7-14-1998

Carbon or boron modified titanium silicide

Andrew J. Thom
Iowa State University

Mufit Akinc
Iowa State University, makinc@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/patents
Part of the Materials Science and Engineering Commons

Recommended Citation
Thom, Andrew J. and Akinc, Mufit, "Carbon or boron modified titanium silicide" (1998). Iowa State University Patents. 84.
http://lib.dr.iastate.edu/patents/84

This Patent is brought to you for free and open access by the Iowa State University Research Foundation, Inc. at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Patents by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Carbon or boron modified titanium silicide

Abstract
A titanium silicide material based on Ti$_5$Si$_3$ intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti$_5$Si$_3$ base material in an amount (e.g. about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000 Si$_3$ base material in an amount (e.g. about 0.3 to about 3.3 weight % B) to this same end.

Keywords
Ames Laboratory, Materials Science and Engineering

Disciplines
Materials Science and Engineering

This patent is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/patents/84
Evaluation of $\text{A}_2\text{Si}_3\text{Z}_x$ intermetallics for use as high temperatures structural materials; published Jul., 1994. 26 pages; Thom, Meyer, Kim and Akinc.

ABSTRACT

A titanium silicide material based on Ti_5Si_3 intermetallic compound exhibits substantially improved oxidative stability at elevated temperatures. In particular, carbon is added to a Ti_5Si_3 base material in an amount (e.g., about 0.3 to about 3.6 weight % C) effective to impart substantially improved oxidative stability at elevated temperatures, such as about 1000$^\circ$ C. Boron is added to a Ti_5Si_3 base material in an amount (e.g., about 0.3 to about 3.3 weight % B) to this same end.

6 Claims, 3 Drawing Sheets
FIG. 1
FIG. 3

Ti$_5$Si$_3$B$_{0.25}$

Ti$_5$Si$_3$C$_{0.9}$

Ti$_5$Si$_3$B$_{0.75}$

Ti$_5$Si$_3$C$_{0.25}$
CARBON OR BORON MODIFIED TITANIUM SILICIDE

This is a division of Ser. No. 08/273,955, filed Jul. 12, 1994 now U.S. Pat. No. 5,580,518.

CONTRACTUAL ORIGIN OF THE INVENTION

The United States Government has rights in this invention pursuant to Contract No. W-7405-Eng-82 between the Department of Energy and Iowa State University, which contract grants to the Iowa State University Research Foundation, Inc. the right to apply for this patent. The research leading to the invention was supported in part by U.S. Department of Commerce Grant ITA 87-02.

FIELD OF THE INVENTION

The present invention relates to high temperature materials and, more particularly, to a titanium silicide compound including carbon or boron in an amount effective to improve oxidation resistance.

BACKGROUND OF THE INVENTION

Ti₅Si?₃ is an intermetallic compound having low density, high melting point, and oxidation resistance below about 700° C. Although Ti₅Si?₃ has been shown to exhibit adequate creep resistance at elevated temperature, for example, up to about 1200° C., it demonstrates inadequate oxidation resistance above about 700° C. For example, above about 700° C., the Ti₅Si?₃ compound exhibits large mass gains as evidenced by extensive base material consumption and scale formation. The inadequate high temperature oxidative stability or resistance of the Ti₅Si?₃ compound has limited its use in high temperature service applications as a potential replacement or reinforcement for the less creep resistant MoSi?₂, intermetallic compound, ceramics, and superalloys.

It is an object of the present invention to provide a titanium silicide material based on Ti₅Si?₃ and having substantially improved oxidative stability or resistance at elevated temperatures.

SUMMARY OF THE INVENTION

The present invention provides a titanium silicide based on Ti₅Si?₃ modified with one of carbon and boron that can be used as a structural material (load bearing applications) in oxygen-bearing atmospheres (e.g., air) at elevated temperatures. In particular, the present invention provides a titanium silicide material based on Ti₅Si?₃ including an amount of carbon (C) effective to substantially improve oxidative stability or resistance at elevated temperatures, such as for example about 1000° C.

In accordance with an embodiment of the invention, the carbon-modified Ti₅Si?₃ material comprises a small amount of carbon effective to achieve improved high temperature oxidative stability or resistance. At least about 0.3 weight % C is included to improve oxidation resistance.

More generally, the present invention involves inclusion of about 0.3 to about 3.6 weight % C, preferably about 0.9 to about 3 weight % C, in Ti₅Si?₃ base material to achieve improved high temperature oxidative stability by any expected adverse affect on the creep resistance associated with the base material.

In another embodiment of the invention, boron-modified Ti₅Si?₃ material comprises at least about 0.3 weight % B, generally about 0.3 to about 3.3 weight % B effective to achieve improved high temperature oxidative stability or resistance. A preferred boron concentration is about 0.8 to about 2.5 weight % B.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the oxidation behavior of the C-modified Ti₅Si?₃C_x test coupons at 1000 degrees C. and C-free Ti₅Si?₃ test coupons at 700, 800, and 1000 degrees C.

FIG. 2 illustrates the oxidation behavior of Ti₅Si?₃B_{0.25} and Ti₅Si?₃B_{2.75} test coupons at 1000 degrees C.

FIG. 3 provides comparative oxidation behavior of carbon-modified and boron-modified Ti₅Si?₃ test coupons of the invention at 1000 degrees C.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a titanium silicide material based on Ti₅Si?₃ intermetallic compound exhibiting unexpectedly improved oxidative stability or resistance at elevated temperatures. In particular, the present invention provides an amount of carbon or boron in the Ti₅Si?₃ base material discovered to substantially improve oxidative stability at elevated temperatures, such as for example about 1000° C.

The present invention contemplates inclusion of at least about 0.3 weight % C and generally about 0.3 to about 3.6 weight % C in the Ti₅Si?₃ base material to achieve improved high temperature oxidative stability or resistance. A more preferred range of carbon comprises from about 0.9 to about 3 weight % C.

In an embodiment of the invention, the carbon-modified Ti₅Si?₃ material is made by mixing bulk elemental Ti, Si, and C in proportions to provide a desired final composition of carbon-modified Ti₅Si?₃ material. The elemental mixture is placed in a water-chilled copper hearth and heated under an argon atmosphere by energization of a non-consumable tungsten electrode which subsequently arcs to the copper hearth so as to melt the mixture. Arc-melting is conducted to achieve a melt temperature of greater than 2130° C. and a compositionally homogeneous melt. The melt can be stirred with the tungsten electrode to homogenize the melt composition. The melt then is solidified in the copper hearth by terminating energization of the tungsten electrode. The resulting ingot of carbon-modified Ti₅Si?₃ material can be processed to various forms, such as powder by comminution of the ingot by grinding in tungsten carbide lined mills.

For purposes of further illustrating the invention, but not limiting the invention in any way, ingots comprising a composition (atomic formula) Ti_xSi_yC_z, where x is 0.25, 0.50, 0.75 and 0.9 were made by adding an appropriate amount of C to the Ti₅Si?₃ compound. For example, Ti_xSi?_yC_z, where x=0.25 (0.92 weight % C) was prepared by adding approximately 0.92 weight % of elemental bulk C to elemental bulk Ti and Si present in the amounts to form Ti_xSi?_yC_z. The mixture was arc-melted in a copper hearth under an argon atmosphere to form a melt of homogeneous composition. The melt was heated to a temperature of greater than 2130° C. and then allowed to solidify in the copper hearth to form a circular shaped ingot having about 20 mm (millimeter) diameter and about 5 mm thickness. The Ti_xSi?_yC_z, where x=0.50, 0.75 and 0.9 were similarly made with the addition of the appropriate amount of carbon.

Each ingot of Ti_xSi?_yC_z, (x=0.25, 0.50, 0.75 and 0.9) was then comminuted in a tungsten carbide lined mill until the powder had a median particle size of about 1 micrometer. About 2 grams of each powder was cold (room temperature)
pressed into a pellet at 5000 pounds per square inch using a ½ inch diameter steel die. Each resulting pellet was coated with a water based boron nitride solution and consolidated to near theoretical density by hot isostatically pressing at 1200°C for 10 hours at 30,000 pounds per square inch in a borosilicate encapsulating glass. A slow cooling rate of 1°C-2°C per minute must be used to reduce cracking of the sample.

An oxidation test coupon was diamond cut from each consolidated pellet. Each test coupon had dimensions of about 10 mm×5 mm×2 mm and was polished in successive steps to 0.3 μm aluminum oxide, and ultrasonically cleaned to remove residue from polishing. Specimens were washed in ethanol and dried at 105°C in air before high temperature oxidation. For comparison purposes, an unmodified Ti3SiC2 pellet (i.e. C-free Ti3SiC2 pellet) was made in similar manner, and an oxidation test coupon was cut from the pellet for like oxidation testing.

The oxidation test involved suspending each Ti3SiC2 and Ti3SiC2-C (x=0.25, 0.50, 0.75 and 0.90) test coupon and the C-free Ti3SiC2 test coupon from a sapphire wire in a vertical tube thermogravimetric analyzer. Compressed bottled air (typically 3 parts per million (ppm) and total hydrocarbons typically less than 1 ppm) was flowed over the samples at 100 milliliters/minute. The specimen chamber was purged for 2 hours before each run with the oxidizing gas. Specimen temperature was then increased at 20°C/min. to a predetermined steady state temperature and held for times up to 120 hours. Specimen mass change and temperature were continuously recorded as functions of time.

FIG. 1 illustrates the oxidation behavior of the C-modified Ti3SiC2 test coupons at 1000°C and C-free Ti3SiC2 test coupons at 700°C, 800°C and 1000°C.

The Ti3SiC2-C test coupons exemplary of the invention exhibited mass gains of 0.2 to 0.4 milligrams per centimeters squared (mg/cm²) after 120 hours at 1000°C in the flowing air. Microstructural examination of an oxidized Ti3SiC2-C coupon showed an oxide scale thickness of only about 3 microns on the coupon surface, indicative of the excellent oxidation resistance of the carbon-modified Ti3SiC2 material. This oxidation resistance (defined by mass gain of sample) was about equal to that of C-free Ti3SiC2 compound tested at a lower 700°C for the same time period in like flowing air. The comparison C-free Ti3SiC2 test coupons oxidized at 1000°C in the flowing air exhibited mass gains of 12 to 14 mg/cm², which represent a forty-fold increase in mass gain during the oxidation test. Microstructural examination of an oxidized C-free Ti3SiC2 coupon showed an oxide scale thickness of about 300 microns or micrometers on the coupon surface, indicative of the poor oxidation resistance of the carbon-free Ti3SiC2 material. The Ti3SiC2-C test coupons pursuant to the invention exhibited at least a 60 times improvement in oxidation resistance as compared to the C-free Ti3SiC2 test coupons oxidized under like conditions.

The creep resistance of the carbon modified Ti3SiC2 material of the invention is expected to be comparable to that exhibited by C-free Ti3SiC2 material. That is, the substantial improvement in oxidative stability or resistance of the C-bearing Ti3SiC2 material of the invention is achieved without any expected adverse affect on the good high temperature creep resistance associated with the Ti3SiC2 base material.

The carbon-modified Ti3SiC2 compound of the invention possesses oxidation resistance and other properties for use as a monolithic structural material or member, or alternately as a strengthening reinforcement for conventional metals and alloys which suffer loss of strength and creep resistance at elevated temperature. Additionally, the carbon-modified Ti3SiC2 compound is compatible with MoSi2 intermetallic compound, which exhibits excellent high temperature oxidation resistance but suffers from high creep rate at elevated temperature, such as above about 1000°C. The carbon-modified Ti3SiC2 thus may find use as a reinforcement for use with MoSi2 to impart improved creep resistance thereto at elevated temperature.

The present invention also provides a titanium silicide material based on Ti3SiC2 intermetallic compound exhibiting unexpectedly improved oxidative stability or resistance at elevated temperatures by virtue of including a small amount of boron in the Ti3SiC2 base material discovered to substantially improve oxidative stability at elevated temperatures, such as about 1000°C. The present invention contemplates inclusion of at least about 0.3 weight % B and generally about 0.3 to about 3.3 weight % B in the Ti3SiC2 base material to achieve improved high temperature oxidative stability or resistance. A more preferred range of boron comprises from about 0.8 to about 2.5 weight % B.

For purposes of further illustrating this embodiment of the invention, but not limiting the invention in any way, ingots comprising a composition (atomic formula) Ti3Si1-xBx, where x is 0.25 and 0.75, were made in the same general manner described above for the carbon modified Ti3SiC2 material.

FIG. 2 illustrates the oxidation behavior of Ti3Si1-xBx and Ti3Si1-xB0.75 test coupons at 1000°C. The Ti3Si1-xBx (x=0.25 and 0.75) test coupons exemplify of the invention exhibited mass gains of 0.45 to 0.50 milligrams per centimeters squared (mg/cm²) after 120 hours at 1000°C in flowing air under test conditions described above. This oxidation resistance (defined by mass gain of sample) was about equal to that of B-free Ti3SiC2 compound tested at a lower 700°C for the same time period in flowing air.

The Ti3Si1-xBx (x=0.25 and 0.75) test coupons were generally comparable in oxidation resistance to Ti3Si1-xC0.9 at 1000°C FIG. 3 provides comparative oxidation behavior of carbon-modified and boron-modified Ti3SiC2 test coupons of the invention at 1000°C. However, the boron modified Ti3SiC2 material deteriorates significantly by oxidation at 1200°C after 24 hours.

The creep resistance of the boron modified Ti3SiC2 material is expected to be comparable to that exhibited by B-free Ti3SiC2 material. That is, the substantial improvement in oxidative stability or resistance of the B-bearing Ti3SiC2 material of the invention is achieved without any expected adverse affect on the good high temperature creep resistance associated with the Ti3SiC2 base material.

The boron-modified Ti3SiC2 compound of the invention possesses oxidation resistance and other properties for use as a monolithic structural material or member, or alternately as a strengthening reinforcement for conventional metals and alloys which suffer loss of strength and creep resistance at elevated temperature. Additionally, the boron-modified Ti3SiC2 compound is compatible with MoSi2 intermetallic compound, which exhibits excellent high temperature oxidation resistance but suffers from high creep rate at elevated temperature, such as above about 1000°C. The boron-modified Ti3SiC2 thus may find use as a reinforcement for use with MoSi2 to impart improved creep resistance thereto at elevated temperature.

Although the invention has been described hereinabove with respect to certain illustrative embodiments of the invention, it is to be understood that modifications and
5.779,823

changes can be made therein without departing from the spirit and scope of the invention as set forth in the following claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A structural member comprising Ti₅Si₃ compound that includes carbon in an amount of at least about 0.3 weight % effective to improve oxidation resistance of said compound.

2. The member of claim 1 wherein carbon is present in an amount of about 0.3 to about 3.6 weight % carbon.

3. A composite comprising MoSi₂ compound and Ti₅Si₃ compound including at least one of carbon and boron in an amount of at least about 0.3 weight % to improve oxidation resistance.

4. A structural member comprising Ti₅Si₃ compound that includes boron in an amount of at least about 0.3 weight % effective to improve oxidation resistance of said compound.

5. The member of claim 4 wherein boron is present in an amount of about 0.3 to about 3.3 weight % boron.

6. A structural member consisting of titanium silicide comprising Ti₅Si₃ compound that includes at least one of carbon and boron in an amount of at least about 0.3 weight % effective to improve oxidation resistance of said compound.