11-2012

Genome Sequence of the Psychrophilic Deep-Sea Bacterium Moritella marina MP-1 (ATCC 15381)

Kumar Babu Kautharapu
Iowa State University

Laura R. Jarboe
Iowa State University, ljarboe@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cbe_pubs

Part of the Bacteriology Commons, Biological Engineering Commons, and the Genomics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/cbe_pubs/83. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Genome Sequence of the Psychrophilic Deep-Sea Bacterium Moritella marina MP-1 (ATCC 15381)

Kumar B. Kautharapu and Laura R. Jarboe

Updated information and services can be found at:
http://jb.asm.org/content/194/22/6296

These include:

REFERENCES
This article cites 15 articles, 6 of which can be accessed free at:
http://jb.asm.org/content/194/22/6296#ref-list-1

CONTENT ALERTS
Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more»
Polysaturated fatty acids (PUFA), such as docosahexaenoic acid [DHA, 22:6(n-3)], have beneficial effects on human health through their effect on membrane fluidity and contribute to many aspects of health (6, 7, 13, 15). Twenty-five years ago, a marine bacterium originally designated Vibrio marinus (3) and later renamed Moritella marina MP-1 (14) was reported to produce high levels of DHA (18% of the total fatty acids) (4). Such high levels of DHA presumably provide this bacterium with the ability to maintain appropriate membrane fluidity in the low temperatures and high pressures of its marine environment. Indeed, it has been proposed that such marine microbes are the source of omega-3 fatty acids in the marine food web (10). A comparison of marine bacteria showed that MP-1 produced more than twice as much DHA as 9 other species (9). The PUFA biosynthesis pathway used by marine bacteria, such as MP-1, is distinct from the plant and microalgae pathways (5, 8, 10).

MP-1 is a Gram-negative facultative anaerobe with curved or straight rods that is motile by polar flagella, convex, opaque, cream colored, a halophile, and nonpigmented and that grows in straight rods. It was isolated from a deep-sea sediment that was cold-adapted. It was grown under the conditions described in the materials and methods section. The whole-genome sequence includes 4,636,778 bp with a G+C content of 40.5% and consisting of 83 contigs.

The genome sequence of the psychrophilic deep-sea bacterium Moritella marina MP-1 (ATCC 15381) has 482 subsystems (related functional roles) predicted by the RAST server for the construction of metabolic networks.

The availability of the genome sequence of Moritella marina MP-1 will allow deeper comparative genomic studies and track the potential pathway involved in long-chain polysaturated fatty acids by the polyketide pathway.

Nucleotide sequence accession number. The whole-genome draft sequence of Moritella marina MP-1 has been deposited in GenBank under the accession number ALOE00000000.

ACKNOWLEDGMENTS

This work was supported in part by Metabolic Technologies, Inc., and the Iowa State University College of Engineering and Office of Biotechnology. We thank Julie Dickerson, Michael Baker, and Gary Polking for their help with data acquisition and analysis.

REFERENCES

