The 1982 Iowa Corn Yield Test Report, District 7

K. E. Ziegler
Iowa State University

A. R. Campbell
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cornyield

Part of the Agriculture Commons, and the Agronomy and Crop Sciences Commons

Recommended Citation
http://lib.dr.iastate.edu/cornyield/92

This Report is brought to you for free and open access by the Extension and Experiment Station Publications at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa Corn Yield Tests by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The 1982 Iowa Corn Yield Test Report, District 7

Abstract
Results of the Iowa Corn Yield Test are published to aid Iowa farmers in selecting corn varieties. This is the sixty-third consecutive year for the test.

Disciplines
Agriculture | Agronomy and Crop Sciences

This report is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cornyield/92
THE 1982 IOWA CORN YIELD TEST REPORT

District 7

Results of the Iowa Corn Yield Test are published to aid Iowa farmers in selecting corn varieties. This is the sixty-third consecutive year for the test.

The presentation of data for the varieties tested does not imply approval or endorsement by the authors or by the agencies sponsoring or conducting the test. Entries in tables 1 and 2 are designated by brand name and variety.

1982 Procedure

Producers of corn seed and Iowa State University were eligible to enter varieties in the Iowa Corn Yield Test. Each producer was allowed a maximum of six entries per district. All entries had to be available in a quantity of at least 10 bushels of seed.

One hundred thirty-two entries were compared in this test. Fifteen of them were determined to be widely grown and were entered by Iowa State University. A widely grown entry was planted on 1.11 percent or more of the corn acreage in the district according to a 1980 survey of Iowa corn growers. Iowa State University entered a maximum of three widely grown varieties of any given brand. These entries were given priority over the remaining 117 entries made by seed producers.

Each entry was replicated four times in four-row plots at a planting rate of 23,500 kernels per acre at each location. All locations were machine-planted. The center two rows of each plot were harvested with a corn combine. No gleanings or dropped ears were included in yield data. A moisture determination was made from each plot, and yields were corrected to 15.5-percent moisture for shelled corn.

How Information Is Presented

The data presented are averages of two locations in 1980, three locations in 1981, and one location in 1982. Yield in bushels per acre and percentage of moisture, root lodging, stalk lodging, dropped ears, and stand are shown for all entries tested in 1982 and for those tested in 1980 and 1981 that were in the 1982 test.

Interpretation of Results

Yield differences due to variation in soil, fertility, moisture availability, insect infestation, and diseases, plus any variation due to planting and harvesting techniques, are identified through statistical analysis. The LSD values shown in tables 1 and 2 represent, in bushels per acre, the amounts of yield variation that could be due to variations in the factors just mentioned. In comparing varieties, yield differences greater than the LSD value can be attributed to genetic differences in the yield potential of these varieties; yield differences less than the LSD value are not statistically different and could have been due to other factors.

Grain moistures shown in tables 1 and 2 are indicators of maturity and natural drying rate. Maturity of varieties entered generally ranged from early to full season. Yield comparisons should be made among varieties of similar maturity.

It is important to select varieties having stable performance over a range of environmental conditions. High yields for two or more consecutive years indicate stable performance. Supplemental yield and agronomic information about specific varieties may be obtained from your seed corn dealers and from neighbors who have grown these varieties.

1982 Field Data

The District 7 test was conducted on farms operated by William Hays near Malvern in Mills County, Marvin Fuller near Corning in Adams County, and William K. Easter, Jr. near Winterset in Madison County. Because of extremely wet field conditions at planting time, the Adams County location was not planted and emergence at the Madison County location was so poor that the test was dropped. Field data for the Mills County location are presented in Table A.

Subsoil moisture for the district was wet to excessive at planting time. Rainfall for the Mills County location was well above normal in May, June, and August, and near normal in July and September. Temperatures at the Mills County location were above normal in May, June, and August, and near normal in July and September, and below normal in August. The average yield was 29 bushels per acre above the mean of the five preceding years' district averages.

Prepared by K. E. Ziegler, instructor in agronomy, and A. R. Campbell, associate professor of agronomy and secretary of the Iowa Crop Improvement Association.

Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Iowa Crop Improvement Association, and the United States Department of Agriculture cooperating.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PIONEER</td>
<td>SX</td>
<td>100</td>
<td>60.6</td>
<td>1.091</td>
<td>1.081</td>
<td>1.096</td>
<td>1.094</td>
<td>1.093</td>
<td>1.094</td>
<td>2.135</td>
<td>1.93</td>
</tr>
<tr>
<td>PS</td>
<td>SX</td>
<td>100</td>
<td>114.9</td>
<td>1.083</td>
<td>1.083</td>
<td>1.089</td>
<td>1.084</td>
<td>1.084</td>
<td>1.084</td>
<td>2.058</td>
<td>1.93</td>
</tr>
<tr>
<td>PEGE</td>
<td>SX</td>
<td>100</td>
<td>116.2</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>PAG</td>
<td>SX</td>
<td>100</td>
<td>117.7</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>SUPERCROST</td>
<td>SX</td>
<td>100</td>
<td>116.2</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>114.9</td>
<td>1.083</td>
<td>1.083</td>
<td>1.089</td>
<td>1.084</td>
<td>1.084</td>
<td>1.084</td>
<td>2.058</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>117.7</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>116.2</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>114.9</td>
<td>1.083</td>
<td>1.083</td>
<td>1.089</td>
<td>1.084</td>
<td>1.084</td>
<td>1.084</td>
<td>2.058</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>117.7</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
<tr>
<td>SX</td>
<td>SX</td>
<td>100</td>
<td>116.2</td>
<td>1.084</td>
<td>1.084</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.087</td>
<td>1.917</td>
<td>1.93</td>
</tr>
</tbody>
</table>
### Table A. Field Data

<table>
<thead>
<tr>
<th>Fertilizer applied, lbs.</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plowdown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preplant</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-emerge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1981 crop.</th>
<th>Soybeans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row width</td>
<td>30 inches</td>
</tr>
<tr>
<td>Planting date</td>
<td>May 4</td>
</tr>
<tr>
<td>Harvest date</td>
<td>Oct. 22</td>
</tr>
</tbody>
</table>

### District 7

#### Designations Identifying Brands in the Yield Test
- **Ames Best:** Ames Best Hybrids, Ames, la. 50010
- **Asgrow:** Asgrow Seed Company, Kalamaoozoo, Mich. 49001
- **Cargill:** Cargill, Inc., Minneapolis, Minn. 55440
- **Ceresex:** Ceresex Seed Corn Plant, Cedar Falls, la. 50613
- **Crow:** Crows Hybrid Corn Company, Milford, Ill. 60953
- **DeKalb:** DeKalb AgResearch, Inc, DeKalb, Ill. 60115
- **Fontanelle:** Fontanelle Hybrids, Nickerson, Neb. 68044
- **FS:** Growmark, Inc., Bloomington, Ill. 61701
- **Funk:** Funk Seeds International, Inc., Bloomington, Ill. 61701
- **Golden Harvest:** The J. C. Robinson Seed Company, Waterloo, Neb. 68069
- **Gold Tag:** Ferry-Morse Seed Co., Geneseo, Ill. 61254
- **Gruhn Hybrid:** Gruhn Hybrids, Manilla, la. 51454
- **Horizon:** Horizon Seeds, Inc., Lincoln, Neb. 68501
- **Hoegemeyer:** Hoegemeyer Hybrids, Inc., Hooper, Neb. 68031
- **Jacques:** Jacques Seed Company, Prescott, Wis. 54021
- **Kruger:** Kruger Seed Company, Cedar Falls, la. 50613
- **Lewis:** Frank W. Lewis & Son Seed Farms, Inc., Ursa, Ill. 62376
- **Lynx:** Lynx Seed Company, Cankakee, Ill. 60901
- **McAllister:** McAllister Seed Farms, Mt. Pleasant, la. 52641
- **McCurdy:** McCurdy Seed Co., Fremont, la. 68025
- **MFA:** Missouri Farmers Ass’n, Inc., Seed Division, Cuba, Missouri 65230
- **Migro:** North American Plant Breeders, Ames, la. 50010
- **NC +**
  - **NC + Hybrids,** Lincoln, Neb. 68504
  - **Northrup King:** Northrup King Co., Minneapolis, Minn. 55440
  - **O’s Gold:** O’s Gold Co., Parkersburg, la. 50665
  - **PAG:** PAG Seeds, Minneapolis, Minn. 55440
  - **Payco:** Payco Seeds, Inc., Dassel, Minn. 55325
  - **Paymaster:** Paymaster Seeds, Belmont, la. 50421
  - **Prister:** Prister Hybrid Corn Co., El Paso, Ill. 61738
  - **Pingel Morse:** Pingel Morse Seed Co., Council Bluffs, la. 51501
  - **Pioneer:** Pioneer Hi-Bred International, Inc., Des Moines, la. 50309
  - **Renze:** Renze Hybrids, Inc., Carroll, la. 51401
  - **Riverside:** Lynnville Seed Company, Lynnville, la. 50153
  - **RO:** Ottillie Seed Farms, Marshalltown, la. 50158
  - **Schechinger:** Schechinger Seed Co., Harlan, la. 51537
  - **Stauffer:** Stauffer Seeds, Springfield, Ill. 62704
  - **Stewart:** Stewart Hybrids, Inc., Princeville, Ill. 61559
  - **Super Crop:** Super Crop Seeds, Inc., Green Oak, la. 50929
  - **Tall Corn:** Tall Corn Hybrids, Inc., Grinnell, la. 50112
  - **Trian:** DeKalb-Pfizer Genetics, DeKalb, Ill. 60115
  - **Wilson:** Wilson Hybrids, Inc., Harlan, la. 51537

*Companies with one or more widely grown entries made by Iowa State University.

### Other Reports

Separate reports for variety performance are available for each district shown in fig. 1. These publications are available at your county extension office or from Publications Distribution, Printing and Publications Building, Iowa State University, Ames, Iowa 50011.

The 1982 Iowa Corn Yield Test Report:
- **Pm-660-1 District 1**
- **Pm-660-2 District 2**
- **Pm-660-3 District 3**
- **Pm-660-4 District 4**
- **Pm-660-5 District 5**
- **Pm-660-6 District 6**
- **Pm-660-7 District 7**

**For and justice for all**

The Iowa Cooperative Extension Service’s programs and policies are consistent with pertinent federal and state laws and regulations on non-discrimination regarding race, color, national origin, religion, sex, age, and handicap.

---