High capacity variable friction damper based on band brake technology

Thumbnail Image
Date
2016-04-15
Authors
Downey, Austin
Cao, Liang
Laflamme, Simon
Taylor, Douglas
Ricles, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental Engineering
Abstract

Implementation of high performance controllable damping devices can ameliorate cost-effectiveness of structural systems for mitigation of natural hazards. However, the applications of these damping systems are limited due to a lack of (1) mechanical robustness; (2) electrical reliability; and (3) large resisting force capability. To broaden the implementation of modern damping systems, a novel semi-active damping device is proposed. The device, termed Banded Rotary Friction Device (BRFD), has enhanced applicability compared to other proposed damping systems due to its cost-effectiveness, high damping performance, mechanical robustness, and technological simplicity. Its mechanical principle is based on a band brake, which results in a high amplification of the applied force while enabling a variable control force. The theoretical model of the BRFD is presented and experimentally verified by subjecting a prototype to various harmonic loads. Results show that the prototype BRFD is capable of a maximum force of 45 kN (10 kips) using only a 267 N (60 lb) actuation force, therefore providing a mechanical advantage of 169. A 3-stage dynamic model previously developed by the authors can successfully be used to model the dynamic behavior of the BRFD.

Comments

This is a manuscript of an article Engineering Structures, 2016, 113; 287-298. Doi: 10.1016/j.engstruct.2016.01.035. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections