Impacts of Climate Change Drivers on C4 Grassland Productivity: Scaling Driver Effects Through the Plant Community

Thumbnail Image
Date
2014-01-01
Authors
Polley, H. Wayne
Derner, Justin
Jackson, Robert
Wilsey, Brian
Fay, Philip
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Wilsey, Brian
Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Ecology, Evolution and Organismal Biology
Abstract

Climate change drivers affect plant community productivity via three pathways: (i) direct effects of drivers on plants; (ii) the response of species abundances to drivers (community response); and (iii) the feedback effect of community change on productivity (community effect). The contribution of each pathway to driver–productivity relationships depends on functional traits of dominant species. We used data from three experiments in Texas, USA, to assess the role of community dynamics in the aboveground net primary productivity (ANPP) response of C4 grasslands to two climate drivers applied singly: atmospheric CO2 enrichment and augmented summer precipitation. The ANPPdriver response differed among experiments because community responses and effects differed. ANPP increased by 80–120 g m–2 per 100 μl l–1 rise in CO2 in separate experiments with pasture and tallgrass prairie assemblages. Augmenting ambient precipitation by 128 mm during one summer month each year increased ANPP more in native than in exotic communities in a third experiment. The community effect accounted for 21–38% of the ANPP CO2 response in the prairie experiment but little of the response in the pasture experiment. The community response to CO2 was linked to species traits associated with greater soil water from reduced transpiration (e.g. greater height). Community effects on the ANPP CO2 response and the greater ANPP response of native than exotic communities to augmented precipitation depended on species differences in transpiration efficiency. These results indicate that feedbacks from community change influenced ANPP-driver responses. However, the species traits that regulated community effects on ANPP differed from the traits that determined how communities responded to drivers.

Comments

This article is from Journal of Experimental Botany 65 (2014): 3415, doi:10.1093/jxb/eru009.

Description
Keywords
Citation
DOI
Copyright
Collections