Characterizing Acoustic Fluidized Bed Hydrodynamics Using X-Ray Computed Tomography

Thumbnail Image
Date
2013-07-01
Authors
Escudero, David
Heindel, Theodore
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Heindel, Theodore
University Professor
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

Fluidized bed reactors are important assets of many industrial applications because they provide uniform temperature distributions, low pressure drops, and high heat/mass rates. Characterizing the hydrodynamics of a fluidized bed is important to better understand the behavior of these multiphase flow systems. The hydrodynamic behavior in a cold flow 3D fluidized bed, with and without acoustic intervention, using X-ray computed tomography is investigated in this study. Experiments are carried out in a 10.2 cm ID fluidized bed filled with glass beads, with material density of 2600 kg/m3 and particle size ranges between 212–600 μm. In this study, three different bed height-to-diameter ratios are examined: H/D = 0.5, 1 and 1.5. Moreover, the sound frequency of the loudspeaker used as the acoustic source is fixed at 150 Hz with a sound pressure level of 120 dB. Local time-average gas holdup results show that the fluidized bed under the presence of an acoustic field provides a more uniform fluidization, the bed exhibits less channeling, and the jetting phenomena produced by the distributor plate is less prominent when compared to no acoustic field. Thus, acoustic intervention affects the hydrodynamic behavior of the fluidized bed.

Comments

This is a conference proceeding from ASME 2013 Fluids Engineering Division Summer Meeting 2 (2013): 1, doi:10.1115/FEDSM2013-16094. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013