Polymorphisms in Calpastatin and mu-Calpain Genes Are Associated with Beef Iron Content

E. Casas
United States Department of Agriculture

Q. Duan
Iowa State University

M. J. Schneider
Iowa State University

S. D. Shackelford
United States Department of Agriculture

Tommy L. Wheeler
United States Department of Agriculture

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/ans_pubs

Part of the [Agriculture Commons](http://lib.dr.iastate.edu/agr_commons), [Genetics Commons](http://lib.dr.iastate.edu/genetics_commons), and the [Meat Science Commons](http://lib.dr.iastate.edu/meat_science_commons)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ans_pubs/149. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html

This Article is brought to you for free and open access by the Animal Science at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Science Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Authors
E. Casas, Q. Duan, M. J. Schneider, S. D. Shackelford, Tommy L. Wheeler, Larry V. Cundiff, and James M. Reecy

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ans_pubs/149
Polymorphisms in calpastatin and mu-calpain genes are associated with beef iron content

E. Casas*, Q. Duan†, M. J. Schneider‡, S. D. Shackelford†, T. L. Wheeler‡, L. V. Cundiff‡ and J. M. Reecy†

*National Animal Disease Center, USDA, ARS, Ames, IA, 50010, USA. †Iowa State University, Ames, IA, 50011, USA. ‡U.S. Meat Animal Research Center, USDA, ARS, Clay Center, NE, 68933, USA.

Summary

The objective of this study was to assess the association of markers in the calpastatin and mu-calpain loci with iron in beef cattle muscle. The population consisted of 259 cross-bred steers from Beefmaster, Brangus, Bonsmara, Romosinuano, Hereford and Angus sires. Total iron and heme iron concentrations were measured. Markers in the calpastatin (referred to as CAST) and mu-calpain (referred to as CAPN4751) genes were used to assess their association with iron levels. The mean and standard error for iron and heme iron content in the population was 35.6 ± 1.3 µg/kg and 27.1 ± 1.4 µg/kg respectively. Significant associations (P < 0.01) of markers were observed for both iron and heme iron content. For CAST, animals with the CC genotype had higher levels of iron and heme iron in longissimus dorsi muscle. For CAPN4751, individuals with the TT genotype had higher concentrations of iron and heme iron than did animals with the CC and CT genotypes. Genotypes known to be associated with tougher meat were associated with higher levels of iron concentration.

Keywords CAST, Cattle, genetic markers, tenderness

Iron is deemed an important cofactor in multiple biological functions. Edison et al. (2008) indicate that iron has an important role in formation of hemoglobin and myoglobin. Single nucleotide polymorphisms in the calpastatin and mu-calpain genes have been associated with differences in meat tenderness (Casas et al. 2006). The association of genetic markers with iron concentration in muscle has been studied (Duan et al. 2011). The objective of this study was to assess the association of markers the calpastatin and mu-calpain loci with iron in beef cattle.

Experimental procedures were carried out according to guidelines by the Federation of Animal Science Societies, FASS (1999). The population consisted of 259 steers produced by inseminating Hereford, Angus or MARC III cows (¼ Hereford, ¼ Angus, ¼ Red Poll and ¼ Pinzgauer) with semen from Beefmaster, Brangus, Bonsmara, Romosinuano, Hereford and Angus sires (Wheeler et al. 2010). Animals were fed the same diet and serially slaughtered. Their average age at slaughter was 426 days.

Longissimus dorsi muscle samples were collected and dried (AOAC 2005). Muscle total iron concentration was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES, Spectro Analytical Instruments). Non-heme iron content was measured according to Rebouche et al. (2004). Heme iron concentration was calculated by subtracting non-heme from total iron concentration.

A single nucleotide polymorphism developed at the calpastatin gene was reported by Barendse (2002) and will be referred to as CAST. The marker used from the mu-calpain gene will be referred as CAPN4751 (White et al. 2005).

DNA was extracted from white blood cells (Miller et al., 1988). Genotyping was carried out using a MassArray system (Sequenom, Inc.).

The statistical model was carried out using the mixed procedure of SAS (SAS Institute, Inc.). It included the fixed effects of sire line, dam line, their interaction, year of birth, slaughter group within year of birth, the effect of individual markers and their interaction, and age at weaning as covariate. Sire nested within sire line was included as a random effect. A Bonferroni adjustment was carried out by multiplying P-values by a factor of 2.

The mean and standard error for iron and heme iron content in the population was 35.6 ± 1.3 µg/kg and

Address for correspondence

E. Casas, National Animal Disease Center, USDA, ARS, 1920 Dayton Ave., Ames, IA 50010, USA.
E-mail: eduardo.casas@ars.usda.gov

Mention of a trade name, proprietary product or specified equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.

Accepted for publication 16 October 2013

© 2013 Stichting International Foundation for Animal Genetics, 45, 283–284
Casas et al.

Table 1 Name of the single nucleotide polymorphism (SNP), its rs number, number of animals genotyped (n), the alleles of each SNP and the minor allele frequency (MAF).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Rs number</th>
<th>n</th>
<th>Alleles</th>
<th>MAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAST</td>
<td>rs10967793</td>
<td>248</td>
<td>C/T</td>
<td>0.17 (C)</td>
</tr>
<tr>
<td>CAPN4751</td>
<td>rs1782050</td>
<td>253</td>
<td>T/C</td>
<td>0.37 (T)</td>
</tr>
</tbody>
</table>

1Minor allele in parenthesis.

Table 2 Levels of significance, least squares means and standard errors of the genotype contrasts for the effect of CAST and CAPN4751 on total iron (Fe) and heme iron (HemeFe).

<table>
<thead>
<tr>
<th>Marker</th>
<th>Fe 1</th>
<th>HemeFe 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.0134</td>
<td>0.0072</td>
</tr>
<tr>
<td>Contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC – TT</td>
<td>29.1 ± 9.2</td>
<td>30.6 ± 9.0</td>
</tr>
<tr>
<td>CT – TT</td>
<td>0.1 ± 3.2</td>
<td>1.3 ± 3.1</td>
</tr>
<tr>
<td>CAPN4751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>0.0006</td>
<td>0.0016</td>
</tr>
<tr>
<td>Contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT – CC</td>
<td>16.4 ± 4.7</td>
<td>15.2 ± 4.7</td>
</tr>
<tr>
<td>CT – CC</td>
<td>1.2 ± 3.2</td>
<td>1.2 ± 3.2</td>
</tr>
</tbody>
</table>

1Values are expressed as µg/kg of wet weight of longissimus dorsi muscle.

27.1 ± 1.4 µg/kg respectively. Allele frequencies for CAST and CAPN4751 are shown in Table 1. Both markers are in Hardy–Weinberg equilibrium in the population (P > 0.05). Animals included were a sample of those used by Casas et al. (2006) to assess the association of these markers with meat tenderness. Allele frequencies for CAST and CAPN4751 are similar to those reported by Casas et al. (2006), indicating that random sampling was successful and it is likely that results from the present study can be extrapolated to the entire population.

Significant associations (P < 0.05) of CAST and CAPN4751 were observed for iron and heme iron content (Table 2). For CAST, animals with the CC genotype had higher levels of iron and heme iron. For CAPN4751, individuals with the TT genotype had higher concentrations of iron and heme iron. These genotypes are known to be associated with tougher meat (Casas et al. 2006). This could imply an association between iron levels and tenderness.

An apparent interaction (P < 0.01) was observed because one animal with the CC genotype in both markers had the lowest average iron concentration. It must be emphasized that the effect of this combination of genotypes is underestimated, and results should be considered inconclusive. A similar interaction was observed by Casas et al. (2006).

Mateescu et al. (2013) estimated that iron levels in muscle are highly heritable (heritability = 0.54) in Angus. Garmyn et al. (2011) reported a non-significant phenotypic correlation between iron levels in muscle and Warner–Bratzler Shear Force of r = −0.03. Mateescu et al. (2013) indicate that selection programs for increasing mineral content in beef are possible. It is uncertain if selection based on genomic information for meat tenderness would have an indirect effect on iron levels in muscle.

References
AOAC (2005) AOAC Official Method 934.01. AOAC International, Gaithersburg, MD.

