Multishell Au/Ag/SiO2 Nanorods with Tunable Optical Properties as Single Particle Orientation and Rotational Tracking Probes

Thumbnail Image
Supplemental Files
Date
2015-01-01
Authors
Chen, Kuangcai
Lin, Chia-Cheng
Vela, Javier
Fang, Ning
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vela, Javier
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

Three-layer core-shell plasmonic nanorods (Au/Ag/SiO2-NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of the hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.

Comments

Reprinted (adapted) with permission from Analytical Chemistry 87 (2015): 4096, doi: 10.1021/acs.analchem.5b00604. Copyright 2015 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections