2010

Minimum rank, maximum nullity and zero forcing number for selected graph families

Edgard Almodovar
University of Puerto Rico, Río Piedras Campus

Laura DeLoss
Iowa State University

Leslie Hogben
Iowa State University, hogben@iastate.edu

Kirsten Hogenson
University of North Dakota

Kaitlyn Murphy
Montclair State University

See next page for additional authors
Follow this and additional works at: http://lib.dr.iastate.edu/math_pubs

Part of the Discrete Mathematics and Combinatorics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/math_pubs/90. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Minimum rank, maximum nullity and zero forcing number for selected graph families

Edgard Almodovar, Laura DeLoss, Leslie Hogben, Kirsten Hogenson, Kaitlyn Murphy, Travis Peters and Camila A. Ramírez
Minimum rank, maximum nullity and zero forcing number for selected graph families

Edgard Almodovar, Laura DeLoss, Leslie Hogben, Kirsten Hogenson, Kaitlyn Murphy, Travis Peters and Camila A. Ramírez

(Communicated by Chi-Kwong Li)

The minimum rank of a simple graph \(G \) is defined to be the smallest possible rank over all symmetric real matrices whose \(ij \)-th entry (for \(i \neq j \)) is nonzero whenever \(\{i, j\} \) is an edge in \(G \) and is zero otherwise. Maximum nullity is taken over the same set of matrices, and the sum of maximum nullity and minimum rank is the order of the graph. The zero forcing number is the minimum size of a zero forcing set of vertices and bounds the maximum nullity from above. This paper defines the graph families \textit{ciclos} and \textit{estrellas} and establishes the minimum rank and zero forcing number of several of these families. In particular, these families provide examples showing that the maximum nullity of a graph and its dual may differ, and similarly for the zero forcing number.

1. Introduction

All matrices discussed are real and symmetric; the set of \(n \times n \) real symmetric matrices will be denoted by \(S_n(\mathbb{R}) \). A graph \(G = (V_G, E_G) \) means a simple undirected graph (no loops, no multiple edges) with a finite nonempty set of vertices \(V_G \) and edge set \(E_G \) (an edge is a two-element subset of vertices). For \(A \in S_n(\mathbb{R}) \), the graph of \(A \), denoted by \(\mathcal{G}(A) \), is the graph with vertices \(\{1, \ldots, n\} \) and edges \(\{\{i, j\} : a_{ij} \neq 0, 1 \leq i < j \leq n\} \). The diagonal of \(A \) is ignored in determining \(\mathcal{G}(A) \).

Let \(G \) be a graph. The set of symmetric matrices described by \(G \) is

\[
\mathcal{F}(G) = \{ A \in S_n(\mathbb{R}) : \mathcal{G}(A) = G \}.
\]

The maximum nullity of \(G \) is

\[
M(G) = \max \{ \text{null } A : A \in \mathcal{F}(G) \}.
\]

\textbf{MSC2000:} 05C50, 15A03, 15A18.

\textbf{Keywords:} minimum rank, maximum nullity, zero forcing number, dual, ciclo, estrella.

Much of this work was done during the ISU Math REU 2009. Research of E. Almodovar, L. Hogben, K. Murphy, C. Ramírez was supported by DMS 0502354. Research of L. DeLoss, L. Hogben, K. Hogenson, C. Ramírez was supported by DMS 0750986.
and the minimum rank of G is

$$mr(G) = \min \{ \text{rank } A : A \in \mathcal{F}(G) \}.$$

Clearly $mr(G) + M(G) = |G|$, where the order $|G|$ is the number of vertices of G. Extensive work has been done on the problem of determining minimum rank and maximum nullity of graphs. A variety of techniques have been developed to determine the minimum rank, and the minimum rank of numerous families of graphs has been determined, but in general the problem remains open. See [Fallat and Hogben 2007] for a survey of results and discussion of the motivation for the minimum rank problem.

The zero forcing number was introduced in [AIM 2008] and the associated terminology was extended in [Barioli et al. 2010; 2009; Edholm et al. 2010; Hogben 2010; Huang et al. 2010]. Let G be a graph with each vertex colored either white or black. Vertices change color according to the color-change rule: if u is a black vertex and exactly one neighbor w of u is white, then change the color of w to black. When the color-change rule is applied to u to change the color of w, we say u forces w and write $u \rightarrow w$. Given a coloring of G, the derived set is the set of black vertices obtained by applying the color-change rule until no more changes are possible. A zero forcing set for G is a subset of vertices Z such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then the derived set is all the vertices of G. The zero forcing number $Z(G)$ is the minimum of $|Z|$ over all zero forcing sets $Z \subseteq V(G)$.

Theorem 1.1 [AIM 2008, Proposition 2.4]. For any graph G, $M(G) \leq Z(G)$.

Let $G = (V_G, E_G)$ be a graph and $W \subseteq V_G$. The induced subgraph $G[W]$ is the graph with vertex set W and edge set $\{(v, w) \in E_G : v, w \in W\}$. The subgraph induced by $V_G \setminus W$ is also denoted by $G - W$, or in the case W is a single vertex $\{v\}$, by $G - v$. Minimum rank is monotone on induced subgraphs, that is, for any $W \subseteq V_G$, $mr(G[W]) \leq mr(G)$. If e is an edge of $G = (V_G, E_G)$, the subgraph $(V_G, E_G \setminus \{e\})$ is denoted by $G - e$. We denote the complete graph on n vertices by K_n, the cycle on n vertices by C_n and the path on n vertices by P_n.

The union of $G_i = (V_i, E_i)$, for $i = 1, \ldots, h$, is $\bigcup_{i=1}^h G_i = (\bigcup_{i=1}^h V_i, \bigcup_{i=1}^h E_i)$. An (edge) covering of a graph G is a set of subgraphs $\{G_i, i = 1, \ldots, h\}$ such that $G = \bigcup_{i=1}^h G_i$. The following observation is useful when bounding minimum rank from above by using a covering to exhibit a low rank matrix.

Observation 1.2 [Fallat and Hogben 2007]. If $G = \bigcup_{i=1}^h G_i$, then

$$mr(G) \leq \sum_{i=1}^h mr(G_i).$$
The path cover number $P(G)$ of G is the smallest positive integer m such that there are m vertex-disjoint induced paths in G such that every vertex of G is a vertex of one of the paths. The path cover number was first used in the study of minimum rank and maximum eigenvalue multiplicity in [Johnson and Leal Duarte 1999] (since the matrices in $\mathcal{F}(G)$ are symmetric, algebraic and geometric multiplicities of eigenvalues are the same, and since the diagonal is free, maximum eigenvalue multiplicity is the same as maximum nullity). Johnson and Duarte [1999] showed that for a tree T, $P(T) = M(T)$; however, Barioli et al. [2004] showed that $P(G)$ and $M(G)$ are not comparable for graphs unless some restriction is imposed on the type of graph. A graph is planar if it can be drawn in the plane with no edge crossings. A graph is outerplanar if it has a drawing in the plane without crossing edges such that one face contains all vertices. Recently Sinkovic established the following relationship between $P(G)$ and $M(G)$ for outerplanar graphs.

Theorem 1.3 [Sinkovic 2010]. If G is an outerplanar graph, then $P(G) \geq M(G)$.

A connected graph G is k-connected if for any set of vertices S such that $G - S$ is disconnected, $|S| \geq k$. The dual G^d of a 3-connected planar graph G is the graph obtained by putting a dual vertex in each region of a plane drawing of G and a dual edge between two dual vertices whenever the original regions share an original edge (we assume the graph is 3-connected to ensure that the dual is determined by the graph rather than a particular plane embedding). At a research meeting devoted to minimum rank at the American Institute of Mathematics, the following questions were asked:

Question 1.4. If G is a 3-connected planar graph, is it true that $M(G^d) = M(G)$?

Question 1.5. If G is a 3-connected planar graph, is it true that $Z(G^d) = Z(G)$?

In Section 3 we give examples of graphs G such that $M(G^d) \neq M(G)$ and $Z(G^d) \neq Z(G)$. The examples are taken from the family of estrellas. This family and the related family of ciclos are defined in Section 2, and the minimum ranks, maximum nullities, and zero forcing numbers of some members of these families are established. In Section 4 we determine the vertex spreads and edge spreads of select members of the ciclo and estrella families, thereby computing the minimum ranks, maximum nullities, and zero forcing numbers of additional families of graphs (spreads are defined in Section 4).

2. Ciclo and estrella graph families

Definition 2.1. Let G be a graph and let e be an edge of G. A t-ciclo of G with e, denoted by $C_t(G, e)$, is constructed from a t-cycle C_t and t copies of G by identifying each edge of C_t with the edge e in one copy of G. If a symbol for the graph identifies a specific edge, or if G is edge-transitive (so it is not necessary to
Figure 1. The complete ciclo $C_4(K_4)$ and the complete estrella $S_4(K_4)$.

specify edge e), then the notation $C_t(G)$ is used. A vertex on C_t is called a cycle vertex.

The ciclo $C_4(K_4)$ is shown in Figure 1. Ciclos of complete graphs are discussed in Section 2A. The order of $C_t(G)$ is $(|G| - 1)t$. Note that although $C_t(G, e)$ is defined as a union of a t-cycle C_t and t copies of G to explain the construction, in fact $C_t(G, e)$ is a union of just the t copies of G.

Definition 2.2. Let G be a graph, let e be an edge of G, and let v be a vertex of G that is not an endpoint of e. A t-estrella of G with e and v, denoted by $S_t(G, e, v)$, is the union of a t-ciclo $C_t(G, e)$ and the complete bipartite graph $K_{1,t}$ with each degree one vertex of $K_{1,t}$ identified with one copy of v. If a symbol for the graph identifies a specific edge and vertex, or if G is vertex- and edge-transitive (so it is not necessary to specify e and v), then the notation $S_t(G)$ is used. The degree t vertex of the $K_{1,t}$ used to construct the estrella is called the star vertex of the estrella, and every neighbor of the star vertex is called a starneighbor vertex. A cycle vertex in the ciclo that is used to construct the estrella is also called a cycle vertex in the estrella.

The estrella $S_4(K_4)$ is shown in Figure 1. The order of $S_t(G)$ is $(|G| - 1)t + 1$. Estrellas of complete graphs are discussed in Section 2B. The families of ciclos and estrellas formed from house graphs (see Sections 2C and 2D) are introduced because of their importance as examples answering the duality questions (see Questions 1.4 and 1.5 above). Related families of ciclos are studied in Sections 2E and 2F. Another natural family of ciclos are the cycle ciclos, discussed in Section 2G.

2A. The complete ciclo $C_t(K_r)$.

Definition 2.3. The complete ciclo, denoted by $C_t(K_r)$, is the ciclo of the complete graph K_r, with $t, r \geq 3$. (Note that K_r is edge-transitive.) A vertex not on C_t is called a noncycle vertex.

The order of $C_t(K_r)$ is $(r - 1)t$.

Theorem 2.4. For $t \geq 3$ and $r \geq 3$,

\[M(C_t(K_r)) = Z(C_t(K_r)) = (r - 2)t, \quad mr(C_t(K_r)) = t. \]
Figure 2. The zero forcing sets for the complete cycles $C_t(K_3)$ and $C_t(K_r)$.

Proof. First, we will derive a lower bound for the maximum nullity. We know from Observation 1.2 that the minimum rank of a graph will be less than or equal to the sum of the minimum ranks of the subgraphs in a covering of it. Since every $C_t(K_r)$ can be covered by t copies of K_r graphs, each of minimum rank 1, $mr(C_t(K_r)) \leq t$ and $(r - 2)t \leq M(C_t(K_r))$.

The zero forcing number can be used to bound the maximum nullity from above. There are many possible zero forcing sets of minimum cardinality, but it suffices to exhibit one for each of the two cases $r = 3$ and $r \geq 4$ (see Figure 2).

Case $r = 3$. A set Z consisting of $t - 1$ cycle vertices and one noncycle vertex adjacent to the cycle vertex that is not in Z is a zero forcing set of t vertices.

Case $r \geq 4$. Let Z consist of all the cycle vertices and for each K_r, all but one of the noncycle vertices. Then Z is a zero forcing set because there will always be at least one black noncycle vertex in each K_r that will force the one white noncycle vertex, coloring the entire graph. Note that $|Z| = (r - 2)t$.

In either case, $M(C_t(K_r)) \leq Z(C_t(K_r)) \leq (r - 2)t$.

□

2B. The complete estrella $S_t(K_r)$.

Definition 2.5. The complete estrella, denoted by $S_t(K_r)$, is the estrella of the complete graph K_r, with $t, r \geq 3$. (Note that K_r is vertex- and edge-transitive.) A vertex in $S_t(K_r)$ that is not the star vertex, not a starneighbor vertex, and not a cycle vertex is called a standard vertex.

The order of $S_t(K_r)$ is $(r - 1)t + 1$, and $S_t(K_4)$ is planar and 3-connected.

Theorem 2.6. For $t \geq 3$ and $r \geq 4$,

$$mr(S_t(K_r)) = t + 2 \quad \text{and} \quad M(S_t(K_r)) = Z(S_t(K_r)) = (r - 2)t - 1.$$

Proof. Note that $|S_t(K_r)| = (r - 1)t + 1$. Since $S_t(K_r)$ can be covered by t copies of K_r (each of minimum rank 1) and one $K_{1,t}$ (of minimum rank 2), $mr(S_t(K_r)) \leq t + 2$ and $(r - 2)t - 1 \leq M(S_t(K_r))$.

Define a set Z consisting of all cycle vertices and all but one standard vertices; note $|Z| = (r - 2)t - 1$. We claim Z is a zero forcing set. In each of the complete
graphs that has all its standard vertices in \(Z \), any black standard vertex can force the one white starneighbor vertex. Then any one of the (now) black starneighbor vertices can force the star vertex. Then the star vertex forces the one remaining white starneighbor vertex, and any black neighbor forces the last white vertex. So the entire graph is black, establishing the claim. Thus,

\[
M(S_t(K_r)) \leq Z(S_t(K_r)) \leq (r - 2)t - 1.
\]

Theorem 2.7. For \(t \geq 3 \),

\[\text{mr}(S_t(K_3)) = t \quad \text{and} \quad M(S_t(K_3)) = Z(S_t(K_3)) = t + 1.\]

Proof. By Theorem 2.4, \(\text{mr}(C_t(K_3)) = t \), and since \(C_t(K_3) \) is an induced subgraph of \(S_t(K_3) \),

\[t = \text{mr}(C_t(K_3)) \leq \text{mr}(S_t(K_3)). \]

To show that \(\text{mr}(S_t(K_3)) \leq t \), we construct a matrix of rank \(t \) in \(\mathcal{S}(C_t(K_3)) \) and extend it to a matrix in \(\mathcal{S}(S_t(K_3)) \) without changing the rank of the matrix. Number the vertices of \(C_t(K_3) \) as follows:

\[
\begin{array}{c}
1 \\
2 \\
t+1 \\
t+2 \\
t \\
2t \\
t-1 \\
2t-1 \\
2t-2
\end{array}
\]

Define the \(t \times t \) matrix \(B \) to be

\[
B = \begin{bmatrix}
1 & 0 & 0 & \ldots & 0 & 0 & -1 \\
-1 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & 0 & \ldots & -1 & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & -1 & 1
\end{bmatrix}
\]

Note that the sum of each of the rows and the sum of each of the columns equal zero. Then the \(2t \times 2t \) matrix

\[
A = \begin{bmatrix}
I & B \\
B^T & B^T B
\end{bmatrix} \in \mathcal{S}(C_t(K_3))
\]
has rank \(A = t \). Extend the matrix \(A \) to the \((2t + 1) \times (2t + 1)\) matrix

\[
A' = \begin{bmatrix}
I_{t \times t} & B & 1_t \\
B^T & B^T B & 0_t \\
1_t^T & 0_t^T & t
\end{bmatrix} \in \mathcal{F}(S_t(K_3)).
\]

Note that \(B^T B \) shares properties with \(B \) in that for each row and column, the sum is zero as well. Thus the entries of the new column \(2t + 1\) of \(A' \) is the sum of the columns of \(A \), and, similarly for the rows. Thus rank \(A' = t \), and \(\text{mr}(S_t(K_3)) \leq t \).

2C. The house ciclo \(C_t(H_0) \).

Definition 2.8. A house \(H_0 \) (also called an empty house) is the union of a 3-cycle and a 4-cycle with one edge in common, shown on the left in Figure 3. The symbol \(H_0 \) also designates the specific edge \(e \) and vertex \(v \) shown in the figure (this figure also includes numbering that will be used later). A house ciclo is \(C_t(H_0) = C_t(H_0, e) \).

The house ciclo \(C_4(H_0) \) is shown on the right in Figure 3. Note that the order of \(C_t(H_0) \) is \(4t \) and \(C_t(H_0) \) is outerplanar.

\[\begin{array}{c}
v=3 \\
\end{array}\]

\begin{array}{c}
2 \\
1 \\
e \\
5 \\
4
\end{array}

\[\begin{array}{c}
\text{Figure 3. The house } H_0 \text{ and the house ciclo } C_4(H_0).
\end{array}\]

Observation 2.9. For \(t \geq 3 \), \(P(C_t(H_0)) \leq t \), because we can create a covering with \(t \) paths:

\[\begin{array}{c}
\end{array}\]

Theorem 2.10. For \(t \geq 3 \), \(M(C_t(H_0)) = t \) and \(\text{mr}(C_t(H_0)) = 3t \).

Proof. Because house ciclos are outerplanar, Theorem 1.3 and Observation 2.9 give the upper bound \(M(C_t(H_0)) \leq P(C_t(H_0)) \leq t \) for the maximum nullity of \(C_t(H_0) \). Using the obvious covering of the house ciclo \(C_t(H_0) \) by the set of \(t \) houses \(H_0 \), and the fact that \(\text{mr}(H_0) = 3 \), we have the same lower bound on maximum nullity: \(M(C_t(H_0)) = |C_t(H_0)| - \text{mr}(C_t(H_0)) \geq |C_t(H_0)| - 3t \geq t \). Therefore, \(M(C_t(H_0)) = t \) and \(\text{mr}(C_t(H_0)) = 3t \). \(\square \)
Theorem 2.11. For even \(t \geq 4 \), \(Z(C_t(H_0)) = t \).

Proof. Since \(t = M(C_t(H_0)) \leq Z(C_t(H_0)) \), it suffices to exhibit a zero forcing set \(Z \) with \(|Z| = t \). Let \(Z \) consist of pairs chosen in alternate houses of \(C_t(H_0) \) going around the cycle (2 vertices in the first house, skip the second house, 2 vertices in the third house, skip the fourth house, etc.), where each pair of vertices consists of the peak vertex \(v = 3 \) and its neighbor 2, labeled as in Figure 3. Because \(t \) is even, \(|Z| = t \). Within each house that contains two black vertices, the remaining three vertices are forced to turn black. Then, the remaining three white vertices in a house in between two houses having all vertices black will be forced. So \(Z \) is a zero forcing set. \(\Box \)

In the case \(t \) is odd, the method used in the proof of Theorem 2.11 will produce a zero forcing set of order \(t + 1\), so for \(t \) odd, \(Z(C_t(H_0)) \leq t + 1 \). For odd \(t \leq 9 \), it has been established by use of software [DeLoss et al. 2008] that \(Z(C_t(H_0)) = t + 1 \).

2D. The house estrella \(S_t(H_0) \).

Definition 2.12. A house estrella is \(S_t(H_0) = S_t(H_0, e, v) \), where \(v \) and \(e \) are as shown in Figure 3.

Here is the house estrella \(S_4(H_0) \). Note that the order of \(S_t(H_0) \) is \(4t + 1 \) and \(S_t(H_0) \) is planar and 3-connected.

![House Estrella](image)

We adopt the following convention for numbering the vertices of \(S_t(H_0) \). We start the numbering on one of the houses from the lower left corner, starting with 1, and complete the numbering clockwise around the house, as in Figure 3. When that house is done, continue to the clockwise-adjacent house. The star vertex is numbered \(4t + 1 \).

Theorem 2.13. For \(t \geq 3 \),

\[
\text{mr}(S_t(H_0)) = 3t \quad \text{and} \quad M(S_t(H_0)) = t + 1.
\]

Proof. In Theorem 2.10, it was shown that \(\text{mr}(C_t(H_0)) = 3t \), and since \(C_t(H_0) \) is an induced subgraph of \(S_t(H_0) \), we have \(3t = \text{mr}(C_t(H_0)) \leq \text{mr}(S_t(H_0)) \).

Next, we will construct a specific matrix \(A \in S(C_t(H_0)) \) having rank \(A = 3t \) that we can extend to a matrix \(A' \) such that \('A'(A') = S_t(H_0) \) and rank \(A' = 3t \), thus showing that the minimum rank of \(S_t(H_0) \) is also \(3t \).
Define the submatrices
\[U = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \quad W = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}. \]

The sum of the adjacency matrix of \(C_t(H_0) \) and the \(4t \times 4t \) identity matrix is the \(4t \times 4t \) matrix
\[
A = \begin{bmatrix} V & W & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & U \\ U & V & W & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\ 0 & U & V & W & \ldots & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & U & V & W & \ldots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & V & W & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \ldots & U & V & W & 0 & 0 \\ 0 & 0 & 0 & 0 & \ldots & 0 & U & V & W & 0 \\ W & 0 & 0 & 0 & \ldots & 0 & 0 & U & V & 0 \end{bmatrix}.
\]

Note that \(V \) is the submatrix corresponding to the adjacencies between the vertices numbered \(4s + 1, 4s + 2, 4s + 3, 4s + 4 \), and \(V \) lies on the diagonal.

Let \(b \) be the 0,1-vector describing the adjacencies of the star vertex. If \(b \in \text{range } A \), then there exists a vector \(x \) such that \(Ax = b \) and for \(A' = \begin{bmatrix} A & Ax \\ x^TA & x^T Ax \end{bmatrix} \), we have
\[
\text{rank } A' = \text{rank } A \quad \text{and} \quad \mathcal{G}(A') = S_t(H_0).
\]

Thus it suffices to show that \(b \) is in the range of \(A \).

To prove \(b \in \text{range } A \), we show that \(b \in (\ker A)^\perp \) and apply the fact that for any real symmetric matrix \(A \), \((\ker A)^\perp = \text{range } A \) [Han and Neumann 2007, Fact 5.2.15]. Establishing \(b \in (\ker A)^\perp \) can be done by finding a basis for the kernel of \(A \) and showing that \(b \) is orthogonal to the vectors in the basis of the kernel. To construct the basis, we construct \(t \) linearly independent null vectors (and note that \(\text{null } A \leq M(C_t(H_0)) = t \) by Theorem 2.10).

Let \(\alpha = [0, 0, -1, 1], \quad \omega = [0, -1, 1, 0], \quad \beta = [0, -1, 0, 1], \quad 0 = [0, 0, 0, 0] \).

Then construct the vectors in the following manner:
\[
\mathbf{v}_1 = \left[\beta, \beta, \ldots, \beta, \beta \right]^T, \quad \mathbf{v}_2 = \left[0, 0, 0, \omega \right], \quad \mathbf{v}_3 = \left. \begin{bmatrix} 0 \\ \alpha \\ \omega \\ \beta \end{bmatrix} \right|_{t},
\]
\[\mathbf{v}_2 = [\alpha, \beta, \ldots, \beta, \omega]^T, \]
\[\mathbf{v}_3 = [\alpha, \beta, \ldots, \beta, \omega, 0]^T, \]
\[\vdots \]
\[\mathbf{v}_r = [\alpha, \beta, \ldots, \beta, \omega, 0, \ldots, 0]^T, \]
\[\vdots \]
\[\mathbf{v}_t = [\alpha, \omega, 0, \ldots, 0]^T. \]

To show that the vectors \(\mathbf{v}_i, i = 1, \ldots, t \) are null vectors of \(A \) it is sufficient to observe that
\[
[U \ V \ W]_{4 \times 12} = 0_{4 \times 13}.
\]

Next, we show that the vectors \(\mathbf{v}_i, i = 1, \ldots, t \) are linearly independent, viewing these vectors as block vectors (as constructed). Suppose \(\sum_{i=1}^{t} \gamma_i \mathbf{v}_i = 0 \). The vector \(\mathbf{v}_1 \) has \(\beta^T = [0, -1, 0, 1]^T \) as the last block of the vector, so the last coordinate is 1. The vector \(\mathbf{v}_2 \) has \(\omega^T = [0, -1, 1, 0]^T \) as the last block of the vector, so the last coordinate is 0, and the last coordinate of \(\mathbf{v}_i, i \geq 3 \) is also 0. Thus \(\gamma_1 = 0 \). Assuming \(\gamma_k = 0 \), by examining block \(t - k + 1 \) of \(\sum_{i=k+1}^{t} \gamma_i \mathbf{v}_i = 0 \), we see that \(\gamma_{k+1} = 0 \). Thus the vectors \(\mathbf{v}_1, \ldots, \mathbf{v}_t \) are linearly independent.

To complete the proof it suffices to show that 0,1-vector \(\mathbf{b} \) describing the adjacencies of the star vertex is orthogonal to \(\ker A \). Let \(\varphi = [0, 0, 1, 0] \); then \(\mathbf{b} = [\varphi, \ldots, \varphi]^T \). Note that
\[\varphi \cdot \alpha = -1, \quad \varphi \cdot \beta = 0, \quad \varphi \cdot \omega = 1. \]

Then
\[\mathbf{b} \cdot \mathbf{v}_1 = [\varphi, \ldots, \varphi]^T \cdot [\beta, \ldots, \beta]^T = \sum_{i=1}^{t} \varphi \cdot \beta = 0, \]
and for \(2 \leq r \leq t \),
\[
\mathbf{b} \cdot \mathbf{v}_r = [\varphi, \ldots, \varphi]^T \cdot [\alpha, \beta, \ldots, \beta, \omega, 0, \ldots, 0]^T \\
= \varphi \cdot \alpha + \sum_{i=1}^{t-r} \varphi \cdot \beta + \varphi \cdot \omega + \sum_{i=1}^{r-2} \varphi \cdot 0 \\
= -1 + 0 + 1 + 0 = 0.
\]

Therefore, \(\mathbf{b} \in (\ker A)^\perp \). \qed
Corollary 2.14. For even $t \geq 4$, $Z(S_t(H_0)) = t + 1$.

Proof. The zero forcing set Z of Theorem 2.11 together with the star vertex is a zero forcing set of order $t + 1$ and the result then follows from Theorem 2.13. □

For t odd, there is a zero forcing set of order $t + 2$, so for t odd, $Z(S_t(H_0)) \leq t + 2$.

For odd $t \leq 9$, it has been established by use of software [DeLoss et al. 2008] that $Z(S_t(H_0)) = t + 2$.

2E. The half-house ciclo $C_t(H_1)$.

Definition 2.15. A half-full house or half-house H_1 is a house with one diagonal in the square, as shown on the left in Figure 4. The symbol H_1 also designates the specific edge e and vertex v, as shown in this figure. A half-house ciclo is a ciclo of half-houses $C_t(H_1) = C_t(H_1, e)$.

![Figure 4. The half-house H_1 and half-house ciclo $C_4(H_1)$.](image)

The half-house ciclo $C_4(H_1)$ is also shown in Figure 4. Note that $mr(H_1) = 3 = |H_1| - 2$. The order of $C_t(H_1)$ is $4t$ and that $C_t(H_1)$ is outerplanar. Half-full house ciclos have many properties in common with house ciclos. The proofs of the results below are analogous to the proofs of the corresponding results for house ciclos, and are omitted.

Observation 2.16. For $t \geq 3$, $P(C_t(H_1)) \leq t$.

Theorem 2.17. For $t \geq 3$,

$$M(C_t(H_1)) = t \quad \text{and} \quad mr(C_t(H_1)) = 3t.$$

Theorem 2.18. For even t, $Z(C_t(H_1)) = t$.

In the case t is odd, $Z(C_t(H_1)) \leq t + 1$.

2F. The full-house ciclo $C_t(H_2)$.

Definition 2.19. A full house H_2 is the union of K_4 and K_3 with one edge in common, or equivalently, a house with both diagonals in the square, as shown on the left in Figure 5. The symbol H_2 also designates the specific edge e and vertex v, as shown in this figure (this figure also includes numbering that will be used later). A full house ciclo is a ciclo of full houses $C_t(H_2) = C_t(H_2, e)$.
Figure 5. The full house H_2 and full house ciclo $C_4(H_2)$.

The full house ciclo $C_4(H_2)$ is also shown in Figure 5. Note that the order of $C_t(H_2)$ is $4t$ and $\text{mr}(H_2) = 2$. We adopt the following convention for numbering the vertices of $C_t(H_2)$. We start the numbering on one of the houses from the lower left corner, starting with 1, and complete the numbering clockwise around the house, as in Figure 5. When that house is done, continue with the clockwise-adjacent house.

Theorem 2.20. For $t \geq 3$, $M(C_t(H_2)) = Z(C_t(H_2)) = 2t$ and $\text{mr}(C_t(H_2)) = 2t$.

Proof. We can bound the maximum nullity from below by bounding the minimum rank from above using a covering of $C_t(H_2)$ with t copies of the full house. Since a full house has minimum rank 2 and $|C_t(H_2)| = 4t$, $2t \leq M(C_t(H_2))$.

Next, we can derive an upper bound for the maximum nullity by showing that $Z = \{1, 2, 3, 6, 7, 10, 11, \ldots, 4k+2, 4k+3, \ldots, 4(t-2)+2, 4(t-2)+3, 4(t-1)+2\}$ is a zero forcing set. There are three black vertices of the four vertices in the first house, one in the last, and two in every other house (where the first four of the five vertices actually in a house are associated with that house to avoid duplication). To see that Z is a zero forcing set, examine the first full house. Since vertices 1, 2, and 3 are black, the other two vertices in house 1 are forced, which means the next house already has its first vertex $5 = 4(2-1) + 1$ black, in addition to 6 and 7. This process will continue around the ciclo until we reach the last full house, house t, which now has vertices $4(t-1) + 1, 4(t-1) + 2$, and 1 colored, so the remaining two vertices in this house can be forced. Since $|Z| = 2t$,

$$2t \leq M(C_t(H_2)) \leq Z(C_t(H_2)) \leq |Z| = 2t,$$

and we have equality throughout. \square

2G. The cycle ciclo $C_t(C_r)$.

Definition 2.21. A cycle ciclo is a ciclo of cycles $C_t(C_r)$, $r \geq 4$.

The cycle ciclo $C_4(C_6)$ is shown in Figure 6. The order of $C_t(C_r)$ is $(r-1)t$ and $C_t(C_r)$ is outerplanar. Cycle ciclos have many properties in common with house
observation 2.22. For $t \geq 3$, $P(C_t(C_r)) \leq t$.

Theorem 2.23. For $t \geq 3$, $M(C_t(C_r)) = t$ and $mr(C_t(C_r)) = (r - 2)t$.

Theorem 2.24. For even $t \geq 4$, $Z(C_t(C_r)) = t$.

In the case t is odd, $Z(C_t(C_r)) \leq t + 1$.

2H. Summary. The results established in this section for certain families of ciclos and estrellas can be summarized as follows:

| Graph G | $|G|$ | $mr(G)$ | $M(G)$ | $Z(G)$ |
|---------------------|------------|-------------|-------------|--------------|
| $C_t(K_r)$ | $(r - 1)t$ | t | $(r - 2)t$ | $(r - 2)t$ |
| $C_t(H_0)$ | $4t$ | $3t$ | t | t if t even $\leq t + 1$ if t odd |
| $C_t(H_1)$ | $4t$ | $3t$ | t | t if t even $\leq t + 1$ if t odd |
| $C_t(H_2)$ | $4t$ | $2t$ | $2t$ | $2t$ |
| $C_t(C_r)$ ($r \geq 4$) | $(r - 1)t$ | $(r - 2)t$ | t | t if t even $\leq t + 1$ if t odd |
| $S_t(K_r)$ ($r \geq 4$) | $(r - 1)t + 1$ | $t + 2$ | $(r - 2)t - 1$ | $(r - 2)t - 1$ |
| $S_t(K_3)$ | $2t + 1$ | t | $t + 1$ | $t + 1$ |
| $S_t(H_0)$ | $4t + 1$ | $3t$ | $t + 1$ | $t + 1$ if t even $\leq t + 2$ if t odd |

3. Complete estrellas and house estrellas as duals

The next theorem and our previous results show that complete estrellas and house estrellas provide a negative answer to Questions 1.4 and 1.5.

Theorem 3.1. The dual of the complete estrella $S_t(K_4)$ is the house estrella $S_t(H_0)$.

Figure 6. The cycle ciclo $C_4(C_6)$.

ciclos. Note that $mr(C_r) = r - 2 = |C_r| - 2$ and $mr(H_0) = 3 = |H_0| - 2$, and $Z(C_r) = 2 = Z(H_0)$. The proofs of the results below are analogous to the proofs of the corresponding results for house ciclos, and are omitted.
Figure 7. The house estrella $S_t(H_0)$, in lighter color, as the dual of the complete estrella $S_t(K_4)$, in black.

Proof. Since $S_t(K_4)$ is a 3-connected graph, its dual is independent of how it is drawn in the plane, so we draw $S_t(K_4)$ with the star vertex in the center, as shown by the black lines in Figure 7. Each K_4 together with the star vertex produces a house as its dual, so ignoring the infinite region we obtain the house ciclo $C_t(H_0)$ as the dual, shown in a lighter color in the figure. The last step to creating the dual is to add a dual point that represents the infinite region outside the $S_t(K_4)$, and it connects to the vertex numbered 3 of each house (with numbering as in Figure 3), creating the house estrella $S_t(H_0)$ (Figure 7).

□

Corollary 3.2. The example in Theorem 3.1 answers Questions 1.4 and 1.5 in the negative, since $M(S_4(K_4)) = Z(S_4(K_4)) = 7$ and $M(S_4(H_0)) = Z(S_4(H_0)) = 5$.

4. Rank spread, null spread, and zero spread

If the minimum rank, maximum nullity, and/or zero forcing number are known for a graph G, it is sometimes possible to use this information to determine the same parameter for the graph obtained from G by deleting a vertex or edge. In this section we determine the minimum rank/maximum nullity and zero forcing number of any complete ciclo or complete estrella from which one vertex or one edge has been deleted. Note that a complete ciclo has two types of vertex, a cycle vertex and a noncycle vertex. For a complete estrella there can be four types of vertex: the star vertex, a starneighbor vertex, a cycle vertex, and a standard vertex; note that $S_t(K_3)$ does not have any standard vertices.

4A. Vertex spreads of complete ciclos and estrellas. Let G be a graph and v be a vertex in G. The rank spread of v, defined in [Barioli et al. 2004], is

$$r_v(G) = mr(G) - mr(G - v),$$
and it is known [Nylen 1996] that

\[0 \leq r_v(G) \leq 2. \]

By analogy with the rank spread, the null spread and the zero spread were defined in [Edholm et al. 2010]. The **null spread** of \(v \) is \(n_v(G) = M(G) - M(G - v) \). The **zero spread** of \(v \) is \(z_v(G) = Z(G) - Z(G - v) \). Clearly, for any graph \(G \) and vertex \(v \) of \(G \),

\[r_v(G) + n_v(G) = 1, \]

and thus

\[-1 \leq n_v(G) \leq 1. \]

Theorem 4.1 [Huang et al. 2010; Edholm et al. 2010]. For every graph \(G \) and vertex \(v \) of \(G \),

\[-1 \leq z_v(G) \leq 1. \]

As might be expected from the loose relationship between zero forcing number and maximum nullity, the parameters \(n_v(G) \) and \(z_v(G) \) are not comparable, and examples of this are given in [Edholm et al. 2010]. However, under certain circumstances we can use one spread to determine the other.

Observation 4.2. [Barrett et al. 2008] Let \(G \) be a graph such that \(M(G) = Z(G) \) and let \(v \) be a vertex of \(G \). Then \(n_v(G) \geq z_v(G) \), and so if \(z_v(G) = 1 \), then \(n_v(G) = 1 \) (equivalently, \(r_v(G) = 0 \)).

Theorem 4.3. For any vertex \(v \), \(M(C_t(K_r) - v) = Z(C_t(K_r) - v) = (r - 2)t - 1 \), or equivalently, \(n_v(C_t(K_r)) = z_v(C_t(K_r)) = 1 \).

Proof. We exhibit a zero forcing set \(Z \) for \(C_t(K_r) - v \) such that \(|Z| = (r - 2)t - 1 \) (here \(r \geq 3 \)). Since \(Z(C_t(K_r)) = (r - 2)t \) and \(z_v(C_t(K_r)) \leq 1 \), \(z_v(C_t(K_r)) = 1 \) and \(Z(C_t(K_r) - v) = (r - 2)t - 1 \). Since \(M(C_t(K_r)) = Z(C_t(K_r)) \), by Observation 4.2 \(n_v(C_t(K_r)) = 1 \), and thus \(M(C_t(K_r) - v) = (r - 2)t - 1 \). When exhibiting a zero forcing set, we separate \(C_t(K_3) \) from \(C_t(K_r) \) with \(r \geq 4 \). For each of these two cases, there are two types of vertex \(v \), a cycle vertex and a noncycle vertex. The zero forcing sets \(Z \) are illustrated as black vertices in Figure 8.

Case \(C_t(K_3) \). For a cycle vertex \(v \), let the two noncycle neighbors of \(v \) in \(C_t(K_3) \) be denoted by \(u \) and \(w \). Then \(Z \) consists of every noncycle vertex except \(w \). For a noncycle vertex \(v \), let the two neighbors of \(v \) (both of which are cycle vertices) be denoted by \(u \) and \(w \). Then \(Z \) consists of \(u \) and every noncycle vertex except for the one adjacent to \(w \).

Case \(C_t(K_r) \). Note that each of the one or two copies of \(K_r \) in which \(v \) was a vertex has now become \(K_{r-1} \). For a cycle vertex \(v \), \(Z \) consists of all the remaining cycle vertices and all but one noncycle vertex in each \(K_r \) or \(K_{r-1} \). For a noncycle
vertex \(u \), \(Z \) consists of every cycle vertex and all but one noncycle vertex in each \(K_r \) or \(K_{r-1} \).

Theorem 4.4. For every vertex \(v \),

\[
M(S_t(K_3) - v) = Z(S_t(K_3) - v) = t,
\]

or equivalently, \(n_v(S_t(K_3)) = z_v(S_t(K_3)) = 1 \).

Proof. First let \(v \) be the star vertex of \(S_t(K_3) \). Then \(S_t(K_3) - v = C_t(K_3) \), so by Theorems 2.4 and 2.7, \(n_v(S_t(K_3)) = z_v(S_t(K_3)) = 1 \). For any vertex \(v \) that is not the star vertex, we exhibit a zero forcing set \(Z \) for \(S_t(K_3) - v \) such that \(|Z| = t \), and as in Theorem 4.3 this establishes the theorem. In addition to the star vertex, there are two types of vertex in \(S_t(K_3) \), a cycle vertex and a starneighbor vertex. The zero forcing sets \(Z \) are illustrated as black vertices in Figure 9.

For a starneighbor vertex \(v \), \(Z \) consists of every cycle vertex. For a cycle vertex \(v \), let the two starneighbor vertices adjacent to \(v \) in \(S_t(K_3) \) be denoted by \(u \) and \(w \). Then \(Z \) consists of \(u \) and every remaining cycle vertex in \(S_t(K_3) - v \).

Figure 8. The zero forcing sets for \(C_t(K_3) \) (\(v \) a cycle vertex and \(u \) a noncycle vertex) and \(C_t(K_r) \) with \(r \geq 4 \) (\(v \) a cycle vertex and \(u \) a noncycle vertex).

Figure 9. The zero forcing sets for \(S_t(K_3) - v \) for \(v \) a starneighbor vertex and \(v \) a cycle vertex.
Figure 10. The zero forcing sets for $S_t(K_r)$ for v a cycle vertex, v a standard vertex, and v a starneighbor vertex (with $r \geq 4$).

Theorem 4.5. Let $r \geq 4$. For every vertex v except the star vertex,

$$M(S_t(K_r) - v) = Z(S_t(K_r) - v) = (r - 2)t - 2,$$

or equivalently,

$$n_v(S_t(K_r)) = z_v(S_t(K_r)) = 1.$$

If x is the star vertex, then $M(S_t(K_r) - x) = Z(S_t(K_r) - x) = (r - 2)t$, or equivalently, $n_x(S_t(K_r)) = z_x(S_t(K_r)) = -1$.

Proof. First let x be the star vertex of $S_t(K_r)$ with $r \geq 4$. Then $S_t(K_r) - x = C_t(K_r)$, so by Theorems 2.4 and 2.6, $n_x(S_t(K_r)) = z_x(S_t(K_r)) = -1$. For any vertex v that is not the star vertex, we exhibit a zero forcing set Z for $S_t(K_r) - v$ of order $(r - 2)t - 2$, and as in Theorem 4.3 this establishes the result. The zero forcing sets Z are illustrated as black vertices in Figure 10.

Let v be a cycle vertex, a standard vertex, or a starneighbor vertex, and in $S_t(K_r)$ choose one K_r that does not contain v. Note that each of the one or two copies of K_r in which v was a vertex has now become $K_r - 1$. If v is a cycle vertex or a standard vertex, then Z consists of all remaining cycle vertices, all remaining standard vertices in every $K_r - 1$ or K_r except the chosen K_r, and all but one standard vertices in the chosen K_r. If v is a starneighbor vertex, then Z consists of all cycle vertices, all standard vertices in every $K_r - 1$ or K_r except the chosen K_r, and all but one standard vertices in the chosen K_r and in the $K_r - 1$.

4B. Edge spreads of complete ciclos and estrellas. In analogy with the rank, null, and zero spreads for vertex deletion, spreads for edge deletion were defined in [Edholm et al. 2010]. Let G be a graph and e be an edge in G. The rank edge spread of e is $r_e(G) = mr(G) - mr(G - e)$. The null edge spread of e is $n_e(G) = M(G) - M(G - e)$. The zero edge spread of e is $z_e(G) = Z(G) - Z(G - e)$. Clearly, for any graph G and edge e of G, $r_e(G) + n_e(G) = 0$ [Edholm et al. 2010].

Observation 4.6 [Nylen 1996]. For any graph G and edge e of G, $-1 \leq r_e(G) \leq 1$ and thus $-1 \leq n_e(G) \leq 1$.
Theorem 4.7 [Edholm et al. 2010]. For every graph G and every edge e of G,

$$-1 \leq z_e(G) \leq 1.$$

In the same reference it is shown that, although the bounds on the zero edge spread are the same as the bounds on the null edge spread, they are not comparable. As with vertex spread, under certain circumstances we can use one spread to determine the other.

Observation 4.8 [Edholm et al. 2010]. Let G be a graph such that $M(G) = Z(G)$ and let e be an edge of G. Then $n_e(G) \geq z_e(G)$, and so if $z_e(G) = 1$, then $n_e(G) = 1$ (equivalently, $r_e(G) = 0$).

An edge is classified based on its vertices. For a complete ciclo, there can be three types of edge: cycle-cycle, noncycle-cycle, and noncycle-noncycle (if $r \geq 4$). For a complete estrella there can be six types of edge: cycle-cycle, standard-cycle (if $r \geq 4$), cycle-starneighbor, standard-standard (if $r \geq 5$), standard-starneighbor (if $r \geq 4$), and star-starneighbor.

Theorem 4.9. For any edge e, $M(C_t(K_r) - e) = Z(C_t(K_r) - e) = (r - 2)t - 1$, or equivalently, $n_e(C_t(K_r)) = z_e(C_t(K_r)) = 1$.

Proof. We exhibit a zero forcing set Z for $C_t(K_r) - e$ such that $|Z| = (r - 2)t - 1$ (here $r \geq 3$). Since $Z(C_t(K_r)) = (r - 2)t$ and $z_e(C_t(K_r)) \leq 1$, $z_e(C_t(K_r)) = 1$ and $Z(C_t(K_r) - e) = (r - 2)t - 1$. Since $M(C_t(K_r)) = Z(C_t(K_r))$, by Observation 4.8 $n_e(C_t(K_r)) = 1$, and thus $M(C_t(K_r) - e) = (r - 2)t - 1$. When exhibiting a zero forcing set, we separate $C_t(K_3)$ from $C_t(K_r)$ with $r \geq 4$. The zero forcing sets Z are illustrated as black vertices in Figure 11.

![Figure 11](image-url)
Case $C_t(K_3)$. There are two types of edges e, a cycle-cycle edge and a noncycle-cycle edge. For a cycle-cycle edge $e = \{u, w\}$, Z consists of the noncycle vertex in a K_3 that contains u but not w, and every cycle vertex except u and w. For a noncycle-cycle edge $e = \{v, u\}$, let v be the noncycle vertex of e and let u be the cycle vertex of e. Then Z consists of every noncycle vertex except for the one adjacent to u.

Case $C_t(K_r)$. There are three types of edges: cycle-cycle, noncycle-noncycle, and noncycle-cycle. For e a cycle-cycle edge or noncycle-noncycle edge, Z consists of all cycle vertices except for one of the two cycle vertices in $K_r - e$ and all but one noncycle vertex in each K_r or $K_r - e$; in the case that e is a noncycle-noncycle edge, the noncycle vertex in $K_r - e$ that is not in Z must be an endpoint of e (this is relevant when $r \geq 5$). For a noncycle-cycle edge, Z consists of all the cycle vertices, all but one noncycle vertex in each K_r, and all but two noncycle vertices in the $K_r - e$; one of the two noncycle vertices in $K_r - e$ that is not in Z must be an endpoint of e (this is relevant when $r \geq 5$).

Theorem 4.10. For every edge e, $M(S_t(K_3) - e) = Z(S_t(K_3) - e) = t$, or equivalently, $n_e(S_t(K_3)) = z_e(S_t(K_3)) = 1$.

Proof. We exhibit a zero forcing set Z for $S_t(K_3) - e$ such that $|Z| = t$, and as in Theorem 4.9 this establishes the theorem. The zero forcing sets Z are illustrated as black vertices in Figure 12. There are three types of edges: cycle-cycle, star-starneighbor, and cycle-starneighbor. For a cycle-cycle edge or star-starneighbor edge e, let the two cycle vertices of the K_3 that contains at least one endpoint of e be denoted by u and w. Then Z consists of the starneighbor vertex in the K_3 that contains u but not w, and all cycle vertices except for w. For a cycle-starneighbor edge, Z consists of all cycle vertices.

Figure 12. The zero forcing sets for $S_t(K_3) - e$ where e is a cycle-cycle edge, a star-starneighbor edge, and a cycle-starneighbor edge.

Theorem 4.11. Let $r \geq 4$. For every edge e except a star-starneighbor edge,
\[M(S_t(K_r) - e) = Z(S_t(K_r) - e) = (r - 2)t - 2, \]
or, equivalently,

\[n_v(S_t(K_r)) = z_v(S_t(K_r)) = 1. \]

If \(d \) is a star-starneighbor edge, then

\[M(S_t(K_r) - d) = Z(S_t(K_r) - d) = (r - 2)t - 1, \]

or equivalently,

\[n_d(S_t(K_r)) = z_d(S_t(K_r)) = 0. \]

Proof. There can be 6 types of edges: cycle-cycle, standard-cycle, cycle-starneighbor, standard-standard (if \(r \geq 5 \)), standard-starneighbor, and star-starneighbor. For any edge \(e \) that is not a star-starneighbor edge, we exhibit a zero forcing set \(Z \) for \(S_t(K_r) - e \) of order \((r - 2)t - 2 \), and as in Theorem 4.9 this establishes the result. The zero forcing sets \(Z \) are illustrated as black vertices in Figure 13.

![Figure 13](image-url)

Figure 13. The zero forcing sets for \(S_t(K_r) - e \) for \(e \) a standard-cycle edge, a cycle-starneighbor edge, a standard-standard edge, a cycle-cycle edge, a standard-starneighbor edge, and a star-starneighbor edge (with \(r \geq 4 \)).
Let e be a standard-cycle edge, a cycle-starneighbor edge, or a standard-standard edge. Let u be a cycle vertex that is not an endpoint of e and is in the $K_r - e$. Then Z consists of all cycle vertices, all standard vertices in each K_r (or $K_r - e$) except those that contain u, and all but one of the standard vertices in the K_r and $K_r - e$ that contain u. In the case that e is a standard-standard edge, the standard vertex in $K_r - e$ that is not in Z must be an endpoint of e (this is relevant when $r \geq 6$).

For a cycle-cycle edge $e = \{w, u\}$, Z consists of all cycle vertices except w and u, all standard vertices in each K_r (or $K_r - e$) except those that contain u, all but one of the standard vertices in the K_r and $K_r - e$ that contain u, and the starneighbor vertex in the K_r and $K_r - e$ that contain u.

For a standard-starneighbor edge, choose one cycle vertex u in the $K_r - e$. Then Z consists of all cycle vertices except for u, all standard vertices in each K_r except the K_r that contains u, all standard vertices in $K_r - e$, and all but one of the standard vertices in the one K_r that contains u.

For a star-starneighbor edge d, let Z consist of all cycle vertices and all standard vertices except one standard vertex in a K_r that does not contain an endpoint of d. Then Z is a zero forcing set for $S_f(K_r - d)$. Since $S_f(K_r) - d$ can be covered by t copies of K_r and one $K_1, t-1$, we have $\text{mr}(S_f(K_r) - d) \leq t + 2$. Thus

$$(r - 2)t - 1 = |S_f(K_r) - d| - (t + 2) \leq \text{M}(S_f(K_r) - d) \leq Z(S_f(K_r) - d) \leq (r - 2)t - 1,$$

and we have equality throughout. □

References

Received: 2010-05-28 Revised: 2010-10-09 Accepted: 2010-10-10

edgardalmodovar@gmail.com Department of Mathematics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, United States

ldeloss@gmail.com Department of Mathematics, Iowa State University, Ames, IA 50011, United States

LHogben@iastate.edu Department of Mathematics, Iowa State University, Ames, IA 50011, United States

American Institute of Mathematics, 360 Portage Ave, Palo Alto, CA 94306

kahogenson@gmail.com Department of Mathematics, University of North Dakota, Grand Forks, ND 58202, United States

kaitlynemurphy@gmail.com Montclair State University, College of Science and Mathematics, Montclair, NJ 07043, United States

tpeters@iastate.edu Department of Mathematics, Iowa State University, Ames, IA 50011, United States

camila.ale.ramirez@gmail.com Department of Mathematics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, United States