Biosynthesis of Diterpenoids in Tripterygium Adventitious Root Cultures

Thumbnail Image
Date
2017-09-01
Authors
Inabuy, Fainmarinat
Fischedick, Justin
Lange, Iris
Hartmann, Michael
Srividya, Narayanan
Parrish, Amber
Xu, Meimei
Peters, Reuben
Lange, B. Markus
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Peters, Reuben
Distinguished Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Biochemistry, Biophysics and Molecular Biology
Abstract

Adventitious root cultures were developed from Tripterygium regelii Sprague & Takeda and growth conditions optimized for the abundant production of diterpenoids, which can be collected directly from the medium. An analysis of publicly available transcriptome data sets collected with T. regelii roots and root cultures indicated the presence of a large gene family (with 20 members) for terpene synthases (TPSs). Nine candidate diterpene synthase genes were selected for follow-up functional evaluation, of which two belonged to the TPS-c, three to the TPS-e/f and four to the TPS-b subfamily. These genes were characterized by heterologous expression in a modular metabolic engineering system in E. coli. Members of the TPS-c subfamily were characterized as copalyl diphosphate (diterpene) synthases and those belonging to the TPS-e/f family catalyzed the formation of precursors of kaurane diterpenoids. The TPS-b subfamily encompassed genes coding for enzymes involved in abietane diterpenoid biosynthesis and others with activities as monoterpene synthases. The structural characterization of diterpenoids accumulating in the medium of T. regelii adventitious root cultures, facilitated by searching the Spektraris online spectral database, enabled us to formulate a biosynthetic pathway for the biosynthesis of triptolide, a diterpenoid with pharmaceutical potential. Considering the significant enrichment of diterpenoids in the culture medium, fast-growing adventitious root cultures may hold promise as a sustainable resource for the large-scale production of triptolide.

Comments

This article is published as Inabuy, F.X., Fischedick, J.T., Lange, I., Hartmann, M., Srividya, N., Parrish, A.N., Xu, M., Peters, R.J., Lange, B.M. (2017) “Biosynthesis of diterpenoids in Tripterygium adventitious root cultures”, Plant Physiol., 175(1):92-103. doi: 10.1104/pp.17.00659. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections