6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga

S. J. Murray
Massachusetts Institute of Technology

M. Marioni
Massachusetts Institute of Technology

S. M. Allen
Massachusetts Institute of Technology

R. C. O’Handley
Massachusetts Institute of Technology

Thomas A. Lograsso
Iowa State University, lograsso@ameslab.gov

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs
Part of the Condensed Matter Physics Commons, and the Metallurgy Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/125. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga

Abstract
Field-induced strains of 6% are reported in ferromagnetic Ni–Mn–Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependence of strain on magnetic field and external stress using as input parameters only measured quantities.

Keywords
magnetostriction, magnetoelastic effects, twin boundaries, shape memory effects, stress-strain relations, nickel alloys, manganese alloys, gallium alloys, twinning, strains, magnetic fields, ferromagnetic materials, hysteresis

Disciplines
Condensed Matter Physics | Metallurgy

Comments
The following article appeared in Applied Physics Letters 77 (2000): 886 and may be found at http://dx.doi.org/10.1063/1.1306635.

Rights
Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga

S. J. Murray,a) M. Marioni, S. M. Allen, and R. C. O’Handley b)
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

T. A. Lograsso
Ames Laboratory, United States Department of Energy, Iowa State University, Ames, Iowa 50014

(Received 18 April 2000; accepted for publication 9 June 2000)

Field-induced strains of 6% are reported in ferromagnetic Ni–Mn–Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependence of strain on magnetic field and external stress using as input parameters only measured quantities. © 2000 American Institute of Physics.

Ferromagnetic shape memory alloys (FSMAs) moved from a hypothetical new class of active materials, to join piezoelectric and magnetostrictive materials, upon observation of a 0.2% magnetic-field-induced strain in a single crystal of Ni$_2$MnGa in 1996. By way of comparison, piezoelectric materials show strains of order 0.1% and the leading magnetostrictive material, Terfenol-D, shows a field-induced strain of about 0.24%. This 0.2% strain represents only a small fraction of the 6% or 7% transformation strain expected to be accessible by field-induced twin selection in Ni–Mn–Ga FSMAs. Extensional strains of 0.5% have been observed in martensitic Fe$_{70}$Pd$_{30}$ crystals at -17°C and 2.3% in Ni$_3$MnGa martensitic crystals at -8°C. Shear strains of 5.7% have been reported at room temperature in Ni–Mn–Ga martensites.

Here we report measurements of field-induced generation of the full extensional strain associated with the crystallographic distortion in a ferromagnetic shape memory alloy. An initial single-variant state is achieved by application of a compressive stress of order 1 MPa to a sample of an off-stoichiometry crystal of Ni–Mn–Ga. The strain is produced by application of a field of typically 400 kA/m (5 kOe) orthogonal to the compressive stress direction. High-speed photographs reveal the nearly complete transformation of the sample from one twin variant to another by twin boundary motion during application of the field. The form of the strain as a function of applied field and stress is quantitatively well described by a thermodynamic model that includes Zeeman energy, magnetocrystalline anisotropy, external stress, and an internal restoring force. The observed hysteresis is due to the threshold stress needed to initiate twin boundary motion and can be determined independently from a stress–strain curve. There are no adjustable parameters in the model.

The composition weighed out for growth, Ni$_{47.4}$Mn$_{32.1}$Ga$_{20.5}$, was chosen slightly off the Heusler stoichiometry, Ni$_3$MnGa. This was done in order to render alloys having Curie temperatures greater than the martensite transformation temperature, which in turn was to be greater than room temperature. Crystals were grown by the Bridgman technique at Ames Laboratory. High purity nickel, manganese, and gallium were arc melted into buttons and then drop cast into a chilled copper mold. The as-cast ingots were placed in alumina crucibles and were heated to 1350 $^\circ$C for 1 h to allow homogenization before withdrawing the sample from the heat zone at a rate of 5.0 mm/h. In order to minimize evaporation of the Mn during crystal growth, the furnace was backfilled to a positive pressure of 6.8×10^5 Pa with purified argon after the chamber and sample had been outgassed at 1350 $^\circ$C under vacuum. The single crystal boule measured 1 cm in diameter and 5 cm in length. Electron probe microanalysis showed the composition to vary along the boule axis with Mn content increasing and Ga content decreasing in the growth direction.

After Laue orientation, several samples were cut from the crystal boule by electric discharge milling. Rectangular prismatic samples measuring about 6 mm by 6 mm by 20 mm, were cut to have their faces parallel to the faces of the high-temperature, L2$_1$ (Fm3m) unit cell. The sample described here has an analyzed composition of Ni$_{39.8}$Mn$_{28.5}$Ga$_{21.7}$, with a Curie temperature of 95 $^\circ$C. Upon transformation to the tetragonally distorted (I4/mmm) martensitic phase below 45 $^\circ$C, twinning can occur along {112} planes ($\{101\}$ or $\{011\}$ in $Fm\overline{3}m$). A separate disk-shaped sample measuring 3 mm diameter by 1 mm thick was made of essentially the same composition as the prism. This disk sample has a (100) direction in its plane and was prepared for magnetic anisotropy measurements. The single-variant state was established in the disk by application of a magnetic field while the sample was cured in epoxy. (A twin-free state can be achieved either by application of a stress of order 1 MPa or a magnetic field of order 400 kA/m.) After curing of

a) Present address: Mid´e Corporation, 56 Rogers St., Cambridge, MA.
b) Electronic mail: bobohan@mit.edu
the epoxy, the single-variant state was retained. Room temperature magnetization curves taken parallel and perpendicular to the c axis and in the plane of the disk are shown in Fig. 1. They indicate the strength of the uniaxial magnetic anisotropy to be $K_u (1.5 \times 10^5 \text{J/m}^2)$. The saturation magnetization at room temperature is $\mu_0 M_s = 0.62 \text{T}$. Tickle and James measured the anisotropy Ni$_{51.3}$Mn$_{24.0}$Ga$_{24.7}$ single crystals constrained to be in the single-variant state. They reported $K_u = 2.45 \times 10^5 \text{J/m}^2$ at $-17 \degree C$.

For the field-induced strain measurements, the prismatic sample was placed with its short dimension along the field axis of an electromagnet while its long dimension (vertical) supported a nonmagnetic push rod extending above the electromagnet and ending in a platform. Dead weights were placed on the platform to apply a stress to the sample. The platform from which the sample was mounted was measured with an eddy current proximity sensor. A stress of 1.0 MPa was found to render the sample in a nearly single-variant state.

Figure 2 shows the results of field-induced strain measurements in a Ni$_{49.8}$Mn$_{28.5}$Ga$_{21.7}$ single crystal at room temperature for various axial external stresses that oppose the field-induced strain. The results of the model are summarized by

$$e(H) = e_0 \delta f = \frac{2K_u (1-h/2) - \sigma e_0}{C_{eff} e_0}.$$

where $h = M_s H/2K_u$ and C_{eff} is the effective modulus of the twinned state that accounts for the elastic energy stored in parts of the material that do not respond to the field by twin-boundary motion. The data of Fig. 2 are described with this model using the measured Ni–Mn–Ga parameters: $\mu_0 M_s = 0.6 \text{T}$, $K_u = 1.8 \times 10^5 \text{J/m}^2$, $e_0 = 0.06$, and $C_{eff} = 2$.
stress, σ_0, at which deformation by twin boundary motion initiates, the modulus decreases to C_0, and the material may strain to its full transformation strain, e_0, after which it is mechanically detwinned. For larger stresses, the modulus reverts to its single-variant value. Values of the parameters in Fig. 4 measured for Ni$_2$MnGa crystals are typically of order 12 $\sigma_0 \approx 1$ MPa, $C_0 \approx 2$ GPa, $e_0 \approx 0.06$, and $C_{tb} \approx 18$ MPa. The coercivity is given by $H_c = \sigma e_0 / \mu_0 M_s = 100$ kA/m.

In summary, strains of 6% have been produced at room temperature in single crystals of Ni–Mn–Ga by application of fields of order 400 kA/m under an opposing stress of order 1 MPa. The strain is the result of field-induced twin boundary motion. The form of the dependence of the strain on field and stress is well described by a phenomenological model with no adjustable parameters; all parameters are independently measured.

The authors appreciate the support of this work by grants from ONR (N00014-99-1-0506) DARPA (N00014-99-1-0684), a subcontract from Boeing corporation on a DARPA grant, and the Finnish Academy of Sciences with a consortium of Finnish companies through Helsinki University of Technology.

14 V. V. Martinov and V. V. Kokorin, J. Phys. III 2, 739 (1992); 2, 739 (1992).