2014

On the Multiple-Unicast Capacity of 3-Source, 3-Terminal Directed Acyclic Networks

Shurui Huang
Iowa State University

Aditya Ramamoorthy
Iowa State University, adityar@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ece_pubs
Part of the Controls and Control Theory Commons, and the Signal Processing Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ece_pubs/109. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks

Shurui Huang Student Member, IEEE and Aditya Ramamoorthy, Member, IEEE

Abstract—We consider the multiple unicast problem with three source-terminal pairs over directed acyclic networks with unit-capacity edges. The three source-terminal pairs wish to communicate at unit-rate via network coding. The connectivity between the pairs is quantified by means of a connectivity level vector, \([k_1, k_2, k_3]\) such that there exist \(k_i\) edge-disjoint paths between \(s_i\) and \(t_i\). In this work we attempt to classify networks based on the connectivity level. It can be observed that unit-rate transmission can be supported by routing if \(k_i \geq 3\), for all \(i = 1, \ldots, 3\). In this work, we consider connectivity level vectors such that \(\min_{i=1,\ldots,3} k_i \leq 3\). We present either a constructive linear network coding scheme or an instance of a network that cannot support the desired unit-rate requirement, for all such connectivity level vectors except the vector \([1, 2, 4]\) (and its permutations). The benefits of our schemes extend to networks with higher and potentially different edge capacities. Specifically, we experimentally demonstrate that for networks where the different source-terminal paths have a significant overlap, our constructive unit-rate schemes can be packed along with routing to provide higher throughput as compared to a pure routing approach.

I. INTRODUCTION

In a network that supports multiple unicast, there are several source-terminal pairs; each source wishes to communicate with its corresponding terminal. Multiple unicast connections form bulk of the traffic over both wired and wireless networks. Thus, network coding schemes that can help improve network throughput for multiple unicasts are of considerable interest. However, it is well recognized that the design of constructive network coding schemes for multiple unicasts is a hard problem when compared with the case of multicast that is very well understood \([1, 2, 3]\). Specifically, it is known that there are instances of networks where linear (whether scalar or vector) network coding is insufficient \([4]\).

The multiple unicast problem has been examined for both directed acyclic networks \([5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]\) and undirected networks \([16]\) in previous work.

The work of \([6]\) provides an information theoretic characterization for directed acyclic networks. However, this bound is not computable. The work of \([12]\) proposes an outer bound for general directed networks. However, this bound is hard to evaluate even for small networks due to the large number of inequalities involved. There have been attempts to find constructive schemes leveraging network coding between pairs of sources \([8, 9]\). Numerous works consider restricted cases such as unicast with two sessions \([10, 11, 12, 13]\) and unicast with three sessions \([14, 15, 17]\). We discuss the related work in detail in Section II.

In this work we consider network coding for wired three-source, three-terminal directed acyclic networks with unit capacity edges. There are source-terminal pairs denoted \((s_i, t_i), i = 1, \ldots, 3\), such that the maximum flow from \(s_i\) to \(t_i\) is \(k_i\). Each source contains a unit-entropy message that needs to be communicated to the corresponding terminal. In this work, for a given connectivity level vector \([k_1, k_2, k_3]\) we attempt to either design a constructive scheme based on linear network codes or demonstrate an instance of a network where supporting unit-rate transmission is impossible. Our achievability schemes use a combination of random linear network coding and appropriate precoding. Our solutions are based on either scalar or vector network codes that operate over at most two time units (i.e., two network uses). This is useful, as one can arrive at multiple unicast schemes for arbitrary rates by packing unit-rate structures for which our achievability schemes apply.

Main Contributions

- For the case of three unicast sessions with unit rates, we identify certain feasible and infeasible connectivity levels \([k_1, k_2, k_3]\). For the feasible cases, we construct schemes based on linear network coding. For the infeasible cases, we provide counter-examples, i.e., instances of graphs where the multiple unicast cannot be supported under any (potentially nonlinear) network coding scheme.
- We provide experimental results that demonstrate that our feasible schemes for unit-rate are useful for networks with higher capacity edges. Specifically, we demonstrate classes of networks with higher capacity edges, where packing our unit-rate schemes allows us to achieve transmission rates that are strictly greater than those achieved by pure routing.

This paper is organized as follows. Section III contains an overview of related work. In Section IV, we introduce the network coding model and problem formulation. Section V discusses infeasible instances, and Section VI discusses our achievable schemes for 3-source, 3-terminal multiple unicast networks. Section VII presents simulation results on networks with higher capacity edges and Section VIII concludes the paper with a discussion of future work.

II. BACKGROUND AND RELATED WORK

It is well recognized that network coding for multiple unicast is significantly harder than the network coding for
multicast. The work of [1] establishes an equivalence between network coded multicast and the problem of solving systems of linear equations. In the same paper, they also point out that for multiple unicast, one also needs to somehow decode the intended message in the presence of undesired interference. In general, it is intractable to find network code assignments that simultaneously allow the intended message to be decoded while mitigating the interference. In fact, it is known that linear codes are insufficient for the multiple unicast problem [3].

In this work our focus is exclusively on multiple unicast for directed acyclic networks (see [16] for the undirected case). Previous work in this domain includes the work of [6] that presents an information theoretic characterization of the capacity region. However, in practice this bound is not computable due to the lack of upper bounds on the cardinality of the alphabets of the random variables involved in the characterization. Moreover, even for small sized networks, the number of inequalities involved is very large. Similar issues exist with the outer bound of [7]. There have been numerous works on achievable schemes for multiple unicast. The butterfly network with two unicast sessions is an instance where there is clear advantage to performing network coding over routing. Accordingly Traskov et al. [8] proceed by packing butterfly networks for general multiple unicast. Ho et al. [9] propose an achievable region by using XOR coding coupled with back-pressure algorithms. Multiple unicast in the presence of link faults and errors, under certain restricted (though realistic) network topologies has been studied in [18][19].

Further progress has been made in certain restricted classes of problems. For instance, an improved outer bound (GNS bound) over the network sharing outer bound for two-unicast is proposed in [12]. Price et al. [13] also propose an outer bound for two-unicast and demonstrate a network for which the outer bound is the exact capacity region. For two-unicast, Wang et al. [10] (also see [20]) present a necessary and sufficient condition for unit-rate transmission and the work of [11] and [21] propose an achievable region for general rates.

Some recent work deals with the case of three unicast sessions, which is also the focus of our work. The work of [14] and [15] use the technique of interference alignment (proposed in [22]) for multiple unicast. Roughly speaking they use random linear network coding and design appropriate precoding matrices at the source nodes that allow undesired interference at a terminal to be aligned. However, their approach requires several algebraic conditions to be satisfied in the network. It does not appear that these conditions can be checked efficiently. There has been a deeper investigation of these conditions in [17]. Our work is closest in spirit to these papers. Specifically, we also examine network coding for the three-unicast problem. However, the problem setting is somewhat different. Considering networks with unit capacity edges and given the maximum-flow k_i between each source (s_i) - terminal (t_i) pair we attempt to either design a network code that allows unit-rate communication between each source-terminal pair, or demonstrate an instance of a network where unit-rate communication is impossible. Our achievability schemes for unit rate are useful since they can be packed into networks with higher capacity edges. Furthermore, these schemes require vector network coding over at most two time units, unlike the work of [14] and [15], that require a significantly higher level of time-expansion.

III. Preliminaries

We represent the network as a directed acyclic graph $G = (V, E)$. Each edge $e \in E$ has unit capacity and can transmit one symbol from a finite field of size q per unit time (we are free to choose q large enough). If a given edge has higher capacity, it can be treated as multiple unit capacity edges. A directed edge e between nodes i and j is represented as (i, j), so that $head(e) = j$ and $tail(e) = i$. A path between two nodes i and j is a sequence of edges $\{e_1, e_2, \ldots, e_k\}$ such that $tail(e_1) = i$, $head(e_k) = j$ and $head(e_l) = tail(e_{l+1}), i = 1, \ldots, k - 1$. The network contains a set of n source nodes s_1 and n terminal nodes t_1, t_2, \ldots, t_n. Each source node s_i observes a discrete integer-entropy source, that needs to be communicated to terminal t_i. Without loss of generality, we assume that the source (terminal) nodes do not have incoming (outgoing) edges. If this is not the case one can always introduce an artificial source (terminal) node connected to the original source (terminal) node by an edge of sufficiently large capacity that has no incoming (outgoing) edges.

We now discuss the network coding model under consideration in this paper. For the sake of understanding the model, suppose for now that each source has unit-entropy, denoted by X_i (as will be evident, in the sequel we work with integer entropy sources). In scalar linear network coding, the signal on an edge (i, j) is a linear combination of the signals on the incoming edges of i or the source signals at i (if i is a source). We shall only be concerned with networks that are directed acyclic and can therefore be treated as delay-free networks [1]. Let Y_{e_i} (such that $tail(e_i) = k$ and $head(e_i) = l$) denote the signal on edge $e_i \in E$. Then, we have

$$Y_{e_i} = \sum_{\{e_j|head(e_j) = k\}} f_{j,i} X_{e_j} \text{ if } k \in V \setminus \{s_1, \ldots, s_n\}, \text{ and}$$

$$Y_{e_i} = \sum_{j=1}^{n} a_{j,i} X_j \text{ where } a_{j,i} = 0 \text{ if } X_j \text{ is not observed at } k.$$

The coefficients $a_{j,i}$ and $f_{j,i}$ are from the operational field. Note that since the graph is directed acyclic, it is equivalently possible to express Y_{e_i} for an edge e_i in terms of the sources X_j’s. If $Y_{e_i} = \sum_{k=1}^{n} \beta_{e_i,k} X_k$ then we say that the global coding vector of edge e_i is $\beta_{e_i} = [\beta_{e_i,1} \cdots \beta_{e_i,n}]$. We shall also occasionally use the term coding vector instead of global coding vector in this paper. We say that a node i (or edge e_i) is downstream of another node j (or edge e_j) if there exists a path from j (or e_j) to i (or e_i).

Vector linear network coding is a generalization of the scalar case, where we code across the source symbols in time, and the intermediate nodes can implement more powerful operations. Formally, suppose that the network is used over T time units. We treat this case as follows. Source node s_i now observes a vector source $[X_{i,1} \cdots X_{i,T}]$. Each edge in the original graph is replaced by T parallel edges. In this graph, suppose that a node j has a set of β_{inj} incoming edges over which
it receives a certain number of symbols, and \(\beta_{\text{out}} \) outgoing edges. Under vector network coding, node \(j \) chooses a matrix of dimension \(\beta_{\text{out}} \times \beta_{\text{in}} \). Each row of this matrix corresponds to the local coding vector of an outgoing edge from \(j \).

Note that the general multiple unicast problem, where edges have different capacities and the sources have different entropies can be cast in the above framework by splitting higher capacity edges into parallel unit capacity edges and a higher entropy source into multiple, collocated unit-entropy sources. This is the approach taken below.

An instance of the multiple unicast problem is specified by the graph \(G \) and the source terminal pairs \(s_i - t_i \), \(i = 1, \ldots, n \), and is denoted \(\langle G, \{s_i - t_i\}_1^n, \{R_i\}_1^n \rangle \), where the integer rates \(R_i \) denote the entropy of the \(i \)-th source. The \(s_i - t_i \) connections will be referred to as sessions that we need to support.

Let the sources at \(s_i \) be denoted as \(X_{i1}, \ldots, X_{iR_i} \). The instance is said to have a scalar linear network coding solution if there exist a set of linear encoding coefficients for each node in \(V \) such that each terminal \(t_i \) can recover \(X_{i1}, \ldots, X_{iR_i} \), using the received symbols at its input edges. Likewise, it is said to have a vector linear network coding solution with vector length \(T \) if the network employs vector linear network codes and each terminal \(t_i \) can recover \(\{X^{(1)}_{i1}, \ldots, X^{(T)}_{i1}\}, \ldots, \{X^{(1)}_{iR_i}, \ldots, X^{(T)}_{iR_i}\} \).

This defines a vector linear network coding solution, we may say that it is feasible.

We will also be interested in examining the existence of a routing solution, wherever possible. In a routing solution, each edge carries a copy of one of the sources, i.e., each coding vector is such that at most one entry takes the value 1, all others are 0. Scalar (vector) routing solutions can be defined in a manner similar to scalar (vector) network codes. We now define some quantities that shall be used throughout the paper.

Definition 1: Connectivity level. The connectivity level of a source-terminal pair \(s_i - t_i \) is said to be \(\beta \) if the maximum flow between \(s_i \) and \(t_i \) in \(G \) is \(\beta \). The connectivity level of the set of connections \(s_1 - t_1, \ldots, s_n - t_n \) is the vector \([\max\text{-flow}(s_1 - t_1), \ldots, \max\text{-flow}(s_n - t_n)]\).

In this work our aim is to characterize the feasibility of the multiple unicast problem based on the connectivity level of the \(s_i - t_i \) pairs. The questions that we seek to answer are of the following form: suppose that the connectivity level is \([k_1, k_2, \ldots, k_n]\). Does any instance always have a linear (scalar or vector) network coding solution? If not, is it possible to demonstrate a counter-example, i.e., an instance of a graph \(G \) and \(s_i - t_i \) such that recovering the \(i \)-th source at \(t_i \) for all \(i \) is impossible under linear (or nonlinear) strategies?

We will conclude this section by observing that a multiple unicast instance \(\langle G, \{s_i - t_i\}_1^n, \{1, 1, \ldots, 1\} \rangle \) with connectivity level \([n \ n \ \ldots \ n]\) is always feasible. Let \(X_i, i = 1, \ldots, n \) denote the \(i \)-th source entropy source. We employ vector routing over \(n \) time units. Source \(s_i \) observes \([X^{(1)}_{i1}, \ldots, X^{(n)}_{i}]\) symbols. Each edge \(e \) in the original graph \(G \) is replaced by \(n \) parallel edges, \(e^1, e^2, \ldots, e^n \). Let \(G_{\alpha} \) represent the subgraph of this graph consisting of edges with superscript \(\alpha \). It is evident that \(\max\text{-flow}(s_0 - t_0) = n \) over \(G_\alpha \). Thus, we transmit \(X^{(1)}_{\alpha}, \ldots, X^{(n)}_{\alpha} \) over \(G_{\alpha} \) using routing, for all \(\alpha = 1, \ldots, n \). It is clear that this strategy satisfies the demands of all the terminals. In general, though a network with the above connectivity level may not be able to support a scalar routing solution.

IV. NETWORK CODING FOR THREE UNICAST SESSIONS - INFEASIBLE INSTANCES

It is clear based on the discussion above that for three unicast sessions if the connectivity level is \([3 \ 3 \ 3]\), then a vector routing solution always exists. We investigate counter-examples for certain connectivity levels in this section.

Lemma 2: There exist multiple unicast instances with three unicast sessions, \(\langle G, \{s_i - t_i\}_3^3, \{1, 1, 1\} \rangle \) such that the connectivity levels \([2 \ 2 \ 2]\) and \([1 \ 1 \ 3]\) are infeasible.

Proof: The examples are shown in Figs. 1(a) and 1(b) In Fig. 1(a) the cut specified by the set of nodes \(\{s_1, s_2, s_3, v_1, v_2\} \) has a value of two, while it needs to support a sum rate of three. Similarly in Fig. 1(b) the cut \(\{s_1, s_2, v_1\} \) has a value of one, but needs to support a rate of two. \(\blacksquare \)

![Fig. 1.](image-url) (a) An example of \([2 \ 2 \ 2]\) connectivity network without a network coding solution. (b) An example of \([1 \ 1 \ 3]\) connectivity network without a network coding solution.

While the cutset bound is useful in the above cases, there exist certain connectivity levels for which a cut set bound is not tight enough. We now present such an instance in Fig. 2. This instance was also presented in [11], though the authors did not provide a formal proof of this fact.

Lemma 3: There exists a multiple unicast instance, with two sessions \(\langle G, \{s_1 - t_1, s_2 - t_2\}, \{2, 1\} \rangle \) with connectivity level \([2 \ 3]\) that is infeasible.

Proof: The graph instance is shown in Fig. 2. Assume that in \(n \) time units, \(s_1 \) observes two vector sources \([X^{(1)}_{11}, \ldots, X^{(n)}_{11}]\) and \([X^{(1)}_{21}, \ldots, X^{(n)}_{21}]\), \(s_2 \) observes one vector source \([X^{(1)}_{31}, \ldots, X^{(n)}_{31}]\). The sources are denoted as \(X^n_1 \), \(X^n_2 \) and \(X^n_3 \) and are independent. The \(n \) symbols that are transmitted over edge \((i, j)\) are denoted by \(Y^n_{ij} \). Suppose that the alphabet of \(X_i \) is \(\mathcal{X} \). Since the entropy rates for the three sources are the same, we assume \(H(X_i) = \log |\mathcal{X}| = a \). Also, since we are interested in the feasibility of the solution, we assume that the alphabet size of \(Y_{ij} \) is also the same as \(\mathcal{X} \), and \(H(Y_{ij}) \leq \log |\mathcal{X}| = a \) by the capacity constraint of the edge. At terminal \(t_1 \) and \(t_2 \), from \(Y^n_{11}, Y^n_{12}, Y^n_{21} \) and \(Y^n_{22} \), we estimate \(\hat{X}^n_1, \hat{X}^n_2 \) and \(\hat{X}^n_3 \). Let the estimate be denoted as \(\hat{X}^n_1, \hat{X}^n_2 \) and \(\hat{X}^n_3 \). Suppose that there exist network codes and decoding functions such that \(P((\hat{X}^n_1, \hat{X}^n_2) \neq (X^n_1, X^n_2)) \to 0 \)
as \(n \to \infty \). For successful decoding at \(t_1 \), using Fano’s inequality, we have

\[
H(X_1^n, X_2^n | \hat{X}_1^n, \hat{X}_2^n) \leq n \epsilon_n, \tag{1}
\]

where \(n \epsilon_n = 1 + 2n P_e \log(|X|) \), \(P_e = P((\hat{X}_1^n, \hat{X}_2^n) \neq (X_1^n, X_2^n)) \) and \(\epsilon_n \to 0 \) as \(n \to \infty \). The topological structure of the network implies that \(\hat{X}_1^n, \hat{X}_2^n \) are functions of \(Y_{12}^n \) and \(Y_{22}^n \). Hence, we have

\[
H(X_1^n, X_2^n | Y_{12}^n, Y_{22}^n) = H(X_1^n, X_2^n | \hat{X}_1^n, \hat{X}_2^n, Y_{12}^n, Y_{22}^n) \\
\leq H(X_1^n, X_2^n | \hat{X}_1^n, \hat{X}_2^n) \leq n \epsilon_n. \tag{2}
\]

Since \(H(Y_{12}^n, Y_{22}^n) \leq 2an \), using eq. (2) and the independence of \(X_1^n, X_2^n \) and \(X_3^n \), by Claim 19 (see Appendix), we have

\[
an - n \epsilon_n \leq H(X_1^n | Y_{12}^n, Y_{22}^n) \leq an, \quad \text{and} \quad H(Y_{12}^n, Y_{22}^n | X_3^n) \geq 2an - 2n \epsilon_n. \tag{3}
\]

Next, we have

\[
H(Y_{21}^n, Y_{22}^n) \stackrel{(a)}{=} H(X_1^n, Y_{21}^n, Y_{22}^n) - H(X_3^n | Y_{21}^n, Y_{22}^n) \\
\stackrel{(b)}{=} H(X_3^n, Y_{21}^n, Y_{22}^n) - H(X_3^n | Y_{21}^n, Y_{22}^n) \\
\leq 2an - H(X_3^n | Y_{21}^n, Y_{22}^n, Y_{12}^n, X_1^n, X_2^n) \\
\stackrel{(c)}{=} 2an - H(X_3^n | Y_{21}^n, Y_{22}^n, Y_{12}^n, X_1^n, X_2^n) \\
\leq 2an - H(X_3^n | Y_{22}^n, Y_{12}^n, X_1^n, X_2^n) \\
\leq 2an - H(X_1^n | Y_{22}^n, Y_{12}^n) + H(X_1^n, X_2^n | Y_{22}^n, Y_{12}^n) \\
\leq 2an - 2n \epsilon_n + n \epsilon_n + 2n \epsilon_n. \tag{5}
\]

From the network, we know that \(Y_{12}^n \) is a function of \(Y_{11}^n \) and \(X_3^n \). This implies that

\[
H(Y_{11}^n, Y_{21}^n, Y_{22}^n | X_3^n) = H(Y_{11}^n, Y_{21}^n, Y_{22}^n, X_3^n | X_3^n) \\
\geq H(Y_{12}^n, Y_{21}^n, Y_{22}^n | X_3^n) \tag{6}
\]

where (a) is due to eq. (3). Finally, we have

\[
H(X_1^n | Y_{11}^n, Y_{21}^n, Y_{22}^n) \\
= H(Y_{11}^n, Y_{21}^n, Y_{22}^n | X_3^n) + H(X_1^n | Y_{11}^n, Y_{21}^n, Y_{22}^n) \\
\geq 2an - 2n \epsilon_n + an - H(Y_{12}^n, Y_{21}^n) - H(Y_{11}^n | Y_{22}^n, Y_{21}^n) \tag{7}
\]

where (a) is due to eq. (6). (b) is because of eq. (5) and (c) holds because of the capacity constraint on \(Y_{11}^n \). This implies that \(t_2 \) cannot decode \(X_3^n \) with an asymptotically vanishing probability of error.

Corollary 4: There exists a multiple unicast instance with three sessions, and connectivity level \([2, 2, 2] \) that is infeasible.

Proof: Consider the instance \(G \), \(\{s_1', t_1'; 1, 1, 1\} \), where \(G \) is the graph in Fig. 2. The sources \(s_1' \) and \(s_2' \) are collocated at \(s_1 \) in \(G \), and the terminals \(t_1' \) and \(t_2' \) are collocated at \(t_1 \) in \(G \). Likewise, the source \(s_2' \) and terminal \(t_2' \) are located at \(s_2 \) and \(t_2 \) in \(G \). The three sessions have connectivity level \([2, 2, 2] \). Based on the arguments in Lemma 3 there is no feasible solution for this instance.

The previous example can be generalized to an instance with two unicast sessions with connectivity level \([n_1, n_2] \) that cannot support rates \(R_1 = n_1, R_2 = n_2 - 3n_1/2 + 1 \) when \(n_2 \geq 3n_1/2 \) and \(n_1 > 1 \).

\[\text{Theorem 5: For a directed acyclic graph } G \text{ with two } s - t \text{ pairs, if the connectivity level for } (s_1, t_1) \text{ is } n_1, \text{ for } (s_2, t_2) \text{ is } n_2, \text{ where } n_2 \geq 3n_1/2 \text{ and } n_1 > 1, \text{ there exist instances that cannot support } R_1 = n_1 \text{ and } R_2 = n_2 - 3n_1/2 + 1.\]

Proof: Provided in the supplementary documentation.

V. NETWORK CODING FOR THREE UNICAST SESSIONS - FEASIBLE INSTANCES

It is evident that there exist instances with connectivity level \([2, 2, 3] \) (and component-wise lower) that are infeasible. Therefore, the possible instances that are potentially feasible are \([1, 3, 3] \) and \([1, 2, 4] \), or their permutations and connectivity levels that are greater than them. In the discussion below, we show that all the instances with the connectivity levels \([1, 3, 3], [2, 2, 4] \) and \([1, 2, 5] \) are feasible using linear network codes. Our work leaves out one specific connectivity level vector, namely \([1, 2, 4] \) for which we have been unable to provide either a feasible network code or a network topology where communicating at unit rate is impossible.

As pointed out by the work of [1], under linear network coding, the case of multiple unicast requires (a) the transfer matrix for each source-terminal pair to have a rank that is high enough, and (b) the interference at each terminal to be zero. Under random linear network coding, it is possible to assert that the rank of any given transfer matrix from a source \(s_i \)
to a terminal t_j has w.h.p. a rank equal to the minimum cut between s_i and t_j; however, in general this is problematic for satisfying the zero-interference condition.

Our strategies rely on a combination of graph-theoretic and algebraic methods. Specifically, starting with the connectivity level of the graph, we use graph theoretic ideas to argue that the transfer matrices of the different terminals have certain relationships. The identified relationships then allow us to assert that suitable precoding matrices that allow each terminal to be satisfied can be found. A combination of graph-theoretic and algebraic ideas were also used in the work of [23], where the problem of multicasting finite field sums over wired networks was considered. However, there are some crucial differences. Reference [23] considered a multicast situation; thus, the issue of dealing with interference did not exist. As will be evident, a large part of the effort in the current work is to demonstrate that the terminals can decode their intended messages in the presence of the interfering messages.

We begin with the following definitions.

Definition 6: Minimality. Consider a multiple unicast instance $(G, (V, E), \{s_i - t_i\}^n_{i=1}, \{1, \ldots, 1\})$, with connectivity level $[k_1, k_2, \ldots, k_n]$. The graph G is said to be minimal if the removal of any edge from E reduces the connectivity level. If G is minimal, we will also refer to the multiple unicast instance as minimal.

Clearly, given a non-minimal instance $G = (V, E)$, we can always remove the non-essential edges from it, to obtain the minimal graph G_{min}. This does not affect connectivity. A network code for $G_{\text{min}} = (V, E_{\text{min}})$ can be converted into a network code for G by simply assigning the zero coding vector to the edges in $E \setminus E_{\text{min}}$.

Definition 7: Overlap edge. An edge e is said to be an overlap edge for paths P_i and P_j in G, if $e \in P_i \cap P_j$.

Definition 8: Overlap segment. Consider a set of edges $E_{\text{os}} = \{e_1, \ldots, e_l\} \subset E$ that forms a path. This path is called an overlap segment for paths P_i and P_j, if

1. $\forall k \in \{1, \ldots, l\}, e_k$ is an overlap edge for P_i and P_j;
2. none of the incoming edges into tail(e_1) are overlap edges for P_i and P_j;
3. none of the outgoing edges leaving head(e_l) are overlap edges for P_i and P_j.

Our solution strategy is as follows. We first convert the original instance into another structured instance where each internal node has at most degree three (in-degree + out-degree). We then convert this new instance into a minimal one, and develop the network code assignment algorithm. This network code can be converted into a network code for the original instance.

Following [24] we can efficiently construct a structured graph $\hat{G} = (V, E)$ in which each internal node $v \in V$ is of total degree at most three with the following properties.

1. \hat{G} is acyclic.
2. For every source (terminal) in G there is a corresponding source (terminal) in \hat{G}.
3. For any two edge disjoint paths P_i and P_j for one unicast session in G, there exist two vertex disjoint paths in \hat{G} for the corresponding session in \hat{G}.
4. Any feasible network coding solution in \hat{G} can be efficiently turned into a feasible network coding solution in G.

In all the discussions below, we will assume that the graph G is structured. It is clear that this is w.l.o.g. based on the previous arguments.

A. Code Assignment Procedure For Instances With Connectivity Level [1 3 3]

We begin by showing some basic results for two-unicast. The three unicast result follows by applying vector network coding over two time units and using the two-unicast results.

Lemma 9: A minimal multiple unicast instance $(G, \{s_i - t_i, s_2 - t_2\}, \{1, m\})$ with connectivity level $[m + 1]$ is always feasible.

Proof: Denote the path from s_1 to t_1 as $P_1 = \{p_{11}\}$, and the $m + 1$ paths from s_2 to t_2 as $P_2 = \{p_{21}, \ldots, p_{2m+1}\}$. The information that needs to be transmitted from s_1 is X_1, and the information that needs to be transmitted from s_2 is X_{21}, \ldots, X_{2m}. We assume that P_{11} overlaps with all paths in P_2. Otherwise, if P_{11} overlaps with n paths in P_2 where $0 \leq n < m + 1$, w.l.o.g. assume they are P_{21}, \ldots, P_{2n}. Then X_{2n+1}, \ldots, X_{2m} can be simply transmitted over the overlap free paths $P_{2n+1}, \ldots, P_{2m+1}$, and the problem reduces to communicating X_1 and X_{21}, \ldots, X_{2m-1} over $P_{11} \cup P_{21} \cup \cdots \cup P_{2n}$, which corresponds to the statement of the theorem with m replaced by $n - 1$. Hence, we focus on the case that P_{11} overlaps with all paths in P_2.

We assume that the local coding vectors for each edge are indeterminates for now. Source s_2 uses a precoding matrix Θ; the rows of Θ specify the coding vectors on the outgoing edges of s_2. The choice of the local coding vectors and Θ is discussed below. The transmitted symbol on the outgoing edge from s_2 belonging to P_{2j} is $[\theta_{11} \cdots \theta_{(m+1)}][X_{21} \cdots X_{2m}]^T$ where $j = 1, \ldots, m + 1$. Let $\theta_{ij} = [\theta_{11} \cdots \theta_{(m+1)}]^T$ where $j = 1, \ldots, m + 1$.

As P_{11} overlaps with all paths on P_2, there will be many overlap segments on P_{11}. Let $E_{\text{os}1}$ denote the overlap segment that is closest to t_1 (under the topological order imposed by the directed acyclic nature of the graph) along P_{11} and suppose that it is on P_{21}. A key observation is that $E_{\text{os}1}$ is also the overlap segment on P_{21} that is closest to t_2. Indeed if there is another overlap segment $E_{\text{os}2}$ that is closer to t_2 along P_{21}, then it implies the existence of a cycle in the graph. Let the coding vectors at each intermediate node be specified by indeterminates for now.

The overall transfer matrix from the pair of sources $\{s_1, s_2\}$ to t_1 can be expressed as

$$[M_{11} \mid M_{12}] = [\alpha_1 \mid \gamma_{11} \cdots \gamma_{1(m+1)}].$$

Similarly, the transfer matrix from the pair of sources $\{s_1, s_2\}$ to t_2 can be expressed as

$$[M_{21} \mid M_{22}] = \begin{bmatrix} \alpha_1 & \gamma_{11} & \cdots & \gamma_{1(m+1)} \\ \alpha_2 & \gamma_{21} & \cdots & \gamma_{2(m+1)} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m+1} & \gamma_{(m+1)1} & \cdots & \gamma_{(m+1)(m+1)} \end{bmatrix}.$$

The received vector at terminal t_i is therefore

$$[M_{i1} \mid M_{i2}] [\Theta X_{21} \cdots X_{2m}]^T.$$

The variables $\alpha_i s$
and γ_{ij}s in the above matrices depend on the indeterminate local coding vectors and are therefore undetermined at this point.

We emphasize that the first row of $[M_{21} \mid M_{22}]$ is the same as $[M_{11} \mid M_{12}]$. As there exists a single path between s_1 and t_1, it is clear that α_1 is not identically zero. Similarly, as there are $m+1$ edge-disjoint paths between s_2 to t_2, we have that $\det(M_{22})$ is not identically zero. Now suppose that we employ random linear network coding at all nodes. Using the Schwartz-Zippel lemma [25], this implies that $\alpha_1 \neq 0$ and $\det(M_{22}) \neq 0$ w.h.p. We assume that $\alpha_1 \neq 0$ and $\det(M_{22}) \neq 0$ in the discussion below. Next we select $\theta_{ij}, i = 1, \ldots, m+1$, $j = 1, \ldots, m$ such that they satisfy the following equation.

$$M_{22}\begin{bmatrix} \theta_1 & \cdots & \theta_m \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ \alpha_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \alpha_m \end{bmatrix}$$

where a_1, \ldots, a_m are non-zero values. Note that such $\begin{bmatrix} \theta_1 & \cdots & \theta_m \end{bmatrix}$ can be chosen since M_{22} is full-rank.

Terminal t_1 can decode, since $M_{12}\begin{bmatrix} \theta_1 & \cdots & \theta_m \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix}$ and $\alpha_1 \neq 0$, and t_2 can decode, since X_1 is available at t_2, and $\text{rank}(M_{22}\begin{bmatrix} \theta_1 & \cdots & \theta_m \end{bmatrix}) = m$ (from eq. (8)). Finally, we note that there are $q - 1$ choices for each θ_{ij}.

We remark that the main issue in the above argument is to demonstrate that the choice of Θ works simultaneously for both t_1 and t_2. The observation that E_{os1} is overlap segment closest to t_1 and t_2 along P_{11} and P_{21} respectively allows us to make this argument.

The result for three unicast sessions with connectivity level $[1 \ 3 \ 3]$ now follows by using vector linear network coding over two time units, as discussed below.

Theorem 10: A multiple unicast instance with three sessions, $\langle G, \{s_i - t_i\}_3, \{1, 1, 1\} \rangle$ with connectivity level at least $[1 \ 3 \ 3]$ is feasible.

Proof: W.l.o.g. we assume that the connectivity level is exactly $[1 \ 3 \ 3]$. We use vector linear network coding over two time units. For facilitating the presentation we form a new graph G^* where each edge $e \in E$ is replaced by two parallel unit capacity edges e^1 and e^2 in G^*. The messages at source node s_i are denoted $[X_{1i} \ X_{2i}], i = 1, \ldots, 3$. Let the subgraph of G^* induced by all edges with superscript i be denoted G^*_i. In G^*_1, there exists a single $s_1 - t_1$ path and three edge disjoint $s_2 - t_2$ paths. Therefore, we can transmit X_{11} from s_1 to t_1 and $[X_{21} \ X_{22}]$ from s_2 to t_2 using the result of Lemma [9]. Similarly, we use G^*_2 to communicate X_{12} from s_1 to t_1 and $[X_{31} \ X_{32}]$ from s_3 to t_3. Thus, over two time units a rate of $[1 \ 1 \ 1]$ can be supported.

B. Code Assignment Procedure For Instances With Connectivity Level $[2 \ 2 \ 4]$

Our solution approach is similar in spirit to the discussion above. In particular, we first investigate a two-unicast scenario with connectivity level $[2 \ 4]$ and rate requirement $\{2,1\}$ and use that in conjunction with vector network coding to address the three-unicast with connectivity level $[2 \ 2 \ 4]$.

Lemma 11: A minimal multiple unicast instance $\langle G, \{s_1 - t_1, s_2 - t_2\}, \{2, 1\} \rangle$ with connectivity level $[2 \ 4]$ is feasible.

Proof: Let $P_{\mathcal{S}} = \{P_{11}, P_{12}\}$ denote two edge disjoint paths (also vertex disjoint due to the structured nature of G) from s_1 to t_1 and $P_{\mathcal{S}} = \{P_{21}, P_{22}, P_{23}\}$ denote the four vertex disjoint paths from s_2 to t_2. Let the source messages at s_1 be denoted by X_1 and X_2, and the source message at s_2 by X_3. We color the edges of the graph such that each edge on P_{11} is colored red, each edge on P_{12} is colored blue and each edge on a path in P_{22} is colored black.

As the paths in P_{11} and P_{22} are vertex-disjoint, it is clear that a node with an in-degree of two is such that its outgoing edge has two colors (either $(blue, black)$ or $(red, black)$). The path further downstream continues to have two colors until it reaches a node of out-degree two.

Such an overlap segment with two colors will be referred to as a mixed color overlap segment. We shall also use the terms red or blue overlap segment to refer to segments with colors $(red, black)$ and $(blue, black)$ respectively. Note that by our naming convention path P_{ij} is a path that enters terminal t_i.

Under the topological order in G we can identify the overlap segment on P_{ij} that is closest to t_i. In the discussion below this will be referred to as the last overlap segment with respect to path P_{ij}. Two overlap segments E_{os1} and E_{os2} are said to be neighboring with respect to P_{ij} if there are no overlap segments between them along P_{ij}. An example of neighboring overlap segments is shown in Fig. 3(a).

Claim 12: Consider two neighboring mixed color overlap segments E_{os1} and E_{os2} with respect to path $P_{11} \in P_{\mathcal{S}}$. Then E_{os1} and E_{os2} cannot lie on the same path $P_{2j} \in P_{\mathcal{S}}$.

proof: W.l.o.g., assume that $E_{os1} = \{e_1, \ldots, e_{k_1}\}$ and $E_{os2} = \{e_1', \ldots, e_{k_2}'\}$ are such that e_{k_1} is upstream of e_1'. Now assume that both E_{os1} and E_{os2} are on P_{2j}. Note that head(e_{k_1}) has two outgoing edges, one of which belongs to P_{ij} and the other belongs to P_{2j} (denoted by e^*). We claim that e^* can be removed while the connectivity level remains the same. This is because e^* does not belong to P_{11} and $P_{2k}, \forall k \neq j$. Moreover, after the removal, P_{2j} can be modified to the path specified as $\text{path}(s_2, \text{head}(e_{k_1}')) - \text{path}(e_{k_1}, e_{k_1}') - \text{path}(\text{head}(e_{k_1}'), t_2)$ where $\text{path}(e_{k_1}, e_{k_1}')$ is along P_{11}. The new P_{2j} is vertex disjoint of $P_{2k}, \forall k \neq j$, since E_{os1} and E_{os2} are neighboring mixed color overlap segments along P_{11} which means that $\text{path}(e_{k_1}, e_{k_1}')$ is either purely blue or purely red. This contradicts the minimality of the graph.

Likewise, two neighboring mixed color overlap segments with respect to P_{2j}, cannot lie on the same path P_{1j}.

To explain our coding scheme, we first denote the last red (blue) overlap segment with respect to P_{1j} (P_{2k}) by E_r (E_b). If there is no E_r, then X_1 can be transmitted along P_{1j}. According to Lemma [9] X_2 and X_3 can be transmitted to t_1 and t_2 respectively. A similar argument can be applied to the case when there is no E_b. Hence, we assume that both E_r and E_b exist. Based on their locations in G, we distinguish the following two cases.

- **Case 1**: E_r and E_b are on different paths $\in P_{2j}$.

W.l.o.g. we assume that E_r and E_b are on paths P_{21} and P_{22}.

If there are no mixed color overlap segments on either P_{23}
or P_{24}, X_3 can be transmitted to t_2 through the overlap free path, and X_1, X_2 can be routed to t_1. Therefore, we focus on the case that there are mixed color overlap segments on both P_{23} and P_{24}. Let E_{os1} denote the last mixed color overlap segments with respect to P_{2i}, $i = 1, \ldots, 4$ (see Fig. 3(b)). Our coding scheme is as follows. Symbol X_i is transmitted over the outgoing edge from s_1 over $P_{1i}, i = 1, 2$; symbols $\theta_j X_i$ are transmitted over the outgoing edges of s_2 over $P_{2j}, j = 1, \ldots, 4$ respectively. The values of $\theta_j \in GF(q)$ will be chosen as part of the code assignment below. Let the coding vectors at each intermediate node be specified by indeterminates for now. The overall transfer matrix from the pair of sources $\{s_1, s_2\}$ to t_1 can be expressed as

$$[M_{11} | M_{12}] = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{bmatrix} \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} \end{bmatrix},$$

such that the received vector at t_1 is $[M_{11} | M_{12}] \cdot [X_1, X_2, \theta_1 X_1, \ldots, \theta_3 X_3]^T$. Recall that E_r and E_b are the last mixed color segments with respect to P_{11} and P_{12}. Thus, they carry the same information as the incoming edges of t_1 which implies that the row vectors of $[M_{11} | M_{12}]$ are the coding vectors on E_r and E_b respectively. Similarly, the transfer matrix from $\{s_1, s_2\}$ to the edge set $\{E_r, E_b, E_{os3}, E_{os4}\}$ and not to the terminal t_2 can be expressed as

$$[M_{21}^e | M_{22}^e] = \begin{bmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \\ \alpha_3 & \beta_3 \\ \alpha_4 & \beta_4 \end{bmatrix} \begin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & \gamma_{14} \\ \gamma_{21} & \gamma_{22} & \gamma_{23} & \gamma_{24} \\ \gamma_{31} & \gamma_{32} & \gamma_{33} & \gamma_{34} \\ \gamma_{41} & \gamma_{42} & \gamma_{43} & \gamma_{44} \end{bmatrix},$$

where we use the superscript e to emphasize that these transfer matrices are to the edge set $\{E_r, E_b, E_{os3}, E_{os4}\}$ and not to the terminal t_2.

Note that the entries of the transfer matrices above are functions of the choice of the local coding vectors in the network which are indeterminate. Thus, at this point, the M_{ij} and M_{ij}^e matrices are also composed of indeterminates. As there exist two edge disjoint paths from s_1 to $\{E_r, E_b\}$, the determinant of M_{11} is not identically zero. Similarly, since the edges E_r, E_b, E_{os3} and E_{os4} lie on different paths in P_2, there are four edge disjoint paths from s_2 to the edge subset $\{E_r, E_b, E_{os3}, E_{os4}\}$, and the determinant of M_{22} is not identically zero. This implies that their product is not identically zero. Hence, by the Schwartz-Zippel lemma 25, under random linear network coding there exists an assignment of local coding vectors so that $\text{rank}(M_{11}) = 2$ and $\text{rank}(M_{22}) = 4$. We assume that the local coding vectors are chosen from a large enough field $GF(q)$ so that this is the case. For this choice of local coding vectors we propose a choice of $\bar{\theta} = [\theta_1, \theta_2, \theta_3, \theta_4]^T$ such that the decoding is simultaneously successful at both t_1 and t_2.

Decoding at t_1: As M_{11} is a square full-rank matrix, we only need to null the interference from s_2. Accordingly, we choose $\bar{\theta}$ from the null space of $M_{12}, \bar{\theta}$, i.e.,

$$M_{12} \bar{\theta} = 0.$$

There are at least $q^2 - 1$ such non-zero choices for $\bar{\theta}$ as M_{12} is a 2×4 matrix.

Decoding at t_2: The primary issue is that one needs to demonstrate that the choice of $\bar{\theta}$ allows both terminals to simultaneously decode. Indeed, it may be possible that our choice of $\bar{\theta}$ along with a specific network topology may make it impossible to decode at t_2. The key argument that this does not happen requires us to leverage certain topological properties of the overlap segments, that we present below.

Claim 13: In G either one or both of the following statements hold. (i) E_r is the last overlap segment w.r.t. P_{21}. (ii) E_b is the last overlap segment w.r.t. P_{22}.

Proof: Assume that neither statement is true. This means that there is a blue overlap segment E_r' below E_r along P_{21}, and there is a red overlap segment E_b' below E_b along P_{22}. Thus, E_r' is upstream of E_r and E_b' is upstream of E_b. However, this means that edges E_r', E_r, E_b' and E_b form a cycle, which is a contradiction.

In the discussion below, w.l.o.g., we assume that E_r is the last overlap segment on P_{21}. The argument above allows us to identify edges E_r, E_{os3} and E_{os4} that carry the same symbols as those entering t_2. We show below that the X_1 and X_2 components can be canceled by using the information on E_{os3} and E_{os4} while retaining the X_3 component.

Let γ_i represent the vector $[\gamma_{i1}, \gamma_{i2}, \gamma_{i3}, \gamma_{i4}]^T, i = 1, \ldots, 4$ in the discussion below. Note that if $[\alpha_3, \beta_3]$ and $[\alpha_4, \beta_4]$ are linearly independent, there exist δ_3 and δ_4 such that

$$[\alpha_1, \beta_1] = \delta_3[\alpha_3, \beta_3] + \delta_4[\alpha_4, \beta_4],$$

where δ_3 and δ_4 are not both zero. Thus, t_2 can recover $[-\delta_3 \gamma_{11} + \delta_4 \gamma_{12}]T \theta X_3$. Note that $\gamma_{11} T \theta = 0$, by the constraint on $\bar{\theta}$ above, thus we only need to pick $\bar{\theta}$ such that $[-\delta_3 \gamma_{11} + \delta_4 \gamma_{12}]T \theta \neq 0$. To see that this can be done, we note that M_{22} is full rank which implies that the matrix $[\gamma_{13}, \gamma_{14}, \gamma_{23}, \gamma_{24}]$ is full rank. Therefore, there exist at most q choices for $\bar{\theta}$ such that $[\gamma_{11}, \gamma_{12}, \gamma_{13}, \gamma_{14}]T \theta \neq 0$. Hence, there are at least $q^2 - q - 1 > 0$ non-zero choices for $\bar{\theta}$ that allow decoding at t_1 and t_2 simultaneously.

If $[\alpha_3, \beta_3]$ and $[\alpha_4, \beta_4]$ are independent, decoding can be performed simply by working only with the received values over E_{os3} and E_{os4} using a similar argument as above.
In Case 1, we showed that $\gamma \gamma \gamma$. The graph the desired result. [2 2 4]

and let E_{0} be the blue overlap segment that is a neighbor of E_{b} w.r.t. P_{21}. Note that E_{0}' cannot be on P_{21} according to Claim [12] If E_{0}' does not exist, it implies that there is only one blue overlap segment (namely, E_{b}) in the network. Therefore, there only exist red overlap segments on P_{23} and P_{24}; using Lemma [9] X_{1} and X_{3} can be transmitted to t_{1} and t_{2} respectively over $P_{11} \cup P_{23} \cup P_{24}$, and X_{2} can be routed along P_{12} to t_{1}.

We now focus on the case when an E_{0}' exists and assume (w.l.o.g.) that it is on P_{22}. The main difference is that instead of using random coding over the entire graph, we modify our coding scheme such that random coding is performed over the graph except at E_{b} and all the edges downstream of E_{b}. At E_{b}, deterministic coding is performed such that E_{b} carries the same information as the incoming edge of it along P_{12}. The information on E_{b} is further routed to all the downstream edges of E_{b}. Note that by the deterministic coding, E_{b} carries the same information as E_{b}'.

Decoding at t_{1}: Using the arguments developed in Case 1, it is clear that X_{1} and X_{2} can be decoded from the information on E_{0}' and E_{r}. The code assignment ensures that E_{b} and E_{b}' carry the same information, thus t_{1} is satisfied.

Decoding at t_{2}: In Case 1, we showed that X_{3} can be decoded from the information on E_{r}, E_{03} and E_{04}. A similar argument can be made that X_{3} can be decoded from the information on E_{b}', E_{03} and E_{04}. Since E_{b} carries the same information as E_{b}' and E_{b} is the last overlap segment on P_{21}, terminal t_{2} can decode X_{3} by the information on E_{0}, E_{03} and E_{04}.

By using the result of Lemma [11] and the idea of vector network coding, we have the following theorem when the connectivity level is [2 2 4].

Theorem 14: A multiple unicast instance with three sessions, $< G, \{s_{1} - t_{1} \}, \{s_{2} - t_{2} \}>$ with connectivity level at least [2 2 4] is feasible.

Proof: It can be seen that the line of argument used in the proof of Theorem [10] namely using vector network coding over two time units and use the result of Lemma [11] gives us the desired result.

C. Code Assignment Procedure For Instances With Connectivity Level [1 2 5]

We now consider network code assignment for networks where the connectivity level is [1 2 5]. The code assignment in this case requires somewhat different techniques. In particular, the idea of using a two-session unicast result along with vector network coding does not work unlike the cases considered previously. At the top level, we still use random network coding followed by appropriate precoding to align the interference seen by the terminals. However, as we shall see below, we will need to depart from a purely random linear code in the network in certain situations.

As before, we consider a minimal structured graph G and let X_{i} be the source symbol at source node s_{i} for $i = 1, \ldots, 3$ and $P_{1} = \{P_{11}\}$ denote the path from s_{1} to t_{1}, $P_{2} = \{P_{21}, P_{22}\}$ denote the edge disjoint paths from s_{2} to t_{2}, $P_{3} = \{P_{31}, P_{32}, P_{33}, P_{34}, P_{35}\}$ denote the edge disjoint paths from s_{3} to t_{3}.

Our scheme operates as follows: X_{1} is transmitted over the outgoing edge from s_{1} along P_{11}. X_{2} are transmitted over the outgoing edges of s_{2} along P_{2i}, $i = 1, 2$, and X_{3} are transmitted over the outgoing edges of s_{3} along P_{3j}, $j = 1, \ldots, 5$ where $\xi = [\xi_{1} \xi_{2} \xi_{3}]^{T}$ and $\beta = [\beta_{1} \ldots \beta_{5}]^{T}$ are precoding vectors chosen from a finite field with size q.

Let $M_{1} = [M_{11} | M_{12} | M_{13}]$ denote the transfer matrix from $\{s_{1}, s_{2}, s_{3}\}$ to terminal t_{1}. Each M_{ij} corresponds to the transformation from source s_{j} to terminal t_{i}, i.e., the number of columns in M_{ij} is 1, 2 and 5 for $j = 1, 2$ and 3 respectively. Similarly, the number of rows in M_{ij} is 1, 2 and 5 for $i = 1, 2$ and 3 respectively.

In the discussion below we will need to refer to the individual entries of M_{1} and M_{2}. Accordingly, we express these matrices explicitly as follows.

$$M_{1} = [M_{11} | M_{12} | M_{13}] = \begin{bmatrix} \alpha_{11} & \beta_{11}^{T} & \gamma_{11}^{T} \\ \alpha_{12} & \beta_{12}^{T} & \gamma_{12}^{T} \\ \alpha_{13} & \beta_{13}^{T} & \gamma_{13}^{T} \end{bmatrix}$$

$$M_{2} = [M_{21} | M_{22} | M_{23}] = \begin{bmatrix} \alpha_{21} & \beta_{21}^{T} & \gamma_{21}^{T} \\ \alpha_{22} & \beta_{22}^{T} & \gamma_{22}^{T} \\ \alpha_{23} & \beta_{23}^{T} & \gamma_{23}^{T} \end{bmatrix}$$

where the entries of the matrices above are functions of indeterminate local coding vectors. The cut conditions imply that $\det(M_{ij})$ is not identically zero for $i = 1, \ldots, 3$, and furthermore that their product $\det(M_{11}) \det(M_{22}) \det(M_{33})$ is not identical zero.

Our solution proceeds as follows. We first identify a minimal structured subgraph G' of G with the following properties.

(i) There exists a path P'_{11}, from s_{1} to t_{1},
(ii) vertex disjoint paths P'_{21} and P'_{22} from s_{2} to t_{2},
(iii) path P'_{21} from s_{1} to t_{2} and
(iv) path P'_{21} from s_{2} to t_{1}.

Again, G' is said to be minimal if the removal of any edge from it causes one of the above properties to fail. We note that it is possible that there do not exist any paths from s_{1} to t_{2} or from s_{2} to t_{1} in G. These situations are considered below.

Our analysis depends on the following topological properties of G'.

Case 1. The graph G' is such that

- there is no path from s_{1} to t_{2} in G', i.e., P'_{11}, P'_{21}, $P'_{22} = 0$ (this happens only if there is no path from s_{1} to t_{2} in G), or
- there is no path from s_{2} to t_{1} in G', i.e., P'_{21}, $P'_{22} = 0$ (this happens only if there is no path from s_{2} to t_{1} in G), or
- there are paths P'_{11} and P'_{21}, $P'_{22} = 0$ in G', and there are overlap segments between P'_{11} and $P'_{21} \cup P'_{22}$.

Case 2. The graph G' is such that

- there are paths P'_{11}, P'_{21}, $P'_{22} = 0$, and P'_{11} does not overlap with either P'_{21} or P'_{22}.

We emphasize that together Case 1 and Case 2 cover all the possible types of subgraphs for G'. Specifically, either $P'_{11} = \ldots$
Theorem 15: A multiple unicast instance with three sessions, < G, \{s_i - t_i\}, \{1, 1, 1\} >, with connectivity level [1 2 5] is feasible.

Proof: We break up the proof into two parts based on type of the subgraph G' that we can find in G.

Decoding at t1: For t1 to decode X1, we need to have α_1 \neq 0 and the precoding constraint

\[\beta_1 \beta_2 = 0, \quad \text{and} \quad \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 \eta = 0. \]

There are at least q - 1 non-zero vectors ς and q^4 - 1 non-zero vectors \(\theta \) that can be selected from the field of size q such that eq. (10) and eq. (11) are satisfied.

Decoding at t2:

We begin by noting that since rank(\(M_{22} \)) = 2, \(M_{22} ς \neq 0 \), as long as \(ς \neq 0 \). Next, we argue according to the topological structure of G'. The following possibilities can occur.

(i) There is no path from s2 to t2 in G', i.e., \(P'_{2-1} = \emptyset \). This implies that \(\alpha'_1 = \alpha'_2 = 0 \) and in G, interference at t2 only exists from s3. Next, at least one component of \(M_{22} ς \) will be non-zero, based on the argument above; w.l.o.g. assume that it is the first component. We choose \(\theta \) to satisfy

\[\gamma'_1 \theta = 0. \]

It is evident that there are at least q^3 - 1 non-zero choices of \(\theta \) that satisfy the required constraints on \(\theta \) (eqs. (11) and (12)). Hence t2 can decode.

(ii) There exists a path \(P'_{2-2} \) from s1 to t2, i.e., \(P'_{2-2} \neq \emptyset \). This means that M_{21} is not identically zero. Here, we first align the interference from s3 within the span of interference from s1 by selecting an appropriate \(\theta \). We have the following lemma.

Lemma 16: If M_{21} \neq 0, there exist at least q^4 - 1 choices for \(\theta \) such that

\[M_{22} \theta = c M_{21} \]

where c is some constant.

Proof: First, w.l.o.g., we assume \(\alpha'_2 \neq 0 \). Hence, there exists a full rank \(2 \times 2 \) upper triangular matrix U such that \(U M_{21} = [0 \ \alpha'_2]^T \). Next, define

\[[1 0] U M_{21} = \bar{y}' x \]

and choose \(\theta \) to satisfy \(\bar{y}' \theta = 0 \) and set \(c = \bar{y}' \theta / \alpha'_2 \). Upon inspection, it can be verified that this implies that \(U M_{22} \theta = c U M_{21} \). As U is invertible, and there is only one linear constraint on \(\theta \), we have the required conclusion.

Thus, under this choice of \(\theta \), the interference from s3 is aligned within the span of the interference from s1 at t2. Let \(X = [X_1 X_2 X_3]^T \). The received signal at t2 is

\[[M_{21} M_{22} M_{23} \theta X = [M_{21} M_{22} \theta (X_1 + c X_5) X_2]. \]

The following claim concludes the decoding argument for t2.

Claim 17: If M_{21} is not identically zero, under random linear coding w.h.p., there exists a \(\xi \) such that rank\((M_{21} M_{22} \xi) = 2 \) and \([\beta_1 \beta_2] \xi = 0 \). Since there is no path from s2 to t1 in G, i.e., \(P'_{2-1} = \emptyset \) and \([\beta_1 \beta_2] \) is identically zero. This does not impose any constraint on \(\xi \). Next, M_{22} is full rank w.h.p. Hence, we can choose a \(\xi \) such that required condition is satisfied.

If there exists a path \(P'_{2-2} \) from s2 to t1 in G', \([\beta_1 \beta_2] \) is not identically zero. W.l.o.g., we assume that \(\beta_1 \) is not identically zero. By Lemma 20 (see Appendix), proving that det\((M_{21} M_{22} \xi) \neq 0 \), is equivalent to checking that the determinant in (22) is not identically zero. Now we demonstrate that there exists a set of local coding vectors such that the determinant in (22) is non-zero. We begin by noting that since rank\((M_{22} \)) = 2, \(M_{22} \xi \neq 0 \), as long as \(\xi \neq 0 \). Next, we argue according to the topological structure of G'. The following possibilities can occur.

1) \(P'_{11} \) overlaps with either \(P'_{12} \) or \(P'_{22} \). W.l.o.g., assume it is \(P'_{12} \). First note that when \(P'_{11} \) overlap with one of \(P'_{21} \) and \(P'_{22} \) in G', there is a path from \(s_1 \) to \(t_2 \) and a path from \(s_3 \) to \(t_1 \) in \(P'_{11} \cup P'_{21} \cup P'_{22} \). Hence, G' can be completely represented by \(P'_{12} \cup P'_{21} \cup P'_{22} \). This is
shown in Fig. 4(a). It is evident that we can choose coding coefficients such that

$$[eta_1 \quad \beta_2] = [1 \quad 0],$$

and

$$[M_{21} \quad M_{22}] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

By substituting them into eq. (22), the determinant of

$$[M_{21} \quad M_{22}]$$

is not zero.

2) P'_{11} overlaps with both P'_{21} and P'_{22}. Using a similar argument as above, G' can be completely represented by $P'_{21} \cup P'_{22}$ if P'_{11} overlaps with both P'_{21} and P'_{22}. Note that there will be one overlap between P'_{11} and each of P'_{21} and P'_{22}. Otherwise, assume there are two overlaps between P'_{11} and P'_{21}, then some edges can be removed without contradicting the minimality of the graph G'. This is shown in Fig. 4(b). Assume P'_{11} overlap with P'_{21} first. We can find a set of coding coefficients such that

$$[eta_1 \quad \beta_2] = [1 \quad 1]$$

and

$$[M_{21} \quad M_{22}] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right].$$

By substituting them into eq. (22), the determinant of

$$[M_{21} \quad M_{22}]$$

is not zero.

In both cases, therefore the required condition holds w.h.p. under random linear coding.

Terminal t_2 can decode since it can solve the system of equations specified by eq. (15).

Decoding at t_3: At t_3, we need to decode X_3 in the presence of the interference from s_1 and s_2. The prior constraints on θ, namely (11) and (12) for case (i), or (11) and (13) for case (ii) allow at least $q^3 - 1$ choices for it. As M_{33} is full-rank, this implies that there are at least $q^3 - 1$ corresponding distinct $M_{33}(\theta)$ vectors. Next, for t_3 to decode X_3, from Lemma 21, we need to have

$$M_{33}(\theta) \notin \text{span}(\{M_{31} \quad M_{32}\}).$$

Since there are at most q^2 vectors in \text{span}(\{M_{31} \quad M_{32}\}), there are at least $q^3 - q^2 - 1 > 0$ choices for θ such that all the required constraints on θ are satisfied.

Proof when there exists a subgraph G' that satisfies the conditions of Case 2

As before, our overall strategy will be to use random linear network coding, however in certain cases we will need to make modifications to the code assignment. We argue based on the properties of the minimal structured subgraph G'. Recall that under Case 2, paths P'_{11} and P'_{21} exist and P'_{11} does not overlap with $P'_{21} \cup P'_{22}$. As the graph is structured, this implies that P'_{11}, P'_{21}, and P'_{22} are all vertex disjoint.

Our first goal is to show that G' is topologically equivalent to one of the graphs shown in Figs. 5(a), 5(b), and 5(c). Towards this end, we color $P'_{11} \cup P'_{21} \cup P'_{22}$ black, the path P'_{12} red, and the path P'_{21} blue. In this process, certain edges will get a set of colors (which is a subset of \{red, blue, black\}). Note that there cannot be any edge that has the color \{blue, red\}. To see this, assume otherwise: then one could find a new path from s_1 to t_1 that overlaps P'_{11} and P'_{21} and delete at least one edge from P'_{11}, contradicting the minimality of G'. By similar arguments, P'_{12} and P'_{22} cannot overlap on $P'_{21} \cup P'_{22}$. Hence, paths P'_{12} and P'_{22} can only overlap if they also overlap with P'_{11}.

Next, we identify certain special edges in G'. As there is only one path going out of s_1, P'_{11} and P'_{21} will overlap. A similar argument shows that P'_{12} and P'_{22} will overlap. Likewise, P'_{12} and P'_{22} will overlap with P'_{21} or P'_{22}. Consider, the overlap between P'_{11} and P'_{12}. Using the minimality of G' it can be seen that there can be exactly one overlap segment between them; we identify the edge $e \in P'_{11} \cap P'_{12}$ at the farthest distance from s_1, such that it has two outgoing edges belonging to exclusively P'_{11} and P'_{12}, and call it e_1. Similarly, we identify the edge $e \in P'_{11} \cap P'_{21}$ that is closest to s_1, and call it e_2.

Next, consider the overlap between P'_{11} and P'_{22}. Once again, by minimality it holds that there is exactly one contiguous overlap segment between P'_{11} and P'_{22}, that can either be on $P'_{21} \cup P'_{22}$. We identify e_3 as the edge in $P'_{11} \cup P'_{22}$ that is closest to s_1. In a similar manner, e_2 is identified as the edge $P'_{21} \cap P'_{22}$ that is farthest away from s_2.

We now consider the possible orders of the edges e_1, \ldots, e_4. As e_1 and e_3 belong to P'_{11}, one of them has to be downstream of the other along P'_{11}. Consider the following cases:

- e_3 is downstream of e_1 along P'_{11}. If edges e_2 and e_4 lie on the same path in $P'_{21} \cup P'_{22}$, we first note that e_4 has to be downstream of e_2 (by minimality, otherwise the segment between e_1 and e_3 along P'_{11} cannot be removed); the graph G' is topographically equivalent to Fig. 5(a). If e_2 and e_4 lie on different paths in $P'_{21} \cup P'_{22}$, the graph G' is topographically equivalent to Fig. 5(b).

- e_1 is downstream of e_3 along P'_{11}, or $e_1 = e_3$. In this case e_2 and e_4 have to lie on different paths in $P'_{21} \cup P'_{22}$. To see this, assume they both lie on P'_{21}; if e_4 is downstream of e_2, the minimality of G' does not hold (segment between e_2 and e_4 along P'_{21} can be removed), whereas if e_2 is downstream of e_4, the acyclicity of G' is contradicted. Therefore, the only possibility is that e_2 and e_4 lie on different paths in $P'_{21} \cup P'_{22}$ and in this case G' is topographically equivalent to Fig. 5(c).

With the above arguments in place, it is clear that G' is topographically equivalent to one of the graphs in Fig. 5(a), 5(b), or 5(c).

We now present our schemes for the different possibilities for G'. For the class of G' that fall in Fig. 5(a), it suffices to use the approach in the proof of Theorem 1. Namely, we use random linear network coding in the network and precoding at sources s_2 and s_3. As in this case $M_{21} \neq 0$, one needs to argue that $\text{rank}(M_{21} \quad M_{22}) = 2$. Following the line of argument used previously, we can do this by demonstrating a choice of local coding coefficients such that $[\beta_1 \quad \beta_2] = [1 \quad 0]$ and

$$[M_{21} \quad M_{22}] = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

However, such an approach does not work when the subgraph G' belong to the class of graphs shown in Figs. 5(b) and 5(c). For instance, it is easy to observe that if we use random coding on Fig. 5(b) and preceding to...
cancel the X_2 component at t_1, then t_2 will receive a linear combination of X_1 and X_2 w.h.p., i.e., decoding X_2 at t_2 will fail. Accordingly, when G' looks like Fig. 5(b) or 5(c), we require a different scheme that we now present.

Modified random coding for cases in Fig 5(b) and Fig 5(c)

It is clear that the strategy of random linear network coding and precoding at the sources fails since the determinant of the matrix $[M_{21} \ M_{22} \ M_{32}]$ is identically zero for the cases in Fig. 5(b) and 5(c). Thus, at the top level our approach is to modify the original graph G by removing certain edges and identifying a special node in G that is upstream of t_2. The transfer matrix on the two incoming edges of this special node can be expressed as $[M_{21} \ M_{22} \ M_{32}]$ such that the determinant of $[M_{21} \ M_{22} \ M_{32}]$ is not identically zero. Thus, at this node it becomes possible to remove the effect of X_1 via deterministic coding. Accordingly, our strategy is to first perform random linear coding at all nodes except the special node and those that are downstream of the special node. Following this, we perform deterministic coding at the special node to cancel the effect of X_1, and random linear coding downstream of it. Finally, we argue based on the precoding constraints that each terminal can decode its desired message. In the discussion below we outline each of the steps and the corresponding analysis in a systematic manner.

Recall that based on G' (which is a subgraph of G) we have identified paths $P_{11}', P_{21}', P_{22}'$ that are all vertex disjoint, paths P_{1-2}' and P_{2-1}' and edges e_1, \ldots, e_4. At the outset we demonstrate that certain structures in G, need not be considered. In particular,

- if in G, there exists a path from s_1 to t_1 that has an overlap with $P_{21}' \cup P_{22}'$, it is clear that an alternate minimal subgraph G'' can be found that satisfies the conditions of Case 1.

In G, a path from s_1 cannot have an overlap with $path(e_2-e_3)$. To see this note that G'' is a subgraph of G; therefore if $path(e_2-e_3)$ exists in it, then it necessarily has to belong to a path P_{3i} from s_3 to t_3. We emphasize that the entire path including e_2 and e_3 have to belong to P_{3i} because by assumption all nodes in the graph have in-degree + out-degree at most 3. In a similar manner, the path from s_1 that overlaps with $path(e_2-e_3)$ also needs to belong to path P_{3j}. If $i = j$, then it implies the existence of a path from s_1 to t_1 that has an overlap with $P_{21}' \cup P_{22}'$; however, this is explicitly ruled out by the discussion in the previous bullet. Thus, $i \neq j$; however, this is impossible since the paths P_{3i} and P_{3j} are edge disjoint.

Accordingly, in the discussion below, we will assume that the above scenarios do not occur.

Graph modification procedure for original graph G:

(i) Remove all edges downstream of e_2 on P_{21}' that have no overlap with a path from $\cup_{j=1}^3 P_{3j}$.

(ii) Identify an edge, denoted e_{first} on P_{22}', with the property that e_{first} is the edge closest to s_2 such that there exists a path $(s_1 - e_{first})$. Note that e_{first} exists due to the existence of path P_{1-2}' in G.

(iii) Remove edges downstream of e_{first} while maintaining the following properties - (a) there exists a path from $e_{first} - t_2$, and (b) $\max - flow(s_3 - t_3) = 5$. Rename P_{22}' to be $path(s_2 - e_{first} - t_2)$. It is important to note that after this procedure, removal of any edge downstream of e_{first} would cause either property (a) or (b) to fail.

(iv) Identify edge $e_{last} \in P_{22}'$ such that it is the edge closest to t_2 with the property that it has two incoming edges - $e_1 \notin P_{22}'$ such that there exists path $(s_1 - e_1')$ and $e_2' \in P_{22}'$. Again e_1' is guaranteed to exist as P_{1-2}' exists in G.

As a consequence of the modification procedure, there is no overlap between $path(s_1 - e_1')$ and P_{22}'. To see this, assume otherwise, i.e., an overlap segment, denoted E_{os}, exists between $path(s_1 - e_1')$ and P_{22}'. As e_{first} is the edge closest to s_2 such that there is a path between s_1 and e_{first}, it follows that E_{os} is downstream of e_{first} along P_{22}'. However, this contradicts the property of the modified graph after Step (iii) in the modification procedure above.

Next, note that $path(e_2-e_3)$ has to overlap with a path from $\cup_{i=1}^3 P_{3i}$ (as G is minimal) which means that the downstream neighboring edge of e_2 along P_{21}' cannot belong to any path in $\cup_{i=1}^3 P_{3i}$ and will be removed in Step (i). Likewise the incoming edge of t_2 along P_{21}' will also be removed. At the end of the graph modification procedure, and using the observations made above, it is clear that we can identify a subgraph \tilde{G} of G that is topologically equivalent to either Fig. 5(a) or 5(b).

Next, we perform random linear coding over the modified
graph except at edge e_{last} and all the edges downstream of e_{last}, and impose the precoding constraints $[\beta_1 \beta_2] \xi = 0$ and $\gamma^T \tilde{\beta} = 0$. This ensures that t_1 is satisfied. Furthermore, note that there is no path from e_{last} to t_1; therefore any code assignment on e_{last} and its downstream edges will not affect decoding at t_1.

For t_2 to decode X_2, we first demonstrate that by using deterministic coding for edge e_{last}, the X_1 component can be canceled while the X_2 component can be maintained on e_{last}. Note that e'_1 and e'_2 denote the incoming edges of e_{last}; we denote the transfer matrix to these two edges by $[\tilde{M}_{21} \tilde{M}_{22} \tilde{M}_{23}]$.

Claim 18: For the network structures in Fig. 5(a) and Fig. 6(b), the determinant of $[\tilde{M}_{21} \tilde{M}_{22} \tilde{M}_{23}]$ is not identically zero where ξ satisfies $[\beta_1 \beta_2] \xi = 0$.

Proof: Based on previous arguments, we have identified the subgraph \tilde{G} of G that is topologically equivalent to either Fig. 6(a) or 6(b). By Lemma 20 proving the claim is equivalent to showing that the determinant of eq. (22) is not identically zero. Based on \tilde{G} it is evident that local coding vectors for the case of Fig. 6(a) can be chosen such that

$$[\beta_1 \beta_2] = [1 0], \quad [\tilde{M}_{21} \tilde{M}_{22}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (19)$$

Similarly, for the case of Fig. 6(b) they can be chosen as

$$[\beta_1 \beta_2] = [1 0], \quad [\tilde{M}_{21} \tilde{M}_{22}] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \quad (20)$$

Substituting the local coefficients into eq. (22) we have the required conclusion.

We now want to argue that t_2 can be satisfied. Note that edge e'_1 must belong to a path from P_3, as the graph is minimal. Assume that there are k paths from P_3 that overlap with $path(e_{last} - t_2)$; w.l.o.g. we assume that these are the paths P_{31}, \ldots, P_{3k}.

Next, we note that there can be at most one overlap between a path P_{3j} and $path(e_{last} - t_2)$. This is due to Step (iii) of the graph modification procedure, where we removed edges downstream of e_first, (and hence e_{last}) such that the $\max - \text{flow}(s_3 - t_3) = 5$ and there is path between $e_\text{first} - t_2$. If there are multiple overlaps between P_{3j} and $path(e_{last} - t_2)$, this would mean that there exists at least one edge that was not removed by Step (iii). As depicted in Fig. 6(c), we denote the overlap segments as $E_{os1}, \ldots, E_{os_k}$, where E_{osj} is upstream of E_{osj+1} for $j = 1, \ldots, k - 1$ along P'_{2j}. Also note that the first edge of E_{os} is e_{last}.

The next step in the code assignment is to use deterministic local coding coefficients so that the transmitted symbol on e_{last} does not have an X_1 component. Note that it is guaranteed to have an X_2 component by the Claim 18 above. Following this, we again use random linear coding on edges downstream of e_{last}. By the definition of e_{last} there is no edge in P'_{22} downstream of e_{last} that is reachable from s_1. Thus all coding vectors along P'_{22} downstream of e_{last} do not have an X_1 component. Let the coding vector on the edge e_{last} closest to t_2 be denoted by $[0 \mid \hat{\beta}^T \mid \hat{\gamma}^T]$, where it is evident that $\hat{\beta} \neq 0$ w.h.p. We enforce the precoding constraint $\hat{\gamma}^T \tilde{\beta} = 0$. This satisfies t_2.

Finally, we discuss the decoding at t_3. Consider the overlap segments $E_{os1}, \ldots, E_{os_k}$ discussed above. Each of these overlap segments has an incoming edge that does not lie on P'_{22} (the other has to be on P'_{22}). We denote these edges by e''_1, \ldots, e''_k, k, where we emphasize that $e''_1 = e'_1$. Let the edges entering t_3 on paths $P_{3(k+1)}, \ldots, P_{35}$ be denoted by e''_{k+1}, \ldots, e''_5. Denote the transfer matrix on the edges e''_{1}, \ldots, e''_5 by $[\tilde{M}_{31} \mid \tilde{M}_{32} \mid \tilde{M}_{33}]$. Note that with high probability it holds that $\text{rank}(\tilde{M}_{33}) = 5$, since the max-flow from s_3 to these set of edges is 5.

Next consider the rank of the coding vectors on edges $\{e_{last}, e'_2, e'_3, e''_1, e''_5\}$. For the sake of argument suppose that we remove the row of M_{33} corresponding to e''_1 and replace it with the corresponding row of e_{last}. As we used a deterministic code assignment for edge e_{last} the rank of the updated M_{33} may drop to four, however it will be no less than four since it has four linearly independent row vectors.

It can be seen that further random linear coding downstream of e_{last} will therefore be such that $\text{rank}(M_{33})$ (recall that $[M_{31} \mid M_{32} \mid M_{33}]$ is the transfer matrix to t_3) is at least four w.h.p. Moreover, it can be seen that the information on E_{os_k} also reaches t_3, thus t_3 can decode X_2. Therefore at t_3 over the other four incoming edges we have a system of equations specified by the matrix $[\tilde{M}_{31} \mid \tilde{M}_{32} \mid \tilde{M}_{33}]$ (of dimension 4×6) with unknowns X_1 and X_3. Furthermore $\text{rank}(M_{33}) \geq 3$. The constraints on $\hat{\gamma}$ thus far dictate that there are $q^3 - 1$ non-zero choices for it. As shown in the appendix (cf. Lemma 23) this implies that there are at least $q^2 - 1$ distinct values for $M_{33}\hat{\gamma}$. For decoding X_3 at t_3, from Lemma 21 we need to have

$$M_{33}\hat{\gamma} \notin \text{span}(M_{31}). \quad (21)$$

As there are at most q vectors in the span of M_{31}, it follows that there are at least $q^2 - q - 1 > 0$ non-zero values of $\hat{\gamma}$ such that t_3 can be satisfied.

VI. SIMULATION RESULTS

Our feasibility results thus far have been for the case of unit-rate transmission over networks with unit-capacity edges. In this section, we present simulation results that demonstrate that these can also be used for networks with higher edge capacities, that can potentially support higher rates for the connections. The main idea is to pack multiple basic feasible solutions along with fractional routing solutions to achieve a higher throughput. The packing can be achieved by formulating appropriate integer linear programs. We compared these results to the case of solutions that can be achieved via pure fractional routing.

We applied our technique to several classes of networks. We did not see a benefit in the case of networks generated using random geometric graphs (this is consistent with previous results [3]). We have found that our techniques are most powerful for networks where the paths between the various $s_i - t_i$ pairs have significant overlap. Accordingly, we experimented
with four classes of networks (shown in Fig. 7) with varying levels of overlap between the different source-terminal pairs. The level-1 network (Fig. 7(a)) has the maximum overlap between the $s_1 - t_1$ paths and the other paths; the overlap decreases with an increase in the level number of the network. The edge capacities in the networks were chosen randomly and independently with distributions as explained below. We conducted two sets of simulations.

- **Simulation 1.** Let C denote the edge capacity. For the level-1 network for the black edges we chose $P(C = 1) = 0.25, P(C = 2) = 0.4, P(C = 3) = 0.35$; for the other edges, $P(C = 1) = 0.15, P(C = 2) = 0.6, P(C = 3) = 0.25$. In the other networks we chose $P(C = 1) = 0.15, P(C = 2) = 0.6, P(C = 3) = 0.25$ for all the edges. Thus in this set of simulations, the maximum edge capacity is three. We generated 300 networks from these distributions and compared the performance of our schemes with pure fractional routing. The results shown in the first row of Table I indicate that the level-1 network has the maximum number of instances where a difference in the throughput was observed; both [1 2 5] and [2 2 4] structures appear here. For the other networks, the [2 2 4] structure appeared most often. The second row of Table I records the average performance improvement when there was a difference between our scheme and routing; it varies between 4.9% to 5.59%.

- **Simulation 2.** In this set of simulations we increased the average edge capacity. For the level-1 network for the black edges we chose $P(C = 5) = 0.25, P(C = 6) = 0.4, P(C = 7) = 0.35$; for the other edges, $P(C = 5) = 0.15, P(C = 6) = 0.6, P(C = 7) = 0.25$. In the other networks we chose $P(C = 5) = 0.15, P(C = 6) = 0.6, P(C = 7) = 0.25$ for all the edges. Again, we generated 300 networks from these distributions and compared the performance of our schemes with pure fractional routing. The results shown in the third row of Table I indicate that in this higher capacity simulation, the number of networks where our schemes outperform pure routing is significantly higher. For instance for the level-2 and level-3 networks more than 50% of the networks showed an increase in the throughput using our methods. Another interesting point, is that one observes an increased gap for level-2 and level-3 networks compared to the other cases. The fourth row of Table I records the average performance improvement when there was a difference between our scheme and routing; it varies between 0.45% to 1.16%.

We found that though there were instances of all the
structures being packed by the ILP, the majority were [2 2 4] structures. For the level-4 network, since [2 2 4] structure cannot be packed effectively, there is a significant drop in the proportions of networks that exhibit a difference with respect to routing as compared to the level-3 and level-4 networks. There were significant advantages in our approach for the case of networks with higher edge capacities as in these networks the chance of packing our basic feasible structures is higher. The average performance improvement obtained when there was a difference between our schemes and routing is not very high. We remark that the complexity of running the ILP increases with higher edge capacities and that was a limiting factor in our experiments; the performance improvement may be higher for large scale examples. Overall, our results indicate that there is a benefit to using our techniques even for networks with higher capacities, where the different source-destination paths have a large overlap.

VII. CONCLUSIONS AND FUTURE WORK

In this work we considered the three-source, three-terminal multiple unicast problem for directed acyclic networks with unit capacity edges. Our focus was on characterizing the feasibility of achieving unit-rate transmission for each session based on the knowledge of the connectivity level vector. For the infeasible instances we have demonstrated specific network topologies where communicating at unit-rate is impossible, while for the feasible instances we have designed constructive linear network coding schemes that satisfy the demands of each terminal. Our schemes are non-asymptotic and require vector network coding over at most two time units. Our work leaves out one specific connectivity level vector, namely [1 2 4] for which we have been unable to provide either a feasible network code or a network topology where communicating at unit rate is impossible. Our experimental results indicate that there are benefits to using our techniques even for networks where the edges have higher and potentially different capacities. Specifically, our basic feasible solutions can be packed along with routing to obtain a higher throughput. Future work would include a study of real-world networks where these techniques are most useful.

APPENDIX

Claim 19: For two independent random variables X_1 and X_2 with $H(X_1) = a$ and $H(X_2) = b$, if $H(X_1|Y) \leq \epsilon_n$ where Y is another random variable with $H(Y) \leq a$, then $b - \epsilon_n \leq H(X_2|Y) \leq b$, $H(Y|X_2) \geq a - 2\epsilon_n$.

Proof: Since $H(X_1) = a$ and $H(X_1|Y) \leq \epsilon_n$, we have $H(Y) = H(X_1, Y) - H(X_1|Y) \geq H(X_1) - H(X_1|Y) \geq a - \epsilon_n$. Next $H(Y) \leq a$ implies that $H(Y|X_1) = H(X_1|Y) + H(Y) - H(X_1) \leq \epsilon_n + a - a = \epsilon_n$.

As X_1 and X_2 are independent and $H(X_2) = b$, we have

$$b = H(X_2) = H(X_2|X_1) \leq H(X_2|X_1, Y) + H(Y|X_1) \leq H(X_2|X_1, Y) + \epsilon_n \leq H(X_2|Y) + \epsilon_n \leq b + \epsilon_n.$$

Thus, $b - \epsilon_n \leq H(X_2|Y) \leq b$.

Finally, we obtain

$$H(Y|X_2) = H(Y) - I(Y; X_2) = H(Y) + H(X_2|Y) - H(X_2) \geq a - \epsilon_n + b - \epsilon_n - b = a - 2\epsilon_n.$$

Lemma 20: If $\beta_1 \neq 0$, $\det([M_{21}, M_{22}|\xi])$ can be represented by

$$\xi_2 \beta_1 \geq \det \left[\begin{array}{c} a_1' - \beta_2 \alpha_1' + \beta_1 \alpha_1'' \\ a_2' - \beta_2 \alpha_2' + \beta_1 \alpha_2'' \end{array} \right].$$

(22)

where ξ satisfies $[\beta_1, \beta_2]^T = 0$.

Proof: Because ξ satisfies $[\beta_1, \beta_2]^T = 0$, we can have $\xi_1 = -\beta_2 \xi_2 / \beta_1$. Note ξ_2 can be selected to be nonzero, regardless of the value of β_2. By substituting ξ_1 into $[M_{21}, M_{22}\xi]$, the determinant of $[M_{21}, M_{22}\xi]$ becomes

$$\det \left[M_{21}, M_{22} \left[\begin{array}{c} -\beta_2 \xi_2 \\ \xi_2 \end{array} \right] \right] = \xi_2 \beta_1 \det \left[\begin{array}{c} a_1' - \beta_2 \alpha_1' + \beta_1 \alpha_1'' \\ a_2' - \beta_2 \alpha_2' + \beta_1 \alpha_2'' \end{array} \right].$$

(23)

where ξ_2 / β_1 is nonzero.

Lemma 21: Consider a system of equations $Z = H_1 X_1 + H_2 X_2$, where X_1 is a vector of length l_1 and X_2 is a vector of length l_2 and $Z \in \text{span}([H_1\ H_2])\text{span}([H_1\ H_2])$. The matrix H_1 has dimension $z_1 \times l_1$, and rank $l_1 - \sigma$, where $0 \leq \sigma \leq l_1$. The matrix H_2 is full rank and has dimension $z_2 \times l_2$ where $z_1 \geq (l_1 + l_2 - \sigma)$. Furthermore, the column spans of H_1 and H_2 intersect only in the all-zeros vectors, i.e. $\text{span}(H_1) \cap \text{span}(H_2) = \{0\}$. Then there exists a unique solution for X_2.

Proof: Since $Z \in \text{span}([H_1\ H_2])$, there exists X_1 and X_2 such that $X_1 = H_1 X_1 + H_2 X_2$. Now assume there is another set of X'_1 and X'_2 such that $Z = H_1 X'_1 + H_2 X'_2$. Then we will have

$$H_1(X_1 - X'_1) = H_2(X_2 - X'_2).$$

(24)

Because $\text{span}(H_1) \cap \text{span}(H_2) = \{0\}$, both sides of eq. 24 are zero. Furthermore, since H_2 is a full rank matrix, $X_2 = X'_2$. The solution of X_2 is unique.

Lemma 22: There are at least $q^2 - 1$ distinct values for \tilde{M}_{33} when there are $q^3 - 1$ distinct values for \tilde{M}_{34}.

Proof: Since \tilde{M}_{33} is a 4×5 matrix, it has rank at least 3, we can find two vectors \tilde{z}_1 and \tilde{z}_2 such that the matrix

$$\tilde{M}'_{33} = [\tilde{M}_{33} | \tilde{z}_1 | \tilde{z}_2]^T$$

and $\text{rank}(\tilde{M}_{33}^T) = 5$. This implies that there are $q^3 - 1$ distinct values for \tilde{M}_{34}. Next note that
since \(\text{rank}(M_{33}) \geq 4 \), \(\bar{\gamma}_{1} \) can be selected as the coding vector for \(\bar{\theta}_{3} \) on \(E_{osk} \) so that \(\text{rank}(M_{33} | \bar{\gamma}_{1}) \geq 4 \). The precoding constraint implies that \(\gamma_{1}^{T} \bar{\theta} = 0 \). Hence, by removing \(\gamma_{1} \) from \(M_{33}^{1} \bar{\theta} \), there continue to be \(q^{2} - 1 \) distinct vectors. If we further remove \(\gamma_{1} \) from \(M_{33}^{2} \bar{\theta} \), there will be at least \(q^{2} - 1 \) distinct values, i.e., there are \(q^{2} - 1 \) distinct values for \(M_{33}^{2} \bar{\theta} \). ■

REFERENCES