Comparison of three microsatellite analysis methods for detecting genetic diversity in Phytophthora sojae (Stramenopila: Oomycete)

Thumbnail Image
Date
2011-01-01
Authors
Stewart, Silvina
Wickramasinghe, Damitha
Dorrance, Anne
Robertson, Alison
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Robertson, Alison
Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and Microbiology
Abstract

Analysis of an organism’s genetic diversity requires a method that gives reliable, reproducible results. Microsatellites are robust markers, however, detection of allele sizes can be difficult with some systems as well as consistency among laboratories. In this study, our two laboratories used 219 isolates of Phytophthora sojae to compare three microsatellite methods. Two capillary electrophoresis methods, the Applied Biosystems 3730 Genetic Analyzer and the CEQ 8000 Genetic Analysis system, detected an average of 2.4-fold more alleles compared to gel electrophoresis with a mean of 8.8 and 3.6 alleles per locus using capillary and gel methods, respectively. The two capillary methods were comparable, although allele sizes differed consistently by an average of 3.2 bp across isolates. Differences between capillary methods could be overcome if reference standard DNA genotypes are shared between collaborating laboratories.

Comments

This is an article from Biotechnology Letters 33 (2011): 2217, doi:10.1007/s10529-011-0682-9. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections