Effect of Bt Maize and Soil Insecticides on Yield, Injury, and Rootworm Survival: Implications for Resistance Management

Jennifer L. Petzold-Maxwell
Iowa State University, jennifer.maxwell@wartburg.edu

Lance J. Meinke
University of Nebraska-Lincoln

Michael E. Gray
University of Illinois at Urbana-Champaign

Ronald E. Estes
University of Illinois at Urbana-Champaign

Aaron J. Gassmann
Iowa State University, aaronjg@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs

Part of the [Agronomy and Crop Sciences Commons](http://lib.dr.iastate.edu/agronomy-crop-sciences), [Entomology Commons](http://lib.dr.iastate.edu/entomology), and the [Systems Biology Commons](http://lib.dr.iastate.edu/systems-biology).

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ent_pubs/175. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Effect of Bt Maize and Soil Insecticides on Yield, Injury, and Rootworm Survival: Implications for Resistance Management

Abstract
A 2-yr field experiment was conducted to determine the effects on Diabrotica spp. (Coleoptera: Chrysomelidae) of an insecticidal seed treatment (Poncho 1250, (AI) /clothianidin) and a granular insecticide (Aztec 2.1G, (AI)/tebupirimphos and cyfluthrin) alone and in combination with maize producing the insectidical toxin Cry3Bb1 derived from the bacterium Bacillus thuringiensis (Bt). Yields for Bt maize plots were significantly greater than for non-Bt maize; however, insecticides did not significantly affect yield. Insecticides significantly decreased root injury in non-Bt maize plots, but there were no significant differences in root injury between Bt maize with or without either insecticide. Maize producing the Bt toxin Cry3Bb1 and the soil-applied insecticide Aztec significantly decreased survival of western corn rootworm (Diabrotica virgifera virgifera LeConte), while only Bt maize significantly decreased survival of the northern corn rootworm (Diabrotica barberi Smith & Lawrence). For both species, Bt maize and each of the insecticides delayed emergence. In the absence of density-dependent mortality, Bt maize imposed 71 and 80% reduction in survival on the western corn rootworm and the northern corn rootworm, respectively. The data from this study do not support combining insecticide with Bt maize because the addition of insecticide did not increase yield or reduce root injury for Bt maize, and the level of rootworm mortality achieved with conventional insecticide was likely too low to delay the evolution of Bt resistance. In addition, delays in emergence from Bt maize combined with insecticides could promote assortative mating among Bt-selected individuals, which may hasten resistance evolution.

Keywords
Diabrotica barberi, Diabrotica virgifera virgifera, pesticide mixture, pyramid, resistance management

Disciplines
Agronomy and Crop Sciences | Entomology | Systems Biology

Comments
This article is from Journal of Economic Entomology 106 (2013): 1941, doi:10.1603/EC13216. Posted with permission.

Rights
This article is the copyright property of the Entomological Society of America and may not be used for any commercial or other private purpose without specific permission of the Entomological Society of America.
Effect of Bt Maize and Soil Insecticides on Yield, Injury, and Rootworm Survival: Implications for Resistance Management

Author(s): Jennifer L. Petzold-Maxwell, Lance J. Meinke, Michael E. Gray, Ronald E. Estes, and Aaron J. Gassmann

Published By: Entomological Society of America
URL: http://www.bioone.org/doi/full/10.1603/EC13216
Effect of Bt Maize and Soil Insecticides on Yield, Injury, and Rootworm Survival: Implications for Resistance Management

JENNIFER L. PETZOLD–MAXWELL,1,2 LANCE J. MEINKE,3 MICHAEL E. GRAY,4 RONALD E. ESTES,4 AND AARON J. GASSMANN1

J. Econ. Entomol. 106(5): 1941–1951 (2013); DOI: http://dx.doi.org/10.1603/EC13216

ABSTRACT A 2-yr field experiment was conducted to determine the effects on Diabrotica spp. (Coleoptera: Chrysomelidae) of an insecticidal seed treatment (Poncho 1250, (AI)/clothianidin) and a granular insecticide (Aztec 2.1G, (AI)/tebupirimphos and cyfluthrin) alone and in combination with maize producing the insecticidal toxin Cry3Bb1 derived from the bacterium Bacillus thuringiensis (Bt).

Yields for Bt maize plots were significantly greater than for non-Bt maize; however, insecticides did not significantly affect yield. Insecticides significantly decreased root injury in non-Bt maize plots, but there were no significant differences in root injury between Bt maize with or without either insecticide. Maize producing the Bt toxin Cry3Bb1 and the soil-applied insecticide Aztec significantly decreased survival of western corn rootworm (Diabrotica virgifera virgifera LeConte), while only Bt maize significantly decreased survival of the northern corn rootworm (Diabrotica barberi Smith & Lawrence). For both species, Bt maize and each of the insecticides delayed emergence. In the absence of density-dependent mortality, Bt maize imposed 71 and 80% reduction in survival on the western corn rootworm and the northern corn rootworm, respectively. The data from this study do not support combining insecticide with Bt maize because the addition of insecticide did not increase yield or reduce root injury for Bt maize, and the level of rootworm mortality achieved with conventional insecticide was likely too low to delay the evolution of Bt resistance. In addition, delays in emergence from Bt maize combined with insecticides could promote assortative mating among Bt-selected individuals, which may hasten resistance evolution.

KEY WORDS Diabrotica barberi, Diabrotica virgifera virgifera, pesticide mixture, pyramid, resistance management

The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence, (Coleoptera: Chrysomelidae) are major pests of maize (Zea mays L.) in the United States (Gray et al. 2009). Larval injury to maize roots can result in substantial reductions in yield (Dun et al. 2010, Tinsley et al. 2012). In 2003, genetically modified maize producing insecticidal toxins derived from the bacterium Bacillus thuringiensis Berliner (Bt) was commercialized for management of rootworm species (Environmental Protection Agency [EPA] 2003). Recently, field-evolved resistance to Bt maize producing the Cry3Bb1 toxin was documented in Iowa (Gassmann et al. 2011, 2012; Gassmann 2012). For the western corn rootworm, widespread field-evolved resistance to Bt maize is a potential threat, given this insect’s history of rapid adaptation to numerous management practices, including crop rotation and some conventional insecticides (Meinke et al. 1998, Wright et al. 2000, Levine et al. 2002). In addition, evidence from recent studies suggests a lack of substantial fitness costs of resistance (Oswald et al. 2011, Meihls et al. 2012, Petzold–Maxwell et al. 2012a), and nonrecessive inheritance of resistance (Meihls et al. 2008, Petzold–Maxwell et al. 2012a), both of which increase the risk of resistance evolution. Thus, sustainable insect resistance management (IRM) strategies are essential for prolonging the effectiveness of Bt maize for management of western corn rootworm.

Currently, the United States EPA mandates resistance management for all registered Bt crops, which includes the refuge strategy (Gould 1998, Tabashnik et al. 2003). Under the refuge strategy, non-Bt plants serve as a refuge for Bt-susceptible genotypes, providing a pool of susceptible individuals to mate with resistant individuals that survive exposure to a Bt crop (Gould 1998). The evolution of resistance will be delayed when the heterozygous progeny that result from these matings have lower fitness on the Bt crop than their homozygous resistant parent. Delays in resistance are greatest when Bt crops achieve a high dose, killing 99.99% of susceptible pests, and rendering...
resistance a functionally recessive trait (Tabashnik 1994, Gould 1998). None of the currently commercialized Bt toxins targeting western corn rootworm achieve a high dose (Gassmann 2012).

Another method for delaying resistance is the application of integrated pest management (IPM), which uses multiple methods to reduce pest abundance and preserve yield (Pedigo and Rice 2009). Because IPM relies on multiple methods, selection on pest populations for resistance to any single method is reduced. Insecticides, whether produced by the plant (i.e., Bt crops) or applied to agricultural fields, can be an essential IPM tool. Furthermore, pyramiding of multiple insecticides can delay resistance compared with when insecticides are used separately (Rough 1998). This occurs because each insecticide kills insects that are susceptible to that toxin, and by doing so, also kills insects harboring resistance alleles for the second insecticide (Gould 1998, Rough 1998). To date, few data exist on the potential IRM benefit of pyramiding Bt maize with conventional insecticides targeting western corn rootworm.

The planting of crops genetically engineered to produce two or more Bt toxins targeting a single pest is becoming a more common IRM strategy (James 2012). Simulation models have shown that pyramiding insecticidal Bt toxins in a plant can be more effective at delaying resistance than single toxins (Rough 1998, Zhao et al. 2003, Ives et al. 2011). For western corn rootworm, models predict that plants pyramided with two Bt toxins delay resistance longer than single-toxin plants (Onstad and Meinke 2010). For example, with a 20% block refuge, resistance evolved in 60–64 yr for plants pyramided with Cry3Bb1 and Cry34/35Ab1, whereas resistance evolved much faster for single-traited maize hybrids (3 yr for Cry3Bb1 maize and 12 yr for Cry34/35Ab1 maize) (Onstad and Meinke 2010). Another potential IRM strategy is pyramiding two or more conventional chemical insecticides (Curtis 1985, Mani 1985). Models predict delays in resistance evolution when two or more insecticides are pyramided compared with sequential use, but this is dependent on a number of factors including low initial resistance allele frequency, high proportion mortality caused by both insecticides, adequate refuges, lack of cross-resistance between the two insecticides, and recessive inheritance of resistance for both toxins (Curtis 1985, Mani 1985, Tabashnik 1989, Caprio 1998).

A potential alternative IRM strategy would be to pyramid a Bt crop with a conventional insecticide. Gray and Steffey (2007) showed that plots with Bt maize producing Cry3Bb1 used in combination with the insecticide Counter 15G ((AI)/terbufos) had a mean node-injury score of 0.07 nodes for early root ratings, which was significantly lower than Cry3Bb1 maize alone (0.84 nodes) (Gray and Steffey 2007). However, this difference in node injury scores between Bt maize and Bt maize plus Counter 15G only occurred in one of the three study locations (Gray and Steffey 2007). A study in Iowa showed that the granular insecticides Force 3G ((AI)/tefluthrin) and Aztec 2.1 G used in combination with Bt maize producing Cry3Bb1 significantly reduced node injury scores compared with Bt maize alone in fields with populations of western corn rootworm that were resistant to Cry3Bb1 maize (Gassmann 2012). Model simulations have shown that combining Bt maize with a conventional insecticidal seed treatment could delay rootworm resistance if refuges also are present (Pan et al. 2011). Although these data suggest a potential benefit of pyramiding soil insecticides or insecticides applied as seed treatments with Bt maize, effects on pest mortality in the field are largely unknown.

Thus, more studies are necessary to understand possible benefits and drawbacks of combining Bt maize with either a soil-applied insecticide or an insecticidal seed treatment targeting rootworm species. By combining these tactics, insects that are resistant to Bt maize could be killed by the insecticide, thereby delaying evolution of Bt resistance. However, the cost to farmers of using an insecticide may not be offset by increased yield, and pyramiding Bt crops with chemical insecticides would diminish the environmental benefit of reduced use of chemical insecticides that often accompanies the planting of Bt crops (Carpenter and Gianessi 2001, Shelton et al. 2002, Naranjo 2009). In addition, it is possible that pyramiding an insecticide with Bt maize may hasten resistance evolution. For instance, Gray et al. (1992) found that in certain years, greater western corn rootworm adults emerged from insecticide-treated plots as compared with control plots in which no soil insecticides were used during planting. The authors pointed out that soil insecticides applied at time of planting were not population-management tools, again indicating that additional research is required before these insecticides are considered resistance management tools. Here, we examine the effects of conventional insecticides and Cry3Bb1 maize on root injury and yield, and on survival, size, and timing of emergence of western corn rootworm and northern corn rootworm.

Materials and Methods

Experimental Design. An insecticidal seed treatment and a planting-time granular soil insecticide, used alone and in combination with either Bt or non-Bt maize, were tested for effects on 1) rootworm survival, timing of emergence, mass, and size; and 2) maize root injury and yield. Field studies were conducted in 2008 and 2009 at three locations: 1) Iowa (Sutherland [2008] and Ames [2009]), 2) Nebraska (Mead), and 3) Illinois (Urbana). In 2009, the Illinois site was flooded from heavy rain, and those data were excluded. The Bt maize used in this study produced the Cry3Bb1 toxin, which is event MON88017 in DeKalb hybrid DKC 61–69, relative maturity = 111 d (Monsanto, Saint Louis, MO). Non-Bt maize was the near-isol ine to the Bt maize hybrid but lacked any rootworm active Bt toxins (DKC: 61–72, relative maturity = 111 d). Insecticide treatments were 1) the seed treatment Poncho 1250 (clofenthianid, 1.25 mg (AI)/seed, Bayer Crop Science. Research Triangle Park, NC), hereafter referred to as P1250; 2) the gran-
ular soil insecticide Aztec 2.1G (tebupirimphos + cy-fluthrin, owned by Bayer CropSciences at the time of the study and now owned by AMVAC, Newport Beach, CA), applied in furrow at a rate of 8.18 kg/ha, hereafter referred to as Aztec; and 3) the control treatment, which did not receive a granular insecticide but received the seed treatment Cruiser 250 (thiamethoxam, 0.25 mg (AI)/seed, Syngenta, Basel, Switzerland) to control secondary pests of maize seedlings. The study was a split-plot design, with maize type (Bt vs. non-Bt) as the whole-plot factor and insecticide treatment (P1250, Aztec, and control) as the split-plot factor. Each block was 21 m long and contained a total of six eight-row plots (2 hybrids × 3 insecticide treatments), with 0.76 m between rows. Each row contained ≈120 plants, with 15 cm between plants. There were four blocks at each location, during each year of the study. The study site was surrounded by eight rows of maize on all sides. Study sites had been planted to a trap crop during the previous year. A trap crop is late-planted maize that attracts adult western corn rootworm and northern corn rootworm that oviposit in the soil. Fields were cultivated and fertilized following standard regional agricultural practices used in maize production.

Root Injury and Yield. For each treatment within each block (i.e., each plot), five maize plants were excavated to determine root injury by rootworm larvae. Roots were taken from the penultimate row along either edge of the plot, with a total of 20 plants sampled for each combination of hybrid by insecticide treatment at each location within each year. In total, 120 plants were sampled at each location during each year (5 plants per eight-row treatment plot × 2 maize hybrids × 3 insecticide treatments × 4 blocks). Injury was scored based on a node-injury scale (Oleson et al. 2005) that ranges from zero (no feeding injury) to three nodes of root tissue injured (heavy feeding injury). The center four rows of each eight-row plot were harvested, and mass of grain was converted to metric tons per ha at 15.5% moisture (United States no. 2 shelled corn).

Rootworm Survival, Emergence Time, Mass, and Size. Rootworm survival was measured by placing three Illinois-style emergence cages in the penultimate row along either edge of the plot, for a total of 72 emergence cages at each location within each year (3 cages per plot × 2 maize hybrids × 3 insecticide treatments × 4 blocks). Emergence cages were constructed based on a modified design of Fisher (1950), enclosing the base of the plant such that beetles were trapped but the plant continued to grow. Cages were placed in the field before the emergence of rootworm adults from the soil, and rootworm were collected from cages three times per week until adult emergence did not occur for at least one full week. Rootworm adults collected in Nebraska and Illinois in both years were shipped to Iowa State University where they were separated by species then by sex following Hammack and French (2007). For each day rootworm were collected from emergence cages, data were recorded on the number of males and females of each species per treatment per block from each location. At each location during each year, the day of emergence was calculated for each individual, with day 1 defined as the day the first adult rootworm was collected. Head capsule width (measured as the distance between the outer edges of the eyes) was measured for each insect to the nearest 0.04 mm using a stage micrometer. Insects were then dried in an oven at 60°C for 48 h and weighed to the nearest 0.1 mg (XS205 analytical balance, Mettler–Toledo, Columbus, OH).

Proportional Reduction in Adult Survival. The proportional reduction in adult survival of western corn rootworm and northern corn rootworm was calculated for P1250, Aztec, Cry3Bb1 maize, P1250 + Cry3Bb1 maize, and Aztec + Cry3Bb1 maize as the complement of the number of adults collected from each of these treatments divided by the number of adults collected from non-Bt maize without insecticide. First, at each location within a year, the average number of insects per emergence cage from non-Bt plots with no insecticide was calculated by block. Then, for each block within a location and year, the number of insects per emergence cage for a given rootworm treatment was divided by the average number of insects per emergence cage for non-Bt maize without insecticide. Density-dependent mortality is an important factor to consider when measuring survival of rootworm in the field (Hibbard et al. 2010b). Hibbard et al. (2010b) determined that density-dependent mortality can occur when average root injury exceeds 1 node on the 0–3 node injury scale (Oleson et al. 2005). Injury over 1 node occurred in all locations with the exception of Iowa in 2009 and Nebraska in 2008 (see Results); therefore, only these two locations were used to calculate the reduction in adult emergence imposed by Bt maize, insecticides, and the combination of Bt maize with insecticides. Thus, proportional reduction in survival for each of the five rootworm treatments was calculated based on eight blocks (2 locations × 4 blocks).

Data Analysis. All analyses were conducted in SAS Enterprise Guide 4.2 (SAS Institute 2009) and used a mixed-model analysis of variance (ANOVA) that was run in PROC MIXED. For all models, the significance of random effects was tested based on a log-likelihood ratio statistic (−2 RES Log Likelihood), which follows a χ² distribution with a P value equal to one-half the probability of obtaining a greater χ² value assuming 1 degree of freedom (Littell et al. 1996). When significant fixed factors were present, pairwise comparisons were conducted based on the Tukey–Kramer method (PDIF option in PROC MIXED).

For yield and root injury, data were analyzed based on a split-plot design. Fixed effects in the model were maize hybrid (Bt and non-Bt), insecticide (control, P1250, and Aztec), and their interaction. Hybrid was the whole plot factor, and insecticide was the split-plot factor. Random factors included block nested within location and year, and the interaction of block (nested within location and year) with hybrid, and with hybrid by insecticide. Root injury data were transformed by the square root function to ensure normality of the
residuals (untransformed data are presented in graphs).

For survival, day of adult emergence, mass and size, data were analyzed with an ANOVA that included the fixed effects of maize hybrid (Bt and non-Bt), insecticide (control, P1250, and Aztec), sex of an insect, and all possible interactions among these three factors, where hybrid was analyzed as the whole plot factor, and insecticide as the split-plot factor. Random factors included block (nested within location and year), and the interaction of block (nested within location and year) with sex, hybrid, insecticide by hybrid, sex by hybrid, and sex by insecticide by hybrid. To ensure normality of the residuals, survival data for northern and western corn rootworm were transformed by the function log \((n + 1)\), and day of adult emergence for both species as well as mass of western corn rootworm were transformed with the square-root function (untransformed data are presented in graphs).

Analysis of proportional reduction in adult emergence by both of the insecticides (P1250 and Aztec), Bt maize, and Bt maize in combination with each of the insecticides used data from only Iowa in 2009 and Nebraska in 2008 to avoid confounding effects of density-dependent mortality. Separate analyses were run for western corn rootworm and northern corn rootworm. The fixed factor in the model was rootworm treatment (Aztec, P1250, Bt maize, Bt maize plus Aztec, and Bt maize plus P1250), and random factors in the model were block (nested within location and year), and the interaction of block (nested within location and year) with rootworm treatment. Least-squares means for each rootworm treatment were calculated using the LSMEANS statement and tested against 0 to determine if reductions in survival were significantly different from zero based on a two-tailed t-test (default output for LSMEANS in PROC MIXED). Pairwise comparisons among treatments were conducted based on the Tukey-Kramer method (PDIFF in PROC MIXED).

Results

Yield and Root Injury. Yield was significantly affected by maize hybrid, with greater yield for Bt maize than non-Bt maize (Table 1; Fig. 1A). No other factors were significant. For root injury, there was a significant interaction between hybrid and insecticide (Table 1; Fig. 1B). Root injury did not differ significantly among treatments for Bt maize. However, for non-Bt maize roots, injury was significantly lower for both P1250 and Aztec compared with the control, and for Aztec compared with P1250 (Fig. 1B).

Survival and Emergence Timing. Survival of western corn rootworm was lowest on Bt maize plus Aztec (Fig. 2A), which was also significantly lower than on Bt maize alone \((P = 0.02)\). Female survival was significantly greater than male survival (Table 2; Fig. 2A). No other factors in the model were significant.

Table 1. Analysis of variance for yield and root injury

<table>
<thead>
<tr>
<th>Source</th>
<th>Yield</th>
<th>Root Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td>df</td>
<td>F value</td>
</tr>
<tr>
<td>Hybrid</td>
<td>1,19</td>
<td>4.48*</td>
</tr>
<tr>
<td>Insecticide</td>
<td>2,73</td>
<td>0.62</td>
</tr>
<tr>
<td>Hybrid × insecticide</td>
<td>2,73</td>
<td>0.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random effects</th>
<th>df</th>
<th>Yield (x^2)</th>
<th>Root Injury (x^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block (site × year)</td>
<td>1</td>
<td>115.2***</td>
<td>282.5***</td>
</tr>
<tr>
<td>Hybrid × block (site × year)</td>
<td>1</td>
<td>2.3</td>
<td>145.9***</td>
</tr>
<tr>
<td>Insecticide × hybrid × block (site × year)</td>
<td>1</td>
<td>0.0</td>
<td>255.0***</td>
</tr>
</tbody>
</table>

* df, numerator degrees of freedom, denominator degrees of freedom.

* \(P < 0.05; *** P < 0.0001\).
Day of emergence for western corn rootworm was significantly affected by hybrid, the sex of a beetle, and the type of insecticide (Table 2; Fig. 2B). Emergence was significantly later for beetles in Bt plots versus the type of insecticide (Table 2; Fig. 2B). Emergence significantly affected by hybrid, the sex of a beetle, and block (site × year) (Table 2; Fig. 2B). Adults from Bt maize plots (Table 2; Fig. 2B) had a significant effect on day of emergence for northern corn rootworm; however, males were significantly larger than females in control plots (Table 2; Fig. 2B). No other factors significantly affected size (Table 3).

Proportional Reduction in Adult Survival. Average root ratings were below one node for Iowa in 2009 (mean: 0.20; SD: 0.25) and for Nebraska in 2008 (mean: 0.82; SD: 0.25) (Fig. 3). Because density-dependent mortality can occur when mean root ratings exceed 1.0 on the 0–3 scale (Hibbard et al. 2010b), only these two locations were used to calculate reduction in survival imposed by each of the rootworm treatments: Aztec, P1250, Bt maize, Bt maize plus Aztec, and Bt maize plus P1250 (Table 5). For western corn rootworm, there was a significant effect of rootworm treatment (Table 5). In addition, proportional reduction in survival for Bt maize alone did not differ from Bt maize combined with either insecticide (Table 5). The reduction in survival of northern corn rootworm was significantly greater than zero for all rootworm treatments with the exception of P1250 alone (Table 5).

Table 2. Analysis of variance for survival, emergence time, mass, and size of western corn rootworm

<table>
<thead>
<tr>
<th>Source</th>
<th>Survival df</th>
<th>F value</th>
<th>Emergence df</th>
<th>F value</th>
<th>Mass df</th>
<th>F value</th>
<th>Size df</th>
<th>F value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>1.19</td>
<td>64.62***</td>
<td>1.18</td>
<td>57.25***</td>
<td>1.17</td>
<td>0.00</td>
<td>1.15</td>
<td>22.80**</td>
</tr>
<tr>
<td>Insecticide</td>
<td>2.74</td>
<td>9.58***</td>
<td>2.60</td>
<td>12.69***</td>
<td>2.57</td>
<td>0.95</td>
<td>2.56</td>
<td>0.62</td>
</tr>
<tr>
<td>Sex</td>
<td>1.19</td>
<td>19.47***</td>
<td>1.18</td>
<td>46.99***</td>
<td>1.17</td>
<td>7.92*</td>
<td>1.15</td>
<td>5.64*</td>
</tr>
<tr>
<td>Hybrid × sex</td>
<td>2.74</td>
<td>1.35</td>
<td>2.60</td>
<td>1.34</td>
<td>2.57</td>
<td>0.26</td>
<td>2.56</td>
<td>0.26</td>
</tr>
<tr>
<td>Insecticide × sex</td>
<td>1.19</td>
<td>0.19</td>
<td>1.18</td>
<td>1.55</td>
<td>1.17</td>
<td>5.04*</td>
<td>1.15</td>
<td>0.35</td>
</tr>
<tr>
<td>Hybrid × insecticide × sex</td>
<td>2.74</td>
<td>0.46</td>
<td>2.60</td>
<td>0.07</td>
<td>2.57</td>
<td>1.37</td>
<td>2.56</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Random effects

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Survival χ^2</th>
<th>Emergence χ^2</th>
<th>Mass χ^2</th>
<th>Size χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block (site × year)</td>
<td>1</td>
<td>213.6***</td>
<td>243.7***</td>
<td>33.4***</td>
<td>190.9***</td>
</tr>
<tr>
<td>Hybrid × block (site × year)</td>
<td>1</td>
<td>31.6***</td>
<td>52.1***</td>
<td>19.9***</td>
<td>4.3*</td>
</tr>
<tr>
<td>Sex × block (site × year)</td>
<td>1</td>
<td>0.0</td>
<td>23.1***</td>
<td>1.6</td>
<td>3.8*</td>
</tr>
<tr>
<td>Hybrid × sex × block (site × year)</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Hybrid × insecticide × block (site × year)</td>
<td>1</td>
<td>57.2***</td>
<td>102.4***</td>
<td>6.9**</td>
<td>65.4***</td>
</tr>
<tr>
<td>Hybrid × Insecticide × sex × block (site × year)</td>
<td>1</td>
<td>0.0</td>
<td>37.9***</td>
<td>72.8***</td>
<td>1.7</td>
</tr>
</tbody>
</table>

* df, numerator degrees of freedom, denominator degrees of freedom.
** P < 0.05; *** P < 0.01; **** P < 0.0001.
Discussion

Considering data among all locations in both years, Bt maize and the soil-applied insecticide Aztec significantly decreased survival of western corn rootworm (Fig. 2A; Table 2) but only Bt maize significantly decreased survival of northern corn rootworm (Fig. 2C; Table 3). Using data from study sites where average node injury was less than one node, and density dependent mortality was expected to be absent (see Materials and Methods), Bt maize alone imposed a 71 and 80% reduction in survival for western corn rootworm and northern corn rootworm, respectively (Table 5). For Bt crops, a high-dose event is defined as an event that produces 25 times more toxin than is needed to kill a susceptible pest and kills at least 99.99% of susceptible insects (EPA 1998). High-dose events result in resistance that is functionally recessive, thereby decreasing the risk of resistance evolution (Tabashnik et al. 2004). No studies have demonstrated mortality of western corn rootworm from Bt maize reaching 99.99% (Gassmann 2012), and mortality in this study was lower than previously reported for Cry3Bb1 maize in field studies, which ranged from 89 to 99.79% (Oyediran et al. 2007, Clark et al. 2012).

A pyramid of two insecticides that target the same pest can delay the evolution of resistance to either insecticide (Roush 1998). This is achieved by redundant killing, in which insects with resistance alleles for one toxin are killed by the second toxin, and homozygous susceptible insects are killed by both insecticides (Curtis 1985, Comins 1986). In the absence of cross-resistance, resistance to both toxins would require resistance alleles at two loci. In this study, the reduction in survival achieved by Bt maize was 71 and 80% for western and northern corn rootworm, respectively. For both pests, reductions in survival were greater for Aztec than P1250, and were 53 and 36% for western and northern corn rootworm, respectively (Table 5). In mathematical models, Roush (1998) showed that resistance evolution can be greatly delayed by pyramids if mortality of susceptible insects is >95% from each toxin. As the level of mortality decreases, pyramids achieve less of a benefit in delaying resistance compared with separate and sequential release of two insecticides (Roush 1998). For example, if initial resistance allele frequency in the population is 10^{-5}, and there is a 20% refuge, the pyramid strategy delays the evolution of resistance by ≈1, 10, and >20 additional generations compared with a sequential release strategy when mortality of susceptible homozygotes is 80, 85, and 90%. Thus, pyramiding Aztec and Bt maize could potentially delay resistance of rootworm longer than separate and sequential use of these insecticides; however, mortality achieved by soil-applied insecticides may be too low to have a meaningful effect on frequency of alleles for resistance to Bt maize.

There are other factors that may diminish the potential delays in resistance achieved by pyramiding Cry3Bb1 with Aztec. Pyramiding insecticides is considerably more effective when resistance allele fre-

Fig. 2. (A) Survival and (B) time of emergence of western corn rootworm and (C) survival and (D) emergence time of northern corn rootworm, on Bt and non-Bt maize with and without soil-applied insecticides. Bar heights represent sample means and error bars are the SEM.
In this study, Bt maize delayed adult emergence by an average of 12 d for both western corn rootworm and northern corn rootworm relative to non-Bt maize (Fig. 2B and D). Delays in emergence because of development on Bt maize relative to non-Bt maize is a commonly observed phenomenon for rootworm species (Binning et al. 2010, Hibbard et al. 2010a, Petzold-Maxwell et al. 2012b). In this study, the addition of insecticides exacerbated delays in emergence compared with Bt maize alone. For western corn rootworm, time of emergence was latest in plots with Bt maize and Aztec, and for northern corn rootworm delays were greatest in plots with Bt maize and either P1250 or Aztec (Fig. 2B and D). This increase in temporal asynchrony of emergence for insects from non-Bt maize and insects from Bt maize combined with an insecticide could hinder random mating of susceptible and resistant insects, thereby increasing the rate of resistance evolution.

Nonrandom mating could also occur if insects emerging from plots with Bt maize, soil insecticides, or both, were in some way less attractive to individuals emerging from non-Bt maize plants. In this study, sex and hybrid interacted with treatments in delaying adult emergence for both rootworm species (Binning et al. 2010, Hibbard et al. 2010a, Petzold-Maxwell et al. 2012b). In this study, the addition of insecticides exacerbated delays in emergence compared with Bt maize alone. For western corn rootworm, time of emergence was latest in plots with Bt maize and Aztec, and for northern corn rootworm delays were greatest in plots with Bt maize and either P1250 or Aztec (Fig. 2B and D). This increase in temporal asynchrony of emergence for insects from non-Bt maize and insects from Bt maize combined with an insecticide could hinder random mating of susceptible and resistant insects, thereby increasing the rate of resistance evolution.

Table 3. Analysis of variance for survival, emergence time, mass, and size of northern corn rootworm

<table>
<thead>
<tr>
<th>Source</th>
<th>Survival</th>
<th>Emergence</th>
<th>Mass</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df(^a) F value</td>
<td>df(^b) F value</td>
<td>df(^b) F value</td>
<td>df(^b) F value</td>
</tr>
<tr>
<td>Hybrid</td>
<td>1,15 59.3***</td>
<td>1,13 47.15***</td>
<td>1,12 2.11</td>
<td>1,12 3.55</td>
</tr>
<tr>
<td>Insecticide</td>
<td>2,60 0.03</td>
<td>2,38 0.85</td>
<td>2,39 0.02</td>
<td>2,38 0.51</td>
</tr>
<tr>
<td>Sex</td>
<td>1,15 1.46</td>
<td>1,13 4.21</td>
<td>1,12 1.29</td>
<td>1,12 3.83*</td>
</tr>
<tr>
<td>Hybrid × insecticide</td>
<td>2,60 0.04</td>
<td>2,38 2.46</td>
<td>2,39 0.02</td>
<td>2,38 3.73*</td>
</tr>
<tr>
<td>Insecticide × sex</td>
<td>1,15 3.67</td>
<td>1,13 5.23*</td>
<td>1,12 0.08</td>
<td>1,12 2.94</td>
</tr>
<tr>
<td>Hybrid × insecticide × Sex</td>
<td>2,60 0.20</td>
<td>2,38 0.62</td>
<td>2,39 0.88</td>
<td>2,38 0.57</td>
</tr>
</tbody>
</table>

Table 4. Mean mass and head capsule width of western corn rootworm and northern corn rootworm

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Hybrid</th>
<th>Sex</th>
<th>Western corn rootworm(^a)</th>
<th>Northern corn rootworm(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mass (mg)(^b) Head capsule width (mm)</td>
<td>Mass (mg)(^b) Head capsule width (mm)</td>
</tr>
<tr>
<td>Control</td>
<td>Non-Bt</td>
<td>F</td>
<td>1.74 (0.08) 1.13 (0.006)</td>
<td>1.41 (0.09) 1.05 (0.009)</td>
</tr>
<tr>
<td>Control</td>
<td>Non-Bt</td>
<td>M</td>
<td>1.71 (0.08) 1.12 (0.006)</td>
<td>1.46 (0.09) 1.09 (0.008)</td>
</tr>
<tr>
<td>P1250</td>
<td>Non-Bt</td>
<td>F</td>
<td>1.66 (0.08) 1.13 (0.006)</td>
<td>1.54 (0.09) 1.06 (0.009)</td>
</tr>
<tr>
<td>P1250</td>
<td>Non-Bt</td>
<td>M</td>
<td>1.65 (0.08) 1.12 (0.006)</td>
<td>1.50 (0.09) 1.08 (0.009)</td>
</tr>
<tr>
<td>Aztec</td>
<td>Non-Bt</td>
<td>F</td>
<td>1.77 (0.08) 1.13 (0.006)</td>
<td>1.60 (0.09) 1.06 (0.009)</td>
</tr>
<tr>
<td>Aztec</td>
<td>Non-Bt</td>
<td>M</td>
<td>1.76 (0.09) 1.12 (0.006)</td>
<td>1.45 (0.09) 1.08 (0.009)</td>
</tr>
<tr>
<td>Control</td>
<td>Bt</td>
<td>F</td>
<td>1.82 (0.09) 1.11 (0.007)</td>
<td>1.68 (0.10) 1.03 (0.013)</td>
</tr>
<tr>
<td>Control</td>
<td>Bt</td>
<td>M</td>
<td>1.52 (0.09) 1.09 (0.009)</td>
<td>1.52 (0.12) 1.06 (0.014)</td>
</tr>
<tr>
<td>P1250</td>
<td>Bt</td>
<td>F</td>
<td>1.76 (0.09) 1.11 (0.009)</td>
<td>1.55 (0.10) 1.06 (0.020)</td>
</tr>
<tr>
<td>P1250</td>
<td>Bt</td>
<td>M</td>
<td>1.64 (0.09) 1.10 (0.010)</td>
<td>1.49 (0.12) 1.07 (0.020)</td>
</tr>
<tr>
<td>Aztec</td>
<td>Bt</td>
<td>F</td>
<td>1.89 (0.09) 1.11 (0.008)</td>
<td>1.65 (0.11) 1.07 (0.013)</td>
</tr>
<tr>
<td>Aztec</td>
<td>Bt</td>
<td>M</td>
<td>1.76 (0.09) 1.11 (0.010)</td>
<td>1.65 (0.11) 1.04 (0.014)</td>
</tr>
</tbody>
</table>

\(^a\) Values show sample mean; 1 SEM is shown in parentheses.

\(^b\) Data for mass were transformed for analysis; untransformed means are shown.
northern corn rootworm head capsule width and mass were not significantly reduced by P1250, Aztec, or Bt maize (Tables 3 and 4). The mass and size of western corn rootworm adults were not affected by either Aztec or P1250, although insects from Bt maize were significantly smaller than insects from non-Bt maize (Tables 2 and 4). Larval feeding on Bt maize has been shown to reduce the size or mass of adults in some studies (Binning et al. 2010, Murphy et al. 2011), but not others (Storer et al. 2006, Frank et al. 2011, Meihls et al. 2011, Zukoff et al. 2012). If insects emerging from Bt maize or insecticide-treated plants incur sublethal effects on fitness, the spread of resistance genes may be delayed (Tabashnik et al. 2004). However, if these sublethal effects, such as reduced size or mass, lead to assortative mating among selected individuals, the rate of resistance evolution could increase (Gould 1998).

While neither Aztec nor P1250 had an effect on root injury to Bt maize, both of these insecticides reduced injury to non-Bt maize roots (Table 1; Fig. 1B). In general, there is a negative relationship between root injury and yield, with one node of roots lost to feeding by rootworm reducing yield by 15.2% (Tinsley et al. 2012) to 17.9% (Dun et al. 2010). However, the sig-
significant root protection afforded by P1250 and Aztec on non-Bt maize did not lessen yield loss in this study, as yield was only significantly protected by Bt maize (Fig. 1A). It is possible that plants in non-Bt plots that did not receive Aztec or P1250 tolerated certain levels of injury, such that this injury did not translate to a decrease in yield compared with non-Bt maize with insecticides (Spike and Tollefson 1989, Gray and Steffey 1998, Urias–Lopez and Meinke 2001). Efficacy of seed treatments and soil insecticides targeting rootworm larvae is often not consistent and depends on a number of biotic and abiotic factors (van Rozen and Ester 2010).

When developing an IPM strategy, a producer must weigh management costs against benefits from preserving yield (Pedigo and Rice 2009). In this study, Bt maize significantly reduced injury, but using an insecticide in combination with Bt maize did not significantly decrease root injury compared with the use of Bt maize alone (Fig. 1B). Similarly, Bt maize resulted in significant yield protection, but the use of insecticides did not result in an additional increase in yield when combined with either Bt or non-Bt maize. Thus, the additional cost of an insecticide may not have offered farmers any economic benefits. Because economic losses in maize systems depend on a number of interacting factors, including level of injury from rootworm species, environmental stress, and hybrid (Gray and Steffey 1998, Urias–Lopez and Meinke 2001), a standard economic injury index has been difficult to develop. However, it is generally agreed that a root injury rating corresponding to 0.5 or more on the 0–3 node injury scale can result in economic losses (Hein and Tollefson 1985, Gray and Steffey 1998, O’Neal et al. 2001). Here, Bt maize alone significantly reduced injury from 1.3 to 0.1 nodes on the 0–3 scale (Oleson et al. 2005), well below the economic injury index, thus attempting to achieve additional reductions in injury from supplemental insecticides may not offer an economic benefit.

Our data suggest that pyramiding an insecticide with Bt maize may offer few benefits from either an IRM or IPM perspective. From an IPM perspective, combining Cry3Bb1 maize with an insecticide did not decrease root injury or increase yield (Fig. 1), and would not have provided a single-season economic benefit to producers. In addition, reductions in the use of chemical insecticides are often associated with the planting of Bt crops (Carpenter and Gianessi 2001, Shelton et al. 2002, Naranjo 2009), and this benefit would be diminished by pyramiding Bt crops with chemical insecticides. From an IRM perspective, the level of mortality achieved with an insecticide may be too low to provide much, if any, benefit in terms of delaying resistance. In addition, Gray et al. (1992) showed that in some years, more western corn rootworm adults emerged from plots that received insecticides applied at the time of planting compared with control plots. Given the presence of populations of western corn rootworm that have evolved resistance to Cry3Bb1 maize in the field (Gassmann et al. 2011, 2012; Gassmann 2012), it will be important to continue to develop improvements in resistance management, and to promote more long-term (multi-year) integrated approaches to management, such as crop rotation and rotation among other available pest management tactics for corn rootworm.

Acknowledgments

We thank Patrick Weber, Nick Kiley, Jim Brown, and Bill McCormick for help in the laboratory and field. This work was supported by Bayer CropScience and Monsanto.

References Cited

Crowder, D. W., D. W. Oustad, and M. E. Gray. 2006. Planting transgenic insecticidal corn based on economic thresholds: consequences for integrated pest manage-

Meinke, L. J., B. D. Siegfried, R. J. Wright, and L. D. Chandler. 1998. Adult susceptibility of Nebraska western corn rootworm (Coleoptera: Chrysomelidae) populations to selected insecticides. J. Econ. Entomol. 91: 594–600.

October 2013 PETZOLD–MAXWELL ET AL.: ROOTWORM, BT MAIZE, AND INSECTICIDES 1951

(Coleoptera: Chrysomelidae). J. Econ. Entomol. 104: 1038–1044.

Received 7 May 2013; accepted 14 June 2013.