Dynamic balance and walking control of biped mechanisms

Thumbnail Image
Date
1995
Authors
Troy, James
Major Professor
Advisor
Martin J. Vanderploeg
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The research presented here focuses on the development of a feedback control systems for locomotion of two and three dimensional, dynamically balanced, biped mechanisms. The main areas to be discussed are: development of equations of motion for multibody systems, balancing control, walking cycle generation, and interactive computer graphics. Additional topics include: optimization, interface devices, manual control methods, and ground contact force generation;Planar (2D) and spatial (3D) multibody system models are developed in this thesis to handle all allowable ground support conditions without system reconfiguration. All models consist of lower body segments only; head and arm segments are not included. Model parameters for segment length, mass, and moments of inertia are adjustable. A ground contact foot model simulates compression compliance and allows for non-uniform surfaces. In addition to flat surfaces with variable friction coefficients, the systems can adapt to inclines and steps;Control techniques are developed that range from manual torque input to automatic control for several types of balancing, walking, and transitioning modes. Balancing mode control algorithms can deal with several types of initial conditions which include falling and jumping onto various types of surfaces. Walking control state machines allow selection of steady-state velocity, step size, and/or step frequency;The real-time interactive simulation software developed during this project allows the user to operate the biped systems within a 3D virtual environment. In addition to presenting algorithms for interactive biped locomotion control, insights can also be drawn from this work into the levels of required user effort for tasks involving systems controlled by simultaneous user inputs;Position and ground reaction force data obtained from human walking studies are compared to walking data generated by one of the more complex biped models developed for this project.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 1995