of the other treatments. Total P losses were greater ($P<0.05$) from 2C treatment than from all other treatments in year 2. Losses of total soluble P were lower ($P<0.05$) from U paddocks than from other treatments in year 1. In year 2, the 2R treatment had greater ($P<0.05$) total soluble P losses than U, with the HS, 2C, and 4R intermediate to and not significantly different from either the U or 2R treatments. In years 1 and 2, 89% and 76% of the total P in the runoff was in the form of total soluble P. While these differences seem to be related to forage height and cover, the paddocks grazed to 2 in. by continuous or rotational stocking had greater cow days per acre which likely contributed greater fecal P excretion per acre.

High slope areas had a greater percentage of rainfall lost as runoff than low slope areas in both years (21.2 vs. 14.6% in year 1 and 16.0 vs. 9.8% in year 2) across all treatments and months ($P<0.05$). There was no effect of slope on sediment or total P and total soluble P concentrations or total and total soluble P losses in runoff for either year. Sediment loss from high slope areas was greater ($P<0.05$) than from low slope areas in year 1 (13.1 vs. 6.5 lb/ac) across all treatments. There was no significant effect of slope on sediment loss in year 2.

<table>
<thead>
<tr>
<th>Table 1. Annual sediment, total P and total soluble P in runoff from paddocks grazed by different systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment, lb/ac</td>
</tr>
<tr>
<td>Year 1</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>HS</td>
</tr>
<tr>
<td>2C</td>
</tr>
<tr>
<td>2R</td>
</tr>
<tr>
<td>4R</td>
</tr>
</tbody>
</table>

a U = Ungrazed, HS = Summer Hay Harvest/Winter Stockpile Grazing, 2C = 2 inch Continuous Grazing, 2R = 2 inch Rotational Grazing, 4R = 4 inch Rotational Grazing.
b Different superscripts within the same column denote a difference, ($P<0.05$).

In both years, sward heights of the grazed paddocks were greatest in the early summer period ($P<0.05$). By later sampling periods, the paddocks had been sufficiently grazed to reach their prescribed forage sward height.

Soil moisture in the upper 2 in. was greater in year 1 than in year 2 ($P<0.05$), 23.3% and 20.5%, respectively. Soil moisture contents were greater in the U paddocks (24.6 and 22.1% for year 1 and 2, respectively) than in all other paddocks ($P<0.05$) in both years, with no difference in soil moisture between the other treatments (23.1, 23.8, 23.0, and 21.8% in year 1 and 19.6, 20.8, 20.9, and 20.0% in year 2 for 2C, 2R, 4R, and HS, respectively). In both years, soil moisture followed the same trends with soil moisture highest in the late spring, lowest in the mid-summer, intermediate in the autumn, and high in early spring ($P<0.05$). Soil moisture contents were 27.5, 16.2, 22.9, and 26.6% in year 1 and 24.2, 13.6, 21.9, and 23.8% in year 2 for late spring, mid-summer, autumn, and early spring, respectively.

Mean penetration resistance in the 0 to 5 in. depth for the four sampling periods in year 1 was lowest for the U treatment (45.1 lb-force), intermediate for the HS (51.7 lb-force) treatment and were greatest in the summer grazing treatments (55.0, 57.4, 57.6 lb-force for the 2C, 2R, and 4R, respectively; $P<0.05$), but did not differ between summer grazing treatments. In year 2, mean penetration resistance in the 0 to 10 cm depth the U paddocks were lower ($P<0.05$; 54.6 lb-force) than all other treatments. However, there
were no differences in penetration resistance between paddocks with different forage utilization systems (67.3, 74.6, 73.7, and 75.9 lb-force for the HS, 2C, 2R and 4R treatments, respectively). Mean penetration resistance in the 5 to 8 in. depth was unaffected by treatment in either year, averaging 59.4 and 76.3 lb-force across all treatments for year 1 and 2, respectively. Similarly, mean penetration resistance in the 8 to 14 in. depth was unaffected by treatment in either year averaging 62.9 and 86.9 lb-force for year 1 and 2, respectively.

Surface roughness did not differ by treatment or time in either year. Soil Bray-1 P concentrations in the upper 2 in. were 20 to 25 ppm at the initiation of the experiment and did not differ between treatment or sampling period in either year. However, total P losses during rainfall simulations were greater from simulation sites that had greater soil Bray-1 P concentrations.

Averaged across months, surface cover in ungrazed paddocks was greater (P<0.05) than paddocks in which forage was harvested either as hay or grazed. In both years, surface cover in the 2C paddocks was lower than paddocks with other treatments (P<0.05). Mean surface covers were 99.0, 93.5, 82.8, 89.9%, and 93.3% in year 1 and 99.1, 95.5, 89.1, 91.4, and 94.1% in year 2 for the U, HS, 2C, 2R, and 4R treatments, respectively.

Erosion of sediment was not different between treatments in year 1. In year 2, the 2C paddocks contributed greater amounts of erosion (P<0.05) than the other treatments. The greatest amount of erosion occurred in the late spring period across all treatments in both years (P<0.05). Of the pasture physical characteristics measured, sediment loss was most highly correlated with percent surface cover: (Y=794.1-17.81 X + 0.096 X^2, r^2=0.3362) where Y is the sediment loss in lb/ac/simulation and X is the percentage of ground covered with plant material.

Buffer Effects

Mean sediment concentrations in the runoff were not affected by simulation location (paddock, base, buffer) or month in either year. However, mean total P and total soluble P concentrations in run-off were greater (P<0.05) in the paddocks than at the base of the paddock or 30-ft (10-m) in the buffer in both years. Over the two years, mean concentrations of total and total soluble P from paddocks were 49.5% and 47.4% greater, respectively, (P<0.05) than the mean values within the buffers. This result may indicate that grazing will increase the amount of P that is available for transport within a pasture, but it rapidly becomes immobile again in ungrazed buffer areas. However, there were no significant grazing treatment by location interactions for losses of sediment, total P, or total soluble P; these differences seem to be factors other than grazing.

In year 1, the proportion of rainfall lost as runoff was greater (P<0.05) in the paddocks than at the paddock base and at 10 meters within the buffer. In year 2, the proportion of rainfall lost as runoff was greater (P<0.05) in the paddocks and at the paddock base than at 10 meters within the buffer. In year 1, runoff was 17.1, 11.7, and 8.6% of applied and in year 2, runoff was 12.8, 12.8, and 7.5% of applied from the paddock, base of the paddock, and 30-ft within the buffer, respectively. These differences can partially be attributed to the differences in soil slope, soil texture, and forage composition that exist between locations.

In year 1, there was no difference in sediment loss between the paddock and the two locations within the buffer (Table 2). In year 2, sediment loss was greatest from the paddock, lowest from 30-ft within the buffer, and intermediate at the base of the buffer.

As a result of differences in rainfall infiltration and the total P concentration of runoff, total P flows from the paddocks were 3.5 and 7.0 times greater (P<0.05) than those from the paddock base and in the buffer in year 1 and 2.0 and 4.0 times greater (P<0.05) than those from the paddock base and in the buffer in year 2. Amounts of total soluble P in the runoff were 3.0 and 24 times greater in the buffer and at the base of the paddock than in the paddock in year 1.

Table 2. Sediment, Total P, and Total Soluble P losses within the paddocks, at the base of the paddock, and 30ft within the buffer.

<table>
<thead>
<tr>
<th></th>
<th>Sediment, lb/ac</th>
<th>Total P, lb/ac</th>
<th>Total soluble P, lb/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 1^a</td>
<td>Year 2</td>
<td>Year 1</td>
</tr>
<tr>
<td>Paddock^a</td>
<td>39.3</td>
<td>34.3^a</td>
<td>0.25^a</td>
</tr>
<tr>
<td>Base</td>
<td>24.6</td>
<td>18.9^a,b</td>
<td>0.07^b</td>
</tr>
<tr>
<td>Buffer</td>
<td>18.2</td>
<td>9.3^b</td>
<td>0.04^b</td>
</tr>
</tbody>
</table>

^a Paddock = Average across all paddocks, Base = At the paddock-buffer interface, within the buffer, Buffer = Within the buffer, 30 ft down slope from the paddocks

^b Different superscripts within the same column denote a difference, (P<0.05).

Across treatments, mean forage sward heights in paddocks, at the paddock base, and 30-ft in the buffer strip were 3.7, 6.8, and 7.1 in. in year 1 and 4.8, 9.0, 9.7 in. in year 2 (P<0.05).

Penetration resistance in the upper 5 in. of soil was greater in the paddocks than at either the paddock base or 30 ft in the buffer strip (P<0.05) for all sampling periods except late spring of year 1. In both years at all locations and depths, penetration resistance was low during the late spring, increased to a maximum in mid-summer, decreased to an intermediate level by autumn and had returned to late...
spring levels by early spring. These differences not only represent treatment effects, but are also influenced by soil moisture and texture differences between location and sampling periods.

Conclusion

Sediment and P losses in pasture runoff may be reduced by managing rotational stocking to maintain adequate sward height and reduce bare ground. It also appears that the use of ungrazed vegetative buffer areas can be effective in controlling sediment and P from reaching surface waters.

Acknowledgments

This project was funded in part by grants from the Iowa Department of Natural Resources/Water Resources Division with Section 319 Non-point Source Pollution Funds, the Leopold Center for Sustainable Agriculture, and the Iowa State Water Resources Research Institute.