Semi-annual summary research report in engineering

Ames Laboratory Staff
Iowa State College

F. H. Spedding
Iowa State College

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_iscreports
Part of the Chemical Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/ameslab_iscreports/148

This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory ISC Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
SEMI-ANNUAL SUMMARY RESEARCH REPORT IN ENGINEERING

For January - June, 1956

by

Ames Laboratory Staff

October 4, 1956

Ames Laboratory at
Iowa State College
F. H. Spedding, Director
Contract W-7405 eng'82

UNCLASSIFIED
This report is distributed according to the category Chemistry, as listed in TID-4500, July 15, 1956.

Legal Notice

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.

Chemical Engineering

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Monazite Processing</td>
<td>5</td>
</tr>
<tr>
<td>2. Rare Earth Separation by Solvent Extraction</td>
<td>5</td>
</tr>
<tr>
<td>3. Liquid Metal Extraction</td>
<td>5</td>
</tr>
<tr>
<td>4. Zirconium-Hafnium Separation</td>
<td>7</td>
</tr>
<tr>
<td>5. Zirconium Process Development</td>
<td>8</td>
</tr>
</tbody>
</table>

Engineering Development

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Slurry Program</td>
<td>10</td>
</tr>
<tr>
<td>2. Engineering Properties of Reactor Materials</td>
<td>10</td>
</tr>
</tbody>
</table>

Ceramic Engineering

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sintering Mechanism as Applied to Refractory Oxides</td>
<td>10</td>
</tr>
</tbody>
</table>

Other Engineering Research

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Circulation of Molten Metals</td>
<td>11</td>
</tr>
</tbody>
</table>
SEMI-ANNUAL SUMMARY RESEARCH REPORT IN ENGINEERING

For the Period January - June, 1956

This report is prepared from material submitted by group leaders of the Laboratory

Previous research reports in this series are:

ISC-35
ISC-41
ISC-56
ISC-69
ISC-74
ISC-76
ISC-79
ISC-113
ISC-130
ISC-133
ISC-137
ISC-171
ISC-193
ISC-220
ISC-247
ISC-274
ISC-298
ISC-320
ISC-336
ISC-393
ISC-420
ISC-449
ISC-483
ISC-504
ISC-529
ISC-573
ISC-605
ISC-642
ISC-710

Chemical Engineering

1. **Monazite Processing** (Morton Smutz)*

A rather complete literature survey has been made concerning monazite processing methods in an effort to determine the best method of processing monazite sands on an industrial scale. The two methods showing most promise start with either a sulfuric acid digestion or a caustic digestion. The many alternatives are being studied on a laboratory scale.

2. **Rare Earth Separation by Solvent Extraction** (Morton Smutz)

A continuous multistage mixer-settler extractor has been made from polyethylene sheets. The extractor is of the pump-mix type with extremely sensitive interface control on each stage. A 15-stage unit has operated satisfactorily, although the unit is considered only as a prototype of a pilot plant unit.

Accurate equilibrium data for most of the rare earth nitrates have been obtained for the system rare earth nitrates-tributyl phosphate-water. The separation factor between adjacent lower rare earths is greater than between the adjacent higher rare earths. Yttrium can be made more extractable or less extractable than any of the rare earths by adjusting the total concentration. This explains much of the unexpected behavior frequently encountered when yttrium is present.

A simple algebraic method of determining the operating conditions for a given separation has been demonstrated.

3. **Liquid Metal Extraction** (E. H. Olson)

This experiment is concerned with the removal of fission products from a metallic uranium reactor fuel by extraction with an immiscible molten metal.

This molten-metal extraction process appears to have several advantages over the liquid-liquid aqueous process currently being used. Briefly, these apparent advantages would be a lower processing cost, a smaller volume of fission products to store, and a much smaller processing plant. The main disadvantage would be

Names indicate group leaders in charge of work.
a lower decontamination factor than is obtained by the current
liquid-liquid aqueous extraction process.

The system chosen for initial investigation was neodymium-
uranium with silver as the extractant metal. Neodymium was chosen
to represent the rare earth fission products which, as a group,
are responsible for approximately 20% of the poisoning effect in
uranium fuel. Also, previous experiments at the Ames Laboratory
have indicated that neodymium has a high distribution coefficient
between silver and uranium. Graphite was used in the construction
of the extractor because of its availability, ease of fabrication,
and low cost.

An equilibrium melting of silver with uranium containing
2300 p.p.m. of neodymium was carried out at 1270°C, for 15 minutes
in a graphite crucible. Analysis of the silver and uranium phases
gave neodymium concentrations of 1360 p.p.m. and 110 p.p.m.,
respectively. The accuracy of the spectrophotometric method of
analysis of the uranium phase is questionable, because a very low
concentration of neodymium was indicated. In any event, the
distribution coefficient is fairly high and probably above 10,
which indicates that silver will be quite effective in removing
the rare earth poisons from uranium.

A report (ISC-696) entitled "Liquid-Liquid Extraction of
Molten Uranium with Silver" by G. H. Beyer and C. W. Watson was
distributed.

ABSTRACT

In recent years interest in the United States in the
nuclear field has been turning towards power reactors. Among
the many problems that must be solved before economical elec-
trical power can be produced from nuclear reactors are the prob-
lems connected with the processing of spent reactor fuels.
The only reactor fuel processing methods available at present,
the aqueous-processes, are relatively complex, destroy the
metallic character of the fuel, require "long-cooled" fuels
necessitating high inventories of fissionable material, and
leave huge volumes of radioactive waste solutions to be pro-
cessed and stored.

For these reasons interest has been turning towards other
processing methods, including "pyroprocessing" by liquid-liquid
extraction of the molten fuel with silver. The purpose of this
study was to develop a part of the equipment and technology
needed to study the extraction of uranium with silver and to
ascertain some of the problems that might be expected in pro-
cessing of spent reactor fuels with a silver extraction.
A vacuum system was built in which to carry out uranium-silver contacting; induction heating equipment was set up to heat the materials. Temperature measuring methods and techniques for use in liquid metal extraction work also were studied. Chromel-alumel, platinum-platinum rhodium, and columbium-tungsten thermocouples were investigated. Graphite was selected as the best container material for the molten metals and was used satisfactorily in all of this work.

A number of uranium-silver melts were made in which the phase separation and mass transfer were studied. Phase separation was sharp but occasional macroscopic inclusions were found in both phases. Microscopic phase separation was complete. Uranium was found to crystallize out of the silver phases as they cooled and to settle towards the interfaces. Mass transfer of the uranium to the silver appeared to be fairly rapid.

A graphite extractor for passing silver through a pool of molten uranium was designed and tested. It was found to be very simple to operate, easy to fabricate, and capable of transferring nearly equilibrium amounts of uranium to the silver.

A number of recommendations are presented for improving the equipment and techniques used in this study, along with some proposals for future work in this field. A pyroprocessing scheme, based upon a silver extraction of the fuel in the extractor designed in this study, is proposed as a basis for further study.

4. Zirconium-Hafnium Separation

A report (ISC-682) entitled "Separation of Hafnium from Zirconium Using Tributyl Phosphate" by R. P. Cox and G. H. Beyer was distributed.

ABSTRACT

The separation of hafnium from zirconium using tributyl phosphate offers interesting alternatives to present methods for making reactor-grade zirconium. Feed solution for the extraction step can be prepared from the reaction product of caustic and zircon sand. The purified zirconium can be converted into a variety of compounds, depending on the process chosen for reduction to the metal. It may be that future developments will show tributyl phosphate extraction to have advantages in new plants for the production of low-hafnium zirconium metal.
Zirconium has become an important construction material for nuclear reactors because of its corrosion resistance, structural strength, and low neutron absorption. Approximately 2.5 per cent of hafnium is associated with zirconium in naturally-occurring zirconium ores. Since hafnium has an abnormally high neutron absorption cross-section, it must be removed from zirconium used in nuclear reactors. The close chemical similarity of hafnium and zirconium makes separation by ordinary chemical techniques difficult. This has led to the development of a number of physical separation methods, notably solvent extraction.

As early as 1947, Fisher and Chalybaeus reported the separation of hafnium from zirconium by distribution between two solvents. By 1953 Miller was able to state that "separated, hafnium-free zirconium oxide can be produced for well under $5 per pound to which should be added the cost of converting to zirconium metal." Although the details of the hafnium removal process are classified, it is stated that zirconium tetrachloride is used as feed and zirconium dioxide is obtained as product. After chlorination this product is reduced with magnesium by the Kroll process.

5. Zirconium Process Development (C. J. Baroch and E. H. Olson)

The purpose of this work is to produce pure, ductile zirconium from zirconium tetrafluoride, using magnesium as the reductant.

The currently used Kroll process produces a non-massive zirconium from zirconium tetrachloride, using magnesium as the reducing metal. This process requires the very careful handling of zirconium tetrachloride to prevent moisture pick up which introduces oxygen and causes the zirconium to be brittle and hard. Also the sponge form of zirconium obtained makes slag removal difficult. The magnesium reduction of zirconium tetrafluoride avoids both of the above mentioned difficulties. Zirconium tetrafluoride is non-hygroscopic and the zirconium metal is obtained in massive form with no slag inclusions.

Previously, zirconium produced from commercial grade zirconium tetrafluoride by magnesium reduction resulted in a non-ductile zirconium, presumably due to the oxygen content. During the period of this report, very pure anhydrous zirconium tetrafluoride was prepared by vacuum drying the hydrated tetrafluoride, followed by vacuum sublimation for further purification. The vacuum sublimation step leaves the non-volatile zirconium oxide as a residue and the sublimed anhydrous zirconium tetrafluoride is presumably oxygen-free.
The sublimed zirconium tetrafluoride was reduced with magnesium and the resulting zirconium gave a Rockwell "A" hardness of 69, which led us to believe that it was non-ductile. A test sample 0.107 inch in thickness was cold rolled to determine whether it could be cold worked. In 20 passes the sample was reduced 88.4% in thickness without failure or severe edge cracking. This ductility was unexpected in view of its hardness value.

More sublimed zirconium tetrafluoride is being prepared and will be reduced with magnesium to determine whether ductile zirconium can be consistently obtained. Also, an attempt will be made to reappraise the relationship between hardness and ductility of zirconium. A more detailed report (ISC-720) covering this work is being distributed.

The effects of plate spacing, plate hole diameter, per cent free plate area, pulse amplitude, and pulse frequency on the extraction efficiency of a one-inch diameter pulse column were determined. The system hexone-acetic acid-water was employed and the investigation was carried out at a fixed hexone-water flow ratio of 1.3. A statistical design was followed using two levels of each factor. The product of pulse amplitude times pulse frequency was taken as a measure of the amount of agitation supplied to the column by the pulse generator. The values of the amplitude-frequency product used were 6.25, 12.5, 25, and 50 inches/minute. Extraction efficiency decreased with an increase in the amplitude-frequency product, despite the fact that the drop size became smaller and phase dispersion was greatly improved. This decrease in extraction efficiency was believed to be the result of forced recycle or back-mixing which is present in the pulse column and which increases with an increase in the amplitude-frequency product. This back-mixing could be observed visually and predicted mathematically. It represents a deterioration of true countercurrent flow through the column.

An increase in the plate spacing from one inch to two inches or an increase in the plate hole diameter from 1/32 inch to 1/16 inch increased the extraction efficiency of the pulse column. The effect of plate spacing decreased with increasing pulsation and no plate spacing effect could be detected at an amplitude-frequency product of 50 inches/minute. Hole diameter produced the greatest effect of any of the factors studied. A change in per cent free plate area from 13% to 25% produced a small change in extraction efficiency which could be detected only at the two high levels of the amplitude-frequency product. Minimum and maximum values of
the height of a transfer unit based on the continuous hexone phase were 3.65 inches and 8.28 inches, with an average standard error of ± 0.25 inches for the experiment.

Engineering Development

1. Slurry Program (G. Murphy)

The investigation of power requirements and associated problems involved in pumping slurries has continued. The concentration range has been extended, and a series of data has been taken using small plastic spheres in water. This gives information on slurries having specific gravities near unity.

Investigations of the phenomenon of coring in vertical flow have continued and it has been noted that coring will not take place in certain concentration ranges which are a function of size and specific gravity of the solid component of the slurry.

At present the investigation is centered on a consideration of why, in certain ranges, the power requirement for pumping a slurry is lower than for pumping the fluid alone at the same average velocity. The identification of these ranges is becoming possible in terms of the Froude number, concentration of solids and specific gravity.

2. Engineering Properties of Reactor Materials (G. Murphy)

Six new high temperature fatigue machines of our own design have been put into operation at temperatures up to 600°C and are being used in the uranium alloys program. Techniques for coating fatigue specimens have been markedly improved, greatly decreasing the "down" time for specimens.

Data on the tensile and fatigue properties of uranium and selected alloys are being taken over the 25-600°C temperature range. At present, emphasis is being given to obtaining a better understanding of the marked changes in properties occurring in the 400-450°C range.

Ceramic Engineering

1. Sintering Mechanism as Applied to Refractory Oxides (D. R. Wilder)

A bibliography (ISC-288 Supp.) entitled "Sintering Mechanism as Applied to Refractory Oxides" by D. R. Wilder, was distributed. This supplement covers the literature published during the period 1952-1955.

A "hot loop" containing 10% uranium and 90% bismuth by weight, was operated for approximately 1000 hours at a temperature of 1200°C, before a failure occurred in the inconel sheath, caused by a short circuit in an electrical connection. Enough information was obtained in this experiment, however, to prove the feasibility of operating at this temperature.

At the end of the period, a loop containing 5% uranium, 0.10% manganese, and 94.90% bismuth alloy was in operation at a maximum temperature of 1050°C, and after 1600 hours of operation, shows no indications of failure. This particular alloy has a distinct advantage over the 5% uranium-95% bismuth alloy in that the addition of the manganese depresses the melting point by approximately 175°C. It appears that the addition of manganese does not accelerate the corrosion rate.
APPENDIX I: LIST OF REPORTS FROM THE AMES LABORATORY

1. Reports for Cooperating Laboratories

ISC-647 Loren R. McMurray and D. J. Zaffarano. A Possible Method for Beam Extraction from an Alternating Gradient Synchrotron.

ISC-659 George Pulliam and E. S. Fitzsimmons. Reaction of Lanthanum and Cerium with Ceramic Oxides.

ISC-662 Martin Welt and Morton Smutz. Thorium and Uranium from Monozite.

ISC-667 Max Q. Freeland and J. S. Fritz. I. Direct Titration of Sulfate. II. High Precision Spectrophotometric Analysis.

ISC-668 J. J. Renier and D. S. Martin. Iodate-Silver Complexing Equilibria.

W. W. Davis and Morton Smutz. Effect of Phosphate Rock Particle Size on Recovery of Uranium from Superphosphate.

R. T. Nichols and E. N. Jensen. Decay Schemes of Cl34 and Sc47.

C. V. Banks and J. P. LaPlante. Annotated Bibliography of α-Furildioxide.

B. L. Rhodes and Sam Legvold. Magnetic Properties of Holmium and Thulium.

2. Publications

Baenziger, N. C., R. E. Rundle and A. I. Snow
Structures of the Compounds \(\text{Th}_2\text{Cu}, \text{ThCu}_2, \text{Th}_2\text{Zn} \) and \(\text{ThHg}_3 \).

Banks, C. V. and D. T. Hooker
4-Methyl- and 4-Isopropyl-1,2-Cyclohexanedionedioxime.

Banks, C. V., D. T. Hooker and J. J. Richard
Preparation and Properties of Some Alkyl-1,2-Cyclohexane-

Carlson, O. N., P. Chiotti, G. Murphy, D. Peterson, B. A. Rogers,
J. F. Smith, M. Smutz, M. Voss and H. A. Wilhelm
The Metallurgy of Thorium and Its Alloys. Proceedings of
the International Conference on the Peaceful Uses

Chiotti, P., G. A. Tracy and H. A. Wilhelm

Corbett, J. D. and R. K. McMullan
The Preparation of Acid-Stabilized Subhalides from Molten
Metal-Metal Halide Solutions. J. Am. Chem. Soc. 78,
2906 (1956).

Corbett, J. D. and R. K. McMullan
The Use of Thermistors in Cryoscopic Measurements. J. Chem.
Educ. 33, 313-317 (1956).

Day, M. C., Jr., and A. F. Voigt
The Decay of \(\text{Sb}^{127} \) and \(\text{Sb}^{129} \).

Duke, F. R. and F. R. Parchen
The Kinetics of the Ce(IV)-Ce(III) Exchange Reaction in
Edwards, R. B. and G. H. Beyer
Flooding Characteristics of a Pulse Extraction Column.
A. I. Ch. E. Journal 2, 148-152 (1956).

Eguchi, T.

Florio, J. V., R. E. Rundle and N. C. Baenziger

Gibbs, D. S., H. J. Svec and R. E. Harrington

Gray, L. S., Jr., and V. A. Fassel

Kross, R. D., V. A. Fassel and M. Margoshes

Lowdin, Per-Olov and H. Shull

Lowry, R. A., J. E. Osher and G. H. Miller

Martin, D. S., R. E. Rundle and S. A. Golden

Nakamoto, K. and R. E. Rundle

Peterson, H. C. and G. H. Beyer

Pohm, A. V., R. C. Waddell and E. N. Jensen
Renier, J. J. and D. S. Martin, Jr.
Solubility of Silver Iodate in Iodate Solutions. Iodato-

Rhinehart, W. A. and D. J. Zaffarano
Voltage Calibration System for Accurate Pulse Height

Spedding, F. H. and J. E. Powell
The Isolation in Quantity of Individual Rare Earths of
High Purity by Ion Exchange. Chapter 15 of Ion Exchange
Technology, F. C. Nachod and J. Schubert, Editors,

Spedding, F. H., J. E. Powell and E. J. Wheelwright
The Stability of the Rare Earth Complexes with N-Hydroxy-
78, 34-37 (1956).

Voigt, A. F.
The Purification of Uranium Reactor Fuel by Liquid-Metal
Extraction. Proceedings of the International Conference
on the Peaceful Uses of Atomic Energy, Geneva, 1955, 2,
591-595 (1956).

Voigt, A. F., A. H. Daane, E. H. Dewell, R. G. Clark, J. E. Gonser,
and K. L. Malaby
Liquid-Metal Extraction for Processing of Spent Fuel.

Waddell, R. E. and E. N. Jensen
Decay Scheme of Br82. Phys. Rev. 102, 816-823 (1956).

Wilder, D. R.
Sintering of Metallic and Non-Metallic Refractory Materials.
Chapter 11 of High Temperature Technology, I. E. Campbell,

Wilhelm, H. A.
The Preparation of Uranium Metal by the Reduction of
Uranium Tetrafluoride with Magnesium. Proceedings of the
International Conference on the Peaceful Uses of Atomic

Wilhelm, H. A.
The Preparation of Uranium Metal by the Reduction of
Uranium Tetrafluoride with Magnesium. Metal Progress 69,
No. 3, 81-88 (1956).
APPENDIX II: LIST OF SHIPMENTS

<table>
<thead>
<tr>
<th>Destination</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of California</td>
<td>20 gm erbium metal</td>
</tr>
<tr>
<td>Los Alamos Scientific Laboratory</td>
<td>20 gm yttrium metal</td>
</tr>
<tr>
<td>Los Alamos, New Mexico</td>
<td>20 gm lanthanum metal</td>
</tr>
<tr>
<td></td>
<td>66 gm neodymium metal</td>
</tr>
<tr>
<td></td>
<td>69 gm samarium metal</td>
</tr>
<tr>
<td></td>
<td>72 gm gadolinium metal</td>
</tr>
<tr>
<td></td>
<td>77 gm erbium metal</td>
</tr>
<tr>
<td>Mr. H. A. Boorse</td>
<td>1 cylinder lanthanum metal</td>
</tr>
<tr>
<td>Pupin Physics Bldg.</td>
<td>250 gm thorium metal</td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
</tr>
<tr>
<td>Atomics International</td>
<td>100 mg dysprosium oxide</td>
</tr>
<tr>
<td>North Am. Aviation, Inc.</td>
<td>100 mg terbium oxide</td>
</tr>
<tr>
<td>Downey, California</td>
<td>100 mg holmium oxide</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>100 mg erbium oxide</td>
</tr>
<tr>
<td>General Engineering Laboratory</td>
<td>100 mg ytterbium oxide</td>
</tr>
<tr>
<td>Schenectady, New York</td>
<td>100 mg thulium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg lutetium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm lanthanum oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm cerium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm praseodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm neodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm samarium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm gadolinium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm yttrium oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm special N^{14}</td>
</tr>
<tr>
<td>Carbide & Carbon Chemical Company</td>
<td>50 gm pure cerium metal</td>
</tr>
<tr>
<td>Union Carbide & Carbon Corp.</td>
<td></td>
</tr>
<tr>
<td>Oak Ridge, Tennessee</td>
<td></td>
</tr>
<tr>
<td>Dr. Richard A. Ogg, Jr.</td>
<td>1 gm N^{15}</td>
</tr>
<tr>
<td>Stanford University</td>
<td></td>
</tr>
<tr>
<td>Stanford, California</td>
<td></td>
</tr>
</tbody>
</table>
Destination

- General Electric Company
 - ANP Department
 - Cincinnati, Ohio

- General Electric Company
 - Richland, Washington

- Dow Chemical Company
 - Midland, Michigan

- Dr. J. F. McClendon
 - Albert Einstein Medical Center
 - Philadelphia, Pennsylvania

- Brookhaven National Laboratory
 - Upton, Long Island, New York

- Dr. Thomas C. Hoering
 - Department of Chemistry
 - University of Arkansas
 - Fayetteville, Arkansas

- Battelle Memorial Institute
 - Columbus, Ohio

Item

1. **1 gm cerium oxide**
2. **1 gm lanthanum oxide**
3. **1 gm praseodymium oxide**
4. **1 gm neodymium oxide**
5. **1 gm samarium oxide**
6. **1 gm gadolinium oxide**
7. **1 gm yttrium oxide**
8. **100 mg terbium oxide**
9. **100 mg dysprosium oxide**
10. **100 mg holmium oxide**
11. **100 mg erbium oxide**
12. **100 mg ytterbium oxide**
13. **100 mg thulium oxide**
14. **100 mg lutetium oxide**

15. **1 gm lanthanum oxide**
16. **1 gm cerium oxide**
17. **1 gm praseodymium oxide**
18. **1 gm neodymium oxide**
19. **1 gm samarium oxide**
20. **1 gm gadolinium oxide**
21. **1 gm yttrium oxide**
22. **100 mg terbium oxide**
23. **100 mg dysprosium oxide**
24. **100 mg holmium oxide**
25. **100 mg erbium oxide**
26. **100 mg ytterbium oxide**
27. **100 mg thulium oxide**
28. **100 mg lutetium oxide**

- **20 lbs. anhydrous thorium**
- **1 gm special hafnium oxide**
- **20 mg holmium oxide**
- **2 samples N\(^{15}\)**
- **2 gm terbium metal**
- **2 gm erbium metal**
- **2 gm ytterbium metal**
- **2 gm holmium metal**
- **2 gm praseodymium metal**
<table>
<thead>
<tr>
<th>Destination</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Laboratories of Colorado, Inc. Newtown, Ohio</td>
<td>1 gm lanthanum oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm cerium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm praseodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm neodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm samarium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm gadolinium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm yttrium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg terbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg dysprosium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg holmium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg erbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg ytterbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg lutetium oxide</td>
</tr>
<tr>
<td>Dr. T. J. Bond Department of Chemistry Baylor University Waco, Texas</td>
<td>1 gm neodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm dysprosium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm yttrium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm erbium oxide</td>
</tr>
<tr>
<td>Dr. Sumner Davis Massachusetts Institute of Technology Cambridge, Massachusetts</td>
<td>1 gm terbium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm holmium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm dysprosium oxide</td>
</tr>
<tr>
<td>Yale University New Haven, Connecticut</td>
<td>40 gm gadolinium oxide</td>
</tr>
<tr>
<td></td>
<td>10 gm terbium oxide</td>
</tr>
<tr>
<td></td>
<td>20 gm holmium oxide</td>
</tr>
<tr>
<td></td>
<td>5 gm thulium oxide</td>
</tr>
<tr>
<td></td>
<td>20 gm dysprosium oxide</td>
</tr>
<tr>
<td></td>
<td>20 gm erbium oxide</td>
</tr>
<tr>
<td>The Eagle-Picher Research Laboratories Joplin, Missouri</td>
<td>1 gm lanthanum oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm cerium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm praseodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm neodymium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm samarium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm gadolinium oxide</td>
</tr>
<tr>
<td></td>
<td>1 gm yttrium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg terbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg dysprosium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg holmium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg erbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg ytterbium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg thulium oxide</td>
</tr>
<tr>
<td></td>
<td>100 mg lutetium oxide</td>
</tr>
</tbody>
</table>
Destination

University of California
Scripps Institution of Oceanography
La Jolla, California

Florida State University
Tallahassee, Florida

Professor Tarhen Huus
Institute for Theoretish Fysik
Copenhagen, Denmark

Dr. Allen J. VanderWeyden, U.S.A.E.C.
Liaison Officer
Atomic Energy of Canada, Ltd.
Chalk River, Ontario, Canada

Dr. Jagdish Shanker
Chemistry Division Department of
Atomic Energy
Government of India
Bombay, India

U.S.A.E.C.
c/o Mallinckrodt Chem. Works
Uranium Division
St. Louis, Missouri

Argonne National Laboratory
Lemont, Illinois

University of Saskatchewan
Betatron Department
Saskatoon, Saskatchewan, Canada

Item

1 gm lanthanum oxide
1 gm cerium oxide
1 gm praseodymium oxide
1 gm neodymium oxide
1 gm samarium oxide
1 gm gadolinium oxide
1 gm yttrium oxide
100 mg terbium oxide
100 gm dysprosium oxide
100 mg holmium oxide
100 mg erbium oxide
100 mg ytterbium oxide
100 mg thulium oxide
100 mg lutetium oxide

10 gm praseodymium oxide
10 gm neodymium oxide
100 mg terbium oxide

2 gm yttrium oxide
2 gm dysprosium oxide
2 gm ytterbium oxide

1 gm gadolinium oxide
1 gm dysprosium oxide

100 mg holmium oxide
100 mg terbium oxide
100 mg dysprosium oxide
100 mg erbium oxide
100 mg thulium oxide

1 sample gadolinium metal
1 sample erbium metal

25.6394 gm yttrium oxide
50 gm lutetium oxide
50 gm thulium oxide
50 gm terbium oxide
50 gm yttrium oxide
50 gm holmium oxide
<table>
<thead>
<tr>
<th>Destination</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Fisher</td>
<td>25 gm neodymium oxide</td>
</tr>
<tr>
<td>c/o Air France Cargo Department</td>
<td></td>
</tr>
<tr>
<td>New York International Airport</td>
<td></td>
</tr>
<tr>
<td>Jamaica, Long Island, New York</td>
<td></td>
</tr>
<tr>
<td>Anaconda Aluminum Company</td>
<td>1 gm hafnium oxide</td>
</tr>
<tr>
<td>Columbia Falls, Montana</td>
<td></td>
</tr>
</tbody>
</table>