Idempotents in plenary train algebras

Antonio Behn
Universidad de Chile

Irvin R. Hentzel
Iowa State University, hentzel@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/math_pubs

Part of the [Algebra Commons](http://lib.dr.iastate.edu/math_pubs/128).

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/math_pubs/128. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Idempotents in plenary train algebras

Abstract
In this paper we study plenary train algebras of arbitrary rank. We show that for most parameter choices of the train identity, the additional identity \((x^2 - w(x)x)^2 = 0\) is satisfied. We also find sufficient conditions for \(A\) to have idempotents.

Keywords
Plenary train algebras, Idempotent element

Disciplines
Algebra

Comments

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Idempotents in Plenary Train Algebras

Antonio Behn* Irvin Roy Hentzel†
Departamento de Matemáticas, Fac. de Ciencias, Universidad de Chile
Casilla 653, Santiago - Chile
Department of Mathematics, Iowa State University
Ames, Iowa 50011 - USA

Abstract

In this paper we study plenary train algebras. We show that for most parameter choices of the train identity, the additional identity
\((x^2 - \omega(x)x)^2 = 0\) is satisfied. In this case we prove that it has idempotents.

1 Introduction

Plenary powers are defined inductively by \(x^{(1)} = x\) and \(x^{(n+1)} = (x^{(n)})^2\). The pair \((A, \omega)\) is called a baric algebra if \(\omega : A \to K\) is a nontrivial homomorphism. If a baric algebra \((A, \omega)\) satisfies an identity of the form

\[x^{(n)} = \alpha_1 \omega(x)^{(2n-1)}x + \alpha_2 \omega(x)^{(2n-2)}x^2 + \cdots + \alpha_{n-1} \omega(x)^{(2n-1)}x^{(n-1)}\] (1)

then we call it a plenary train algebra. We will further assume that \(A\) is commutative.

An important question in nonassociative algebras in general and in train algebras in particular is the existence of idempotents.

*Supported by FONDECYT 1070243.
†Part of the work was done while this author was visiting Chile on FONDECYT 7070304 Grant
2 Main Section

Lemma 1. Let A be any baric algebra with weight function ω. If A satisfies the identity

$$ (x^2 - \omega(x)x)^2 = 0 \tag{2} $$

then, for any integers $i, j > 0$ and for any element x of weight 1:

$$ (x^{(i)} - x^{(j)})^2 = 0 \tag{3} $$

Proof. We proceed by induction on $n = |i - j|$. The case $n = 0$ is obvious. The case $n = 1$ is a direct consequence of (2). We start by expanding and linearizing (2):

$$ 4(xx)(xy) - 2\omega(y)x(xx) - 2\omega(x)y(xx) - 4\omega(x)(xy) + 2\omega(x)\omega(y)(xx) + 2\omega(x)\omega(x)(xy) = 0 $$

When $\omega(x) = \omega(y) = 1$ this shortens to

$$ (4x^2 - 4x)(xy) + 2xy - 2x^2y - 2xx^2 + 2x^2 = 0 \tag{4} $$

Our inductive hypothesis is that (3) holds for all x of weight 1 and for all i, j such that $|i - j| < n$:

$$ 2x^{(i)}x^{(j)} = x^{(i+1)} + x^{(j+1)} \tag{5} $$

Replacing $y = x^{(n)}$ in (4) we get:

$$ (4(x^2 - 4x)(xx^{(n)}) + 2xx^{(n)} - 2x^2x^{(n)} - 2xx^2 + 2x^2 = 0 $$

using (5) on the first occurrence of $xx^{(n)}$

$$ (2(x^2 - 2x)(x^2 + x^{(n+1)}) + 2xx^{(n)} - 2x^2x^{(n)} - 2xx^2 + 2x^2 = 0 $$

again using (5) where appropriate

$$ 2x^{(3)} + (x^{(3)} + x^{(n+2)}) - (x^2 + x^{(3)}) - 2xx^{(n+1)} + x^2 + x^{(n+1)} $$

$$ - (x^{(3)} + x^{(n+1)}) - (x^2 + x^{(3)}) + 2x^2 = 0 $$

collecting similar terms

$$ x^{(n+2)} - 2xx^{(n+1)} + x^2 = (x^{(n+1)} - x)^2 = 0 $$

finally substituting $x^{(i)}$ for x we get (3) for $|i - j| = n$. \qed
Theorem 2. Let A be a plenary train algebra of rank n with defining identity:

$$x^{(n)} = \alpha_1 \omega(x)^{(2^n-1)} x + \alpha_2 \omega(x)^{(2^n-2)} x^2 + \cdots + \alpha_{n-1} \omega(x)^{(2^n-1)} x^{(n-1)}$$ (6)

Let

$$\lambda = \sum_{i=1}^{n-1} (n-i) \alpha_i$$

Assume A satisfies $(x^2 - \omega(x)x)^2 = 0$. If $\lambda \neq 0$ then A has idempotents.

Proof. Let x be any weight one element of A and let

$$b_k = \sum_{i=1}^{k} \alpha_i \quad b = \sum_{k=1}^{n-1} b_k x^{(k)}$$

Notice that $\sum b_k = \lambda$ and that $b_{n-1} = 1$. Next we calculate b^2:

$$b^2 = \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_k b_j x^{(k)} x^{(j)}$$

$$= \frac{1}{2} \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_k b_j (x^{(k+1)} + x^{(j+1)} - (x^{(k)} - x^{(j)}))^2$$

using Lemma 1, $(x^{(k)} - x^{(j)})^2 = 0$,

$$b^2 = \frac{1}{2} \left(\sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_k b_j x^{(k+1)} + \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_k b_j x^{(j+1)} \right)$$

relabeling the indices of the second sum and using that $\sum b_k = \lambda$,

$$b^2 = \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_k b_j x^{(j+1)} = \lambda \sum_{j=1}^{n-1} b_j x^{(j+1)}$$

from the plenary identity and noticing that $b_{n-1} = 1$,

$$b^2 = \lambda \left(\sum_{j=1}^{n-2} b_j x^{(j+1)} + \sum_{k=1}^{n-1} \alpha_k x^{(k)} \right)$$
collecting terms and using the definition of the \(b_k\),

\[
b^2 = \lambda \left(\alpha_1 x + \sum_{k=2}^{n-1} (b_{k-1} + \alpha_k)x^{(k)} \right) = \lambda \left(\sum_{k=1}^{n-1} b_k x^{(k)} \right) = \lambda b
\]

We conclude that \(e = \frac{b}{\lambda}\) is an idempotent in \(A\).

We may notice that in the previous proof the hypothesis \((x^2 - \omega(x)x)^2 = 0\) is not fully used. A sufficient condition would be \(\sum_{k<j<n} b_k b_j (x^{(k)} - x^{(j)})^2 = 0\) where the \(b_k\) are defined as in the proof of the theorem.

Lemma 3. Let \(A\) be a baric algebra. If all weight one elements \(x \in A\) satisfy the equation:

\[
x^{(k)} = \sum_{i=1}^{n-1} \beta_i x^{(i)}
\]

where \(k \geq n\) and \(\sum \beta_i = 1\), then they also satisfy

\[
\sum_{1 \leq i < j < n} \beta_i \beta_j (x^{(i)} - x^{(j)})^2 = 0
\]

Proof. Let

\[
S = 2 \sum_{1 \leq i < j < n} \beta_i \beta_j (x^{(i)} - x^{(j)})^2
\]

We can turn (8) into a full double sum by adding some trivially zero terms where \(i = j\):

\[
S = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_i \beta_j (x^{(i)} - x^{(j)})^2
\]

expanding the squared terms

\[
S = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_i \beta_j (x^{(i)})^2 + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_i \beta_j (x^{(j)})^2 - 2 \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_i \beta_j x^{(i)} x^{(j)}
\]

changing the summation order and factoring the sums

\[
S = \sum_{j=1}^{n-1} \beta_j \sum_{i=1}^{n-1} \beta_i x^{(i+1)} + \sum_{i=1}^{n-1} \beta_i \sum_{j=1}^{n-1} \beta_j x^{(j+1)} - 2 \sum_{i=1}^{n-1} \beta_i x^{(i)} \sum_{j=1}^{n-1} \beta_j x^{(j)}
\]
using (7) and that \(\sum \beta_i = 1 \)

\[
S = 2 \sum_{j=1}^{n-1} \beta_j x^{(j+1)} - 2(x^{(k)})^2
\]

using (7) again for \(x^2 \) in place of \(x \)

\[
S = 2x^{(k+1)} - 2x^{(k+1)} = 0
\]

\[
\blacksquare
\]

Lemma 4. Let \(A \) be a plenary train algebra of rank \(n \) with defining identity:

\[
x^{(n)} = \sum_{i=1}^{n-1} \alpha_i \omega(x)^{2^{n-2}} x^{(i)}
\]

Consider an element \(x \in A \) of weight one and let its plenary powers up to \(x^{(n-1)} \) be the basis of a vectorspace where \(x^{(i)} = (0 \ldots 1 \ldots 0) \) has a one in the \(i \)th position. Then we can express \(x^{(k+1)} \) in this basis by \((1, 0, 0, 0 \ldots 0)A^k\) where

\[
A = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ddots & & \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
\alpha_1 & \alpha_2 & \alpha_3 & \ldots & \alpha_{n-2} & \alpha_{n-1}
\end{pmatrix}
\]

Proof. The proof goes by induction on \(k \). For \(k = 0 \) there is nothing to prove. So we assume

\[
x^{(k)} = \sum_{i=1}^{n-1} \beta_i x^{(i)} = (\beta_1, \beta_2, \beta_3, \ldots, \beta_{n-2}, \beta_{n-1}) = (1, 0, 0, 0 \ldots 0)A^{k-1}
\]

Replacing \(x \) by \(x^2 \) we have

\[
x^{(k+1)} = \sum_{i=1}^{n-1} \beta_i x^{(i+1)} = \sum_{i=2}^{n-1} \beta_{i-1} x^{(i)} + \beta_{n-1} \sum_{i=1}^{n-1} \alpha_i x^{(i)}
\]

\[
= (0, \beta_1, \beta_2, \ldots, \beta_{n-3}, \beta_{n-2}) + \beta_{n-1}(\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_{n-2}, \alpha_{n-1})
\]

\[
= (\beta_1, \beta_2, \beta_3, \ldots, \beta_{n-2}, \beta_{n-1})A
\]

\[
= (1, 0, 0, 0 \ldots 0)A^k
\]

\[
\blacksquare
\]
Theorem 5. Let A be a plenary train algebra of rank n with defining identity:

$$x^{(n)} = \sum_{i=1}^{n-1} \alpha_i \omega(x)^{(2^{n-2^i-1})} x^{(i)}$$

Let $\lambda_1, \ldots, \lambda_{n-1}$ be the eigenvalues of the matrix A defined in lemma 4 (the λ_k are the nonzero roots of the associative polynomial $x^n - \sum \alpha_i x^i$). If all the products $\lambda_i \lambda_j$ are distinct then A satisfies $(x^2 - \omega(x)x)^2 = 0$ and A has idempotents.

Proof. Using lemma 3 and lemma 4 we get identities

$$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_i^k \beta_j^k (x^{(i)} - x^{(j)})^2 = 0$$

where

$$(\beta_1^k, \beta_2^k, \beta_3^k, \ldots, \beta_n^k, \beta_{n-1}^k) = e_1 A^{k-1}$$

and k is any positive integer. So we have a homogeneous system of identities satisfied by the squares $(x^{(i)} - x^{(j)})^2$. In matrix form this can be written as:

$$\left\langle (e_1 A^{k-1})^T e_1 A^{k-1}, U \right\rangle = 0$$

Where U is the symmetric matrix such that $U_{ij} = (x^{(i)} - x^{(j)})^2$, and the angled brackets stand for the Hadamard product of the matrices. Now consider v_1, \ldots, v_{n-1} eigenvectors corresponding to the distinct eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ of A. and write $e_1 = \sum c_i v_i$ as a linear combination of them. Since $e_k = e_1 A^{k-1} = \sum \lambda_i^{k-1} c_i v_i$ we notice that the $c_i v_i$ also form a basis of eigenvectors for A, so we may assume that $c_i = 1$ for every i. Then

$$0 = \left\langle (e_1 A^k)^T e_1 A^k, U \right\rangle = \left\langle \left(\sum_{i=1}^{n-1} \lambda_i^k v_i \right)^T \sum_{i=1}^{n-1} \lambda_i^k v_i, U \right\rangle$$

$$= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} (\lambda_i \lambda_j)^k v_i^T v_j, U \right\rangle$$

$$= \sum_{1 \leq i \leq j < n} (\lambda_i \lambda_j)^k \left\langle (v_i^T v_j + v_j^T v_i), U \right\rangle$$

6
since this holds for all \(k \), the Vandermonde determinant says that for each \(1 \leq i \leq j < n \) we have

\[
\left\langle (v_i^T v_j + v_j^T v_i) , U \right\rangle = 0
\]

Using the symmetry of \(U \),

\[
2 \left\langle (v_i^T v_j) , U \right\rangle = 0
\]

Since the \(v_i \) form a basis for the \((n-1)\) dimensional rowspace, the matrices \(v_i^T v_j \) form a basis for the space of all \((n-1)\times(n-1)\) matrices. To verify this, it suffices to show that they are linearly independent. In fact, if \(\sum r_{ij} v_i^T v_j = 0 \) then multiplying by any \(v_k \) on the left we get \(\sum_j (\sum_i r_{ij} v_k v_i^T) v_j \). Since the \(v_j \) are linearly independent, \(\sum_i r_{ij} v_k v_i^T = 0 \) for every \(k, j \). Now since the \(v_k \) form a basis \(\sum_i r_{ij} v_i^T = 0 \), and finally since the \(v_i^T \) are linearly independent, \(r_{ij} = 0 \) for every \(i, j \).

Finally, this shows that \(U \) is orthogonal to a basis for the space of all matrices, so \(U = 0 \) and in particular \((x^{(i)} - x^{(j)})^2 = 0 \) for every \(i, j \). Finally, to use theorem 2 we need to check that \(\lambda = \sum (n-i) \alpha_i \neq 0 \). We will show that this just means that 1 is not a repeated eigenvalue of \(A \) and so it is part of the hypothesis. We want to factor the plenary polynomial:

\[
x^n - \sum_{i=1}^{n-1} \alpha_i x^i = \sum_{i=1}^{n-1} \alpha_i (x^n - x^i) = \sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_i (x^{k+1} - x^k) = (x - 1) \sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_i x^k
\]

Evaluating the right factor at \(x = 1 \) we get

\[
\sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_i = \sum_{i=1}^{n-1} (n-i) \alpha_i
\]

So \(A \) has idempotents.

As an illustration we consider some small cases:

Example 1 (n=3). Let \(A \) be a plenary train algebra satisfying:

\[
x^{(3)} = \alpha x + (1-\alpha)x^2
\]

The nonzero roots of the polynomial \(x^3 - (1-\alpha)x^2 - \alpha x \) are 1 and \(\alpha \) so by theorem 5 we can guarantee that \(A \) has an idempotent as long as 1, \(\alpha, \alpha^2 \) are
all different, that is \(\alpha \not\in \{0, 1, -1\} \). Furthermore, for every \(x \) of weight 1, we now an idempotent to be

\[
\frac{1}{\alpha + 1} \left(\alpha x + x^2 \right)
\]

Notice that when \(\alpha = 0 \), \(x^2 \) is an idempotent and that when \(\alpha = 1 \) we do not find an idempotent in this way but it is known (Etherington...) that there are idempotents.

Example 2 (n=4). Let \(A \) be a plenary train algebra satisfying:

\[
x^{(4)} = \alpha x + \beta x^2 + \gamma x^{(3)}
\]

where \(\alpha + \beta + \gamma = 1 \). Lets assume that \(1, \lambda, \mu \) are the nonzero roots of \(x^4 - \gamma x^3 - \beta x^2 - \alpha x = 0 \) so that \(\alpha = \lambda \mu \), \(\beta = -(\lambda \mu + \lambda + \mu) \), \(\gamma = \lambda + \mu + 1 \). Theorem 5 says that \(A \) has an idempotent as long as \(1, \lambda, \mu, \lambda \mu, \lambda \mu^2, \mu^2 \) are all distinct, that is \(\lambda \mu (\lambda^2 - 1)(\mu^2 - 1)(\lambda - \mu^2)(\lambda^2 - \mu) \neq 0 \).

Furthermore, in this case, we now an idempotent to be

\[
\frac{1}{3\alpha + 2\beta + \gamma} \left(\alpha x + (\alpha + \beta)x^2 + (\alpha + \beta + \gamma)x^{(3)} \right)
\]

One may notice again that the given condition is not really necessary since to really answer the question, we need to solve a linear algebra problem. We need to know whether the vector

\[
\begin{pmatrix}
\alpha(\alpha + \beta) & \alpha(\alpha + \beta + \gamma) & (\alpha + \beta)(\alpha + \beta + \gamma)
\end{pmatrix}
\]

is in the rowspace of the following matrix:

\[
\begin{pmatrix}
\alpha\beta & \alpha\gamma & (\alpha + \beta)\gamma \\
\alpha(\alpha + \beta) & \alpha(\alpha + \beta + \gamma) & \alpha(\alpha + \beta + \gamma) \\
\alpha(\alpha + \beta + \gamma) & \alpha(\alpha + \beta + \gamma + \beta + \gamma^2) & \alpha(\alpha + \beta + \gamma + \beta + \gamma^2)
\end{pmatrix}
\]

It turns out that this is the case as long as \((\beta - 1)(\alpha - 1) \neq 0 \). Which in terms of the eigenvalues leaves the final condition as \((\lambda^2 - 1)(\mu^2 - 1)(\lambda \mu - 1) \neq 0 \).

This result was obtained recently by Labra and Suazo (see...).