IOWA STATE UNIVERSITY

Digital Repository

Computer Science Technical Reports Computer Science

9-6-2010

Frances: A Tool For Understanding Computer
Architecture and Assembly Language

Tyler Sondag

ITowa State University, tylersondag@gmail.com

Kian L. Pokorny
Towa State University

Hridesh Rajan
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

b Part of the Programming Languages and Compilers Commons

Recommended Citation

Sondag, Tyler; Pokorny, Kian L.; and Rajan, Hridesh, "Frances: A Tool For Understanding Computer Architecture and Assembly
Language" (2010). Computer Science Technical Reports. 193.
http://lib.dr.iastate.edu/cs_techreports/193

This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information,

please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/193?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Frances: A Tool For Understanding Computer Architecture and Assembly
Language

Abstract

Students in all areas of computing require a knowledge of the computing device and how software is
implemented in the machine. Several courses in computer science curricula address these low-level details
such as a computer architecture and assembly languages. For such courses, there are advantages to studying
real architectures instead of simplified examples. However, real architectures and instruction sets introduce
complexity that makes them difficult to grasp in a single semester course. Visualization techniques can help
ease this burden. Existing tools are often difficult to use and consequently difficult to adopt in a course where
time is already limited. To solve this problem, we present Frances. Frances graphically illustrates key
differences between familiar high-level languages and unfamiliar low-level languages and also illustrates how
familiar high-level programs behave on real architectures. Key to this tool is that we use a simple web interface
that requires no setup and is easy to use, easing course adoption hurdles. We also include several features that
further enhance its usefulness in a classroom setting. These features include graphical relationships between
high-level code and machine code, clearly illustrated step by step machine state transitions, color coding to
make instruction behavior clear, and illustration of pointers. We have used Frances in courses and performed
experimental evaluation. Our results show the usability and effectiveness of this tool. Most notably, students
with no computer architecture course experience were able to complete lessons using our tool with no
guidance.

Keywords
Frances, Visualization, Architecture, Code Generation, Compilers

Disciplines
Programming Languages and Compilers

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/193

http://lib.dr.iastate.edu/cs_techreports/193?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages

Frances: A Tool For Understanding Computer Architecture and
Assembly Language

Tyler Sondag, Kian L. Pokorny, and Hridesh Rajan

TR #10-08
Initial Submission: September 6, 2010.

Keywords: Frances, Visualization, Architecture, Code Generation, Compilers

CR Categories:
K.3.0[Computers and Education] General = K.3.2[Computers and Education] Computer and Information Science Edu-

cation - computer science education, curriculum C.0[Computer Systems Organization] General — Modeling of computer
architecture

Submitted.

Department of Computer Science
226 Atanasoff Hall
Iowa State University
Ames, Iowa 50011-1041, USA

Frances: A Tool For Understanding Computer Architecture and
Assembly Language

Tyler Sondag

Dept. of Computer Science
Towa State University
226 Atanasoff Hall
Ames, IA 50014

sondag@iastate.edu

Abstract

Students in all areas of computing require a knowledge of
the computing device and how software is implemented in
the machine. Several courses in computer science curricula
address these low-level details such as a computer architec-
ture and assembly languages. For such courses, there are ad-
vantages to studying real architectures instead of simplified
examples. However, real architectures and instruction sets
introduce complexity that makes them difficult to grasp in
a single semester course. Visualization techniques can help
ease this burden. Existing tools are often difficult to use and
consequently difficult to adopt in a course where time is al-
ready limited. To solve this problem, we present Frances.
Frances graphically illustrates key differences between fa-
miliar high-level languages and unfamiliar low-level lan-
guages and also illustrates how familiar high-level programs
behave on real architectures. Key to this tool is that we use a
simple web interface that requires no setup and is easy to use,
easing course adoption hurdles. We also include several fea-
tures that further enhance its usefulness in a classroom set-
ting. These features include graphical relationships between
high-level code and machine code, clearly illustrated step by
step machine state transitions, color coding to make instruc-
tion behavior clear, and illustration of pointers. We have used
Frances in courses and performed experimental evaluation.
Our results show the usability and effectiveness of this tool.
Most notably, students with no computer architecture course
experience were able to complete lessons using our tool with
no guidance.

[copyright notice will appear here]

Kian L. Pokorny

Division of Computing
McKendree University
701 College Road
Lebanon, IL 62254

kipokorny@mckendree.edu

Hridesh Rajan

Dept. of Computer Science
Iowa State University
226 Atanasoff Hall
Ames, 1A 50014

hridesh@iastate.edu

Categories and Subject Descriptors K.3.0 [Computers
and Education]: General; C.0 [Computer Systems Orga-
nization]: General—Modeling of computer architecture

General Terms Education, Languages, Compiler, Archi-
tecture

Keywords Frances, Visualization, Architecture, Code Gen-
eration, Compilers

1. Introduction

Fundamental to computing are the concepts of software and
hardware. Most computer science courses concentrate on a
high-level of abstraction. Introductory programming courses
focus on high-level languages and their abstractions. Like-
wise, algorithms courses are often implementation indepen-
dent to focus on core mathematical principles. These ab-
stractions are crucial to reducing the complexity of the prob-
lems at hand and help students understand the material and
core concepts in a semester’s time. However, students in any
field of computing must have an understanding, at various
levels of abstraction, of the computing devices and the soft-
ware programs that run them.

There are typically two courses which are critical in help-
ing students understand the connections between software
and hardware. These courses are computer architecture (or-
ganization) and compiler (language) design.

Computer Architecture The 2008 curriculum revision
for computer science states, “A professional in any field of
computing should not regard the computer as just a black
box that executes programs by magic... Students need to un-
derstand computer architecture in order to make best use of
the software tools and computer languages they use to create
programs [8, pp. 49].” The study of a computer architecture,
its behavior, and instruction set are typical components to a
computer organization and architecture course.

Language Implementation Compiler and language im-
plementation courses have appeared in all revisions of the
ACM Computing Curricula. The latest revision of CC 01

2011/5/9

13

states the importance of these topics: “...good compiler
writers are often seen as desirable; they tend to be good
software engineers [8, pp.11].” These compiler design and
programming language courses typically involve language
translation from high to low-level languages (typically an
assembly language).

Aside from these courses, while most students will never
write assembly code directly, understanding the code gen-
erated by compilers is important for both programming and
debugging tasks.

1.1 Problems

In the past, courses on architecture, compilers, and program-
ming language design were often supported by a prerequi-
site chain containing courses on assembly and low-level pro-
gramming languages. However, in recent years these prereq-
uisite courses have slowly been supplanted by other topics
in many undergraduate computing curricula [20]. As a result
of this typical curricula design, students have little exposure
to these low-level details when they reach courses like com-
puter architecture or compiler design. Thus, not only must
students learn these new topics which differ from anything
they have learned before, they must also continue to learn
other complex topics introduced in these courses (e.g. archi-
tecture, language design, etc.). Therefore, there is a real need
to enhance methods and techniques for teaching students as-
sembly language and low-level programming topics.

For learning and teaching these difficult topics, it is de-
sirable to use interactive tools which have been shown to be
highly effective for education [18,24]. Many tools exist for
visualizing programs [2, 11,32] and simulating programs on
different architectures [5, 6,9, 17,25, 26]. However, they are
typically time consuming to learn and difficult to use. As a
result, adopting them in a course is challenging. Especially
in the presence of all the other new material that must be
learned.

1.2 Contributions

To solve these problems, we present the Frances tool'. A
major idea behind our approach is to take advantage of the
students’ existing knowledge of high-level language pro-
gramming. Thus, the Frances tool allows students to enter
familiar high-level code which is then shown alongside a
graphical representation of the assembly code and machine
state. We make use of several novel features to help stu-
dents make connections between high-level programming
languages, assembly language, and the low-level architec-
tural concepts of the computing device. In summary, Frances

e presents a visualization of the low-level code that main-
tains actual target code ordering,

I'We named the tool Frances in honor of Frances E. Allen . She received
the Turning award for pioneering contributions to the theory and practice
of optimizing compiler techniques that laid the foundation for modern
optimizing compilers and automatic parallel execution.

e differentiates between types of run-time paths in the low-
level code,

® color codes instruction blocks by their high-level control
constructs,

e shows how each individual machine instruction impacts
the machine state,

e displays the components of the system state in a logical
organization, illustrating several important concepts,

e allows for both forward and backward stepping through
program steps which allows students to revisit compli-
cated steps and processes,

® color codes individual parts of the machine state making
the impact of each instruction clear,

e clearly illustrates difficult concepts surrounding addresses
(e.g. pointers and stack) using color coded arrows.

Thus, Frances helps students understand low-level lan-
guages, language translation (code generation), and com-
puter architecture by showing how familiar high-level code
maps to low-level code and how that low-level code behaves
on a target architecture.

Ease of Adoption Further, we have developed Frances in
a way such that it is platform independent, requires no setup,
and is trivial to begin using. By providing our simple web-
based interface that is easy to learn, we avoid three of the
four biggest factors hindering adoption of such visualization
tools in educational settings?> namely time to learn the new
tool, time to develop visualizations, and lack of effective
development tools (we also eliminate other large problems
such as reliability and install issues) [24]. All of this together
makes Frances easy to adopt, use, and understand.

Effectiveness Finally, we have used the Frances tool in a
course and completed experimentation to determine its ease
of use and effectiveness. We have used Frances in three un-
dergraduate courses and have performed evaluations of the
tool independent of any particular course. Overall, we ob-
served encouraging results. Students found the tool useful
for learning topics regarding code generation and often used
it as a reference when implementing their own compilers.
Based on this experience, Frances is becoming a more inte-
gral part of future offerings of this course. Experimentation
of Frances’s ease of use and effectiveness shows promising
results. Even allowing students who have never had a com-
puter architecture course to complete the assignments they
were given with no guidance.

The rest of this paper is organized as follows. Section 2
presents related ideas. Next, Section 3 describes our goals
when developing the components of Frances. Section 4 de-
scribes design and implementation of the Frances tool. Sec-
tion 5 describes our experimental results and course expe-
riences. Finally, Section 6 discusses future work and con-
cludes.

2 We solve the fourth problem by making interesting examples (as lessons)
available on Frances’s website.

2011/5/9

2. Related Work

Related work can be classified into three major categories.
First, those for teaching assembly language and language
translation. Second, work for simulating architectural details
and teaching computer architecture. Third, those for visual-
izing programs. We now compare Frances to related work in
each of these categories.

2.1 Teaching Assembly Language and Low-Level
Language Translation

Related work in this area can be broadly classified into
two categories. First, those dealing with tools designed to
help students build and learn about compilers / language
translation systems [2, 11, 32]. Second, work dealing with
teaching assembly language [7,47].

Since developing a compiler is difficult, especially within
a single semester course, a large body of work has been done
to improve this process.

Gondow et al. developed MieruCompiler [16] which is
used for visualizing various pieces related to the source code
such as assembly code, abstract syntax tree, symbol table,
stack layout, etc. Our approach differs in that we provide a
more visual representation of the assembly code.

Aiken presented Cool, a language and compiler designed
for course projects to reduce the overhead for the instruc-
tor and keep assignments modular [2]. Similarly, Corliss et
al. developed Bantam which is a Java compiler project for
courses [11]. Modularity is also achieved in Bantam since
components of the compiler can use the provided modules,
or be swapped out with custom versions. Rather than devel-
oping a new infrastructure, our technique is complementary
to these existing techniques in order to help understand spe-
cific portions of compiler implementation.

Resler et al. propose a visualization tool, VCOCO, for un-
derstanding compilers [32]. VCOCO provides several view
panes which show source code, language grammar, com-
piler, parser, and scanner. Each pane is updated throughout
the compilation process. We also propose a visual approach,
however, we are interested specifically with code generation
and present a graphical approach.

Zilles developed SPIMbot [47]. SPIMbot provides an en-
vironment in which learning assembly is put to use for pro-
gramming virtual robots. Our approach takes a more tradi-
tional approach that is likely to have less overhead.

Bredlau e al. suggest using the Java Virtual Machine
(JVM) for teaching assembly [7]. The idea is to let the
java compiler create JVM code which is compared to the
source code. We take a similar approach but with assembly
language and we provide a graphical comparison to aid in
this process.

2.2 Architectural Simulators

A large body of work exists for simulating architectures
and teaching computer organization and architecture [4—

6,9, 17, 19, 25-27, 35, 46]. Many of these simulators are
targeted toward advanced users. As a result they are typically
very complex and difficult to learn. We now briefly discuss
work in this area most similar to our introductory computer
architecture pedagogical tool.

Null and Lobur developed MarieSIM marie for use in
teaching computer architecture and assembly language. This
approach has several advantages including a simple assem-
bly language and an accompanying text book. However,
some argue that there are advantages to using real assem-
bly languages rather than custom languages [16, 24]. This
is a fundamental difference in our approaches. For those
who prefer to use a real assembly language we recommend
Frances. Further, our work differs in several ways. First,
with MarieSIM there is a disconnect between high-level lan-
guages and the MARIE instruction set since users must pro-
gram simulations with the 16 one address instructions pro-
vided with the system. With Frances, students have the op-
tion of entering simulations using a variety of high-level lan-
guages (or assembly). Thus, students can see how the system
processes code they normally write and the learning curve
for initial use of the tool is very low. Recall that MarieSIM
has an accompanying text book. This has benefits, however,
instructors that have designed their courses around different
text books may not want to re-design their course around a
new book. To help ease the adoption of Frances into existing
courses, we develop our course materials around topics that
compliment existing courses utilizing a standard textbook.
Further, Frances is released via the web rather than requiring
installation which hinders adoption because of compatibility
and dependence issues. Finally, MarieSIM does not allow
“stepping” backwards through program execution. Frances
has this feature to allow students to revisit previous execu-
tion steps without re-running the entire simulation.

Graham developed “The Simple Computer” simula-
tor [17]. Stone later used this simulator to teach CS1 top-
ics [40]. Another simulator developed by Braught and Reed
is targeted toward introductory students in CSO [6]. The
main differences between these works is that (a) Frances
has a graphical interface that we believe has a much lower
adoption time, and (b) Frances uses real instruction set archi-
tectures (ISA) rather than custom machines and languages.

Borunda et al. developed GSPIM, a MIPS simulator [5]
for use in introductory computer architecture courses. This
tool shows simultaneous views of the program call graph,
intra-procedural control flow graph, MIPS assembly code,
and registers. Our work differs in that Frances more eas-
ily integrates with both high-level and low-level languages,
giving students the ability to visualize high-level code at a
lower level and ease the learning curve. Finally, our control
flow graph representations maintain the instruction ordering
and layout of actual assembly programs. Thus, we believe
Frances will be more effective when learning assembly lan-
guage.

2011/5/9

2.3 Program Visualization

A large body of work exists for software visualization [10,
13, 18, 22,24, 28-31, 33, 34, 41, 44, 45]. Price et al. devel-
oped a taxonomy for software visualization [30]. In this tax-
onomy, they make the distinction between algorithm visu-
alization (illustrating high-level abstract code) and program
visualization (illustrating actual code listings). First, rather
than illustrating abstract algorithms, we focus on illustrat-
ing issues such as program implementation, language con-
struct behavior, program state, and machine state. Therefore,
we consider algorithm visualization to be complementary to
our work on Frances. In terms of program visualization, a
major difference between our work and previous work is
that our interface is much simpler and straightforward. Thus,
we address the primary factor limiting adoption of previous
work [24]. We are able to do this because Frances’s backend
consists of several powerful program analysis techniques.
Rather than requiring installation, Frances is deployed via a
web interface thus removing additional hurdles such as soft-
ware and OS dependencies. Therefore, we avoid many of
the factors which hurt adoption of such tools [24]. Finally,
we developed Frances around a real machine and instruction
set rather than custom models thus avoiding a disconnect be-
tween the tool and real architectures [24].

An example of a program visualization technique is a de-
bugger such as gdb [15], or a graphical debugger such as
kdbg [37], etc. Debuggers are very powerful and expressive
tools and as a result are generally difficult to learn to use.
Debuggers have several problems making them incompat-
ible with program visualization for pedagogical purposes.
Their interface is typically highly expressive and thus over-
whelms introductory students with details. Furthermore their
interfaces do not visualize program structure. Finally, sev-
eral aspects of the process may be confusing for introductory
level students such as breakpoints, different techniques for
stepping through execution, modifying program inputs, etc.
Our interface is only as expressive as necessary for introduc-
tory students, avoiding many complex features of debuggers.
Finally our interface has fixed abstractions that allow us to
eliminate issues like breakpoints and different techniques for
stepping through execution.

Most similar to our work is the work by Sundararaman
and Back [41] on HDPV, a runtime state visualization tool
for C/C++ and Java programs. This work is complementary
to our own in two ways. First, the focus of HDPV is on visu-
alization of data structures, whereas our focus is on control
flow, system state, and program behavior. Second, they deal
with representation concerns for large programs. Since our
visualization is more geared toward introductory courses and
not advanced courses or software engineering practice, we
leave these large scale concerns for future work. HDPV uses
a machine model that captures low-level details like mem-
ory layout. Since the focus of HDPV is on data structures, it
does not trace register values. Register values do not appear

until moved to memory. For introductory students this can
be quite confusing. For example, loop counters often never
go beyond registers. Since we focus on classroom use, we
address this limitation by modeling registers as well as the
stack and heap separately. Rather than focusing on specific
languages, our work currently supports any language which
can be compiled to native code. To enable several low-level
implementations, HDPV makes use of Pin [21]. Similarly,
we make use of cross-compilers and GNU BinUltils [14] to
support a variety of targets. Frances allows the user to step
backward in the code. HDPV does not.

Also similar is IBM’s Jinsight tool [28]. The most im-
portant difference from our work is that Jinsight focuses
on more advanced users and program behavior in terms of
performance. In terms of implementation, Jinsight uses ex-
ecution traces to develop its visualizations. Our tool uses a
web-based approach. A tool similar to Jinsight was also de-
veloped by Reiss [31]. This tool, like Jinsight, is targeted
towards more experienced programmers and looks at phase
behavior [36] and performance issues.

3. Design Criteria for Frances

In this section, we discuss the design criteria we had in mind
when developing the Frances tool as well as how we ac-
complish these criteria. Briefly, these criteria include making
various low-level aspects of computing easy to understand
for students such as assembly language, computer architec-
ture, and code generation. We do this by clearly and quickly
showing how familiar high-level language constructs trans-
late to low-level language code and how this code behaves
on the hardware. Additionally, the tool is desired to be easy
to learn, require no setup, and not require thorough knowl-
edge of a machine language or computer architecture to get
started. Further, we wanted to use real architectures and in-
struction sets. Next, the tool needed to be effective. To ensure
this, we desired a tool that would allow students to clearly
visualize the behavior of each machine instruction and how
familiar high-level code maps to this machine code.

3.1 Ease of use

We felt it was important for Frances to be as easy to use as
possible. If not, the cost of learning how to use Frances could
easily overshadow the benefits it provides.

We took several steps to make Frances easy to use:

e require no building, setup, or installation,

e provide a simple graphical interface with little learning
curve,

e support a variety of high-level languages, and
e support a variety of low-level languages.

This is all necessary to ensure that Frances is feasible to
adopt in a single semester without distracting students or
drastically changing existing courses.

2011/5/9

Because we do not require users to build or setup Frances
on their systems, it is faster to begin using; issues such as
software, hardware, or OS dependencies are avoided; and
reliability is improved. All that is required is a web browser.
Users may even access the system on simple devices such as
cell phones or tablets (which are rapidly gaining popularity).

Many related tools operate from the command line and
require the users to learn complicated syntax. While pow-
erful and flexible, learning how to use such a tool if you are
only planning on using it for a short period of time is undesir-
able. We believe our interface is simple enough for users to
immediately begin using it and understanding the output. To
facilitate this simple interface, we make use of several more
complicated analysis techniques on the backend. Further, we
rely on graphical features to show complex properties such
as control flow, pointers, changes in state, accesses to mem-
ory locations, etc. This includes a simple logical layout of
the system state.

An assumption of our system is that students are familiar
with a high-level language. Thus, we have designed our
system to be as easy as possible to integrate a variety of high-
level languages.

Another highly important goal was that we did not want
to require students to have a thorough knowledge of machine
language to use the tool. Since architecture courses are often
the first exposure a student has to machine language, we
wanted to ease this process as much as possible.

3.2 Effectiveness

One of the main goals of our system to set it apart from
others is ease of use, however, effectiveness is still critical.
Without it, ease of use is useless. It has been shown that
the way students interact with visualization tools is more
important than the visualization itself [18]. Thus, we wanted
a hands-on tool to improve the learning process. To make
this hands-on tool, Frances, effective, we had several goals.

1. Allow students to step both forward and backward dur-
ing program visualization. This is a feature which is rare
amongst such visualization tools. We believe this feature
is crucial to allow students to revisit complex instructions
and sequences of instructions without re-running the en-
tire simulation which can cause the student to lose con-
text.

2. Illustrate key differences between high and low-level lan-
guages. We have observed that for many students, learn-
ing low-level languages is difficult and code generation
can be the most difficult challenge when writing a com-
piler for the first time. This is largely because of the dif-
ferences in already familiar high-level languages and un-
familiar low-level languages. This includes differences in
syntax as well as the ordering of statements related to the
various programming constructs. For example, Figure 3
shows how the order of the loop condition and loop body
are opposite in the two representations.

3. Allow students to enter simulation code in a familiar
high-level language. This would help students quickly
visualize how the machine will handle familiar source
code. This also allows students to more rapidly per-
form their experimentation instead of coding visualiza-
tion code in an unfamiliar machine language, further de-
creasing learning curve.

4. Provide a graphical and logically organized layout. We
desired a graphical layout that was not only logically or-
ganized but color coded to show accesses and modifica-
tions to the machine state as well as concepts such as
pointers and stacks.

5. Support visualization on a real architecture and instruc-
tion set. This would make the knowledge gained by using
Frances applicable to standard learning materials and in
the real world (e.g. real languages and real architectures).

4. Frances

We now describe the use and major features of Frances. This
includes the simple interface to the tool and the two major
components of the tool. To start using the tool readers may
point their WWW browser to the URL http://frances.
cs.lastate.edu.

We now describe the main components of Frances in de-
tail. This includes the code entry and control of the system,
representation of the low-level language, and representation
of the machine state.

4.1 Code Entry and Control

Key to Frances is an easy to use web-interface that requires
no setup. An example of this interface is shown in Figure 1.

First, on the far left, there is a high-level code input box.
Currently, code may be written in C, C++, and FORTRAN.
Support may easily be added for any language that can
compile down to native machine code. Initially, this box
is editable so that users may enter their simulation code.
After editing code, the user clicks the “Compile” button.
At this point, the code entry box becomes read-only and
the “Compile” button is replaced with buttons for stepping
backwards and forwards in the assembly code.

In Figure 2, code has been entered, the “Compile” button
has been pressed and several steps have been executed. At
this point the simple while loop code is no longer modifiable
unless the “Reset” button is pushed.

Since the “Compile” button has been pressed, we can
see the buttons for “Last instruction” and “Execute next
instruction”. As the labels suggest, these buttons control
the simulation of the program and update the machine state
accordingly. The behavior of buttons and how they impact
the machine state is detailed in Section 4.3.

4.2 Relation between high-level to machine language

In the middle of the interface is the graphical representa-
tion of the machine code. This part of the interface allows

2011/5/9

Code:

int main() | main Last Instruction Next Instruction
lea Ox4(%esp),%ecx lea Ox4(%esp),%ecx
and $Oxfffffff0,%esp
pushl -0x4(%ecx) Registers
push Yocbp
mov Yesp,%cbp eax ebx ecx edx
push Yoecx
pop Yeecx 0xbfffe604 0x596Ff4 0xe38956¢8 ox1
pop %ecbp
lea -Ox4(%ecx),%esp - -
ret esi edi eflags
0Ox43ecal 0x0 0x246 (PFZFIF)
4 esp ebp eip
Language: C r
Reset | Compile Oxbfffes7c Oxbfffe5d8 0x80483c4
Legend
Block Types Edge Types Stack

Loop Body —’Conditional]ump

Loop Condition - -DUncondilional Jump Addgess Contents

Self Loop(do-while) ——>No Jump 0xbiffosTollono0258390

If Body

I Condition Oxbfffeb80[0x00000001

Else Body

Figure 1. Frances starting state. The left side shows the box for code entry and the compile button which will generate the
graphical representation of the assembly code. The middle the graphical representation of an empty program and the right side

shows the machine state prior to executing the code.

students to easily see how their high-level code maps to ma-
chine code by using graphical features such as color coding
and different edge drawing techniques. Key to our approach
is illustrating the differences between already familiar high-
level languages and unfamiliar low-level languages. This in-
cludes differences in syntax as well as the ordering of state-
ments related to the various programming constructs.

The purpose of this portion of the interface is to ease
the burden of learning an assembly language and/or lan-
guage translation. Students may enter visualization code in
a familiar high-level language, then see how their code is
represented in assembly instructions and how these instruc-
tions modify the system state. This means that students do
not have to write simulation code in an assembly language
which speeds up the overall educational process and helps
ensure that users understand the meaning of the assembly
code. Finally, it also helps the user visualize how different
high-level program structures behave at the machine level.

We observe that there are differences between code or-
dering in high-level and low-level languages. For example,
in Figure 3 the order of the loop condition and loop body are
opposite in the two representations. With this part of the tool,
we aim to ease this challenge by clearly showing how famil-
iar high-level language code and constructs map to target,
low-level assembly code. The idea is that students already
understand at least one high level language. By understand-

Code: main
int main(){
int x = 0; lea 0x4(%esp), %ecx
while (x < 10){ and $0xfftitft0, %esp
e pushl -0x4(%ecx)
} ¥ push %ebp
mov %esp,%ebp
push %ecx
sub $0x10,%esp
Language: C movl $0x0,-0x8(%ebp)
. jmp newLabel3
File: Browse... —
Reset | Complie ,’—
!) —
1
Legend ‘\ newLabel4: addl $0x1,-0x8(%ebp)
Block Types R iy
Loop Body newLabeld: ampl $0x9,-0x8(%ebp)
Loop Condition jle newLabeld
Self Loop(do-while)
If Body
If Condition add $0x10,%esp
Else Body pop %ecx
Edge Types pop %ebp
—’Cunditinnal]ump lea -0x4(%ecx), %esp
---DUnconditioual Jump ret
—>No Jump

Figure 3. A simple C while loop

ing how the high-level and low-level languages relate to each
other, students can quickly understand how to translate from
one language to the other. In a language design or compiler
design course, students can use this portion of the tool as a
guide for dealing with various high-level constructs includ-
ing memory management and code order.

2011/5/9

Code -
main

lea Ox4(%esp),%ecx
and $OxfFFFFfFO,%esp

(*v¥)++; pushl -0x4(%ecx)
R——; push Yocbp
mov %esp,%ebp
push %oecx

sub $0x10,%esp

movl $0x0,-0xc(%ebp)
lea -Oxc(%ebp),%eax
mov %eax,-0x8(%ebp)
jmp newLabel3

newLabel4: mov -0x8(%ebp),%eax
mov (%oeax),%eax

lea Ox1(%eax),%edx

mov -0x8(%ebp),%cax

1
I
A
Language: [C ~| Reset| 1
1
Last instruction 6

Execute next instruction | ‘\ mov Yoedx,(Yoeax)
Legend M o
newLabel3: mov -Oxc(%ebp),%eax
Block Types cmp $0x9 ,%eax

jle newLabeld

ILoop Body
ILoop Condition

Self Loop(do-while)

. i mov -Oxc(%ebp), Yoeax
Lt‘Bndy-.) sub $0x1,%eax
[f Condition mov %eax,-0xc(%ebp)
Else Body add $0x10,%esp
pop %ecx
Edge Types pop Yebp
. lea -Ox4(%ecx),%esp
—’Cundltmnal Tump ret
- —-Dl'nconditional Junp
——>No Jump

Last Instmction Next Instruction
mov %oesp,%ebp push Yoecx
Registers
eax ebx ecx edx
Oxbfffe7t4 0x5906ff4 Oxbfffe770 0x1
esi edi eflags
0x43ecal 0x0 0x286 (PF SFIF)
esp ebp eip
Oxbfffe758 - 0x80483d1

St

Contents

Add egé

OxbfffeT58||0xbfffeTct

OxbfffeTbc|0x00458390

OxbfffeT760||0x0043ecal

Figure 2. Shows a simple while loop running through Frances. The high-level code has been entered on the left side and been
compiled. The middle shows the graphical representation of the assembly code for this loop. The right side shows the state

after the fifth machine instruction.

A simple way to compare the two languages is to have
students compare source code with equivalent assembly
code (for example, gcc can generate assembly from source).
The benefit of this is that it allows students to see what types
of instructions their code is mapped to as well as the order-
ing of instructions. This is a helpful process, however, we
felt that more could be done to improve this process. To im-
prove this process, we show the source to target language
mapping and improve upon this mapping in two ways. First,
we represent target code as a graph that shows execution
paths that may be taken at run-time. This helps students un-
derstand how different types of jumps work and the control
flow of the machine code is implemented. Second, we color
code this graph to relate how control structures represented
in the source language are mapped to the target language.
Most students are familiar with high level languages con-
structs. Thus, being able to quickly identify how language
constructs in familiar high-level languages map to assembly
code significantly eases this comparison process. The details
of these features and how they work are described in the rest
of this section.

4.2.1 Backend

Key to implementing this part of the tool is a binary anal-
ysis and instrumentation framework built for the Sapha
project [38, 39]. A diagram of this framework is shown
in Figure 4.

GraphViz | 'mage Web Source | Compiler
dot "1 Interface - (o++)
A gfortran
2 Binary Analysis Tool
w
o 0 [=
s ol 12 s | 2] 8] [a
3 O5| o == HIREIRE
25 [a] © a1l |2)
82| |e ol (g (2 Binary
e S|P led = 73 P
a2 2a*s 3 S2 <
gl g\ 2| (2] |5]]|2
Sel 25| (2]]e] |T
RN ERE GNU
N BinUtils

Figure 4. Low-Level Component Architecture

Currently, this part of the tool allows users to input their
own high-level language code in a variety of languages.

2011/5/9

This code is then translated by a compiler (e.g. gcc) to an
object file as shown in Figure 4. Thus we are not tied to
any language or compiler. Other high-level languages are
also immediately supported by simply installing a compiler
on the server. For example, FORTRAN support was added
by simply sending the users source code through a different
compiler.

Next, we make use of the GNU BinUtils [14] library to
help convert these object files back into assembly code. The
BinUltils library supports a variety of target architectures and
thus makes our tool very general in terms of target architec-
ture and high-level languages. For example, we designed the
system for the AT&T x86 syntax but have added support for
Intel x86 syntax by simply changing minor settings and have
added MIPS support by simply building a cross-compiler on
our server.

Our analysis tool then converts the assembly code into a
format more suitable for analysis (C++ objects). Since the
binary contains virtual addresses for calls and jump targets,
we convert these into labels which are easier to read. After
address translation, we can construct the control flow graph
(CFG) of the program.

The next step is done using our analysis and instrumenta-
tion framework which consists of a variety of static analysis
techniques. Through this process, the CFG is converted to a
graphical format where blocks of code are nodes in a graph.
These nodes are arranged in the same order as the assembly
code to demonstrate how instruction ordering of low-level
code works and how it differs from high level code. To fur-
ther illustrate this topic, graph nodes (blocks of instructions)
are colored to illustrate the purpose of the code (loop condi-
tion vs loop body, etc). This approach also handles nesting of
control structures. Additionally, edges are drawn to illustrate
potential program paths. These edges are drawn differently
to illustrate the type of path (conditional jump, unconditional
jump, or no jump / fall-through). The results of this step are
output as a “dot” file which is sent to the GraphViz dot [12]
program which generates the graphical representation for the
interface.

The source code of this framework is not yet publicly
available, but will be released as an open source project in
the future. Until then, the tool is made available as a web
service.

4.2.2 Graphical Representation and Interface

This component of the tool generates a simple graphical
representation of the target code corresponding to the source
code. For example, in Figure 3, this simple while loop is
shown graphically as four blocks of code. Furthermore,
the edges or paths between these blocks that can be taken
at run-time are shown. To generate the graphical program
representation, we make use of dot which is part of the
GraphViz [12] graph visualization software. We now de-
scribe the major components of the representation including

how blocks and edges are drawn as well as a brief discussion
about the interface.

4.2.3 Blocks

Basic blocks of instructions are generated. A basic block is
a sequence of instructions with a single entry point and sin-
gle exit point with no jumps between [3]. For simple con-
trol structures (non-nested structures) basic blocks capture
the main components of the structures. For example, in Fig-
ure 3, the sample while loop can be divided into two parts
which have a different purpose: the loop body, and the loop
condition. Therefore, the graphical version of the target code
illustrates these two components of the loop in two separate
blocks. Additionally, the blocks before and after the loop are
also shown separately.

A major difference between previous tools and our tool
is the way in which we lay out blocks. Similar tools [1,
42, 43] represent blocks as a flow chart. Since our major
goal was to help students understand code generation, we
make this graphical representation as close as possible to real
generated code. We do this by maintaining the instruction
ordering of the actual target code. This includes the ordering
of the blocks. To make this ordering clear, we represent
blocks in a linear fashion in the same way that programs are
represented in target code.

For example, in Figure 3, the layout of blocks is not done
in a way that is immediately obvious from the source code.
Consider the loop condition. In the source code, this is be-
fore the loop body whereas in the target code, it is after the
loop body. This is not immediately clear to introductory stu-
dents; however, for very good reasons this is how target code
is generated by the compiler. Thus, understanding this order-
ing is necessary for understanding code generation. There-
fore, our tool exposes students to such orderings. Given that
this ordering is confusing, we take steps to help clarify this
ordering.

4.2.4 Color Coding

Following that students are already familiar with a high-
level language, we aim to quickly and clearly illustrate how
control structures in a high-level language are represented in
the target language. We show this by coloring the graph to
highlight the different parts of the various control structures.
Our tool performs simple control flow analyses [23] on the
code to determine the different parts of the control structures.
Then, the tool colors blocks based on which part of the
control structure they make up (loop condition, loop body,
etc). For example, in Figure 3 a while loop is shown in both
forms. Both the loop condition and the loop body are colored
differently to make it easy to distinguish between the two.
As mentioned previously, the ordering of these two blocks
is confusing at first since it differs from the source code
ordering. This coloring, as delineated in the Legend, quickly
points out this ordering by showing that for this high-level

2011/5/9

language while loop, the loop condition goes after the loop
body.

For simple control structures, that is, non-nested control
structures, we shade the background of the blocks to cor-
responding colors for each part of control structures. This
includes structures such as loops (loop body and loop condi-
tion are colored differently), if/else blocks, etc. As discussed
previously, Figure 3 shows this for a simple while loop.

For nested control structures, the coloring must be done
differently. We start by shading the blocks in the innermost
structures as described previously. Then, all other structures
are surrounded with boxes. These boxes are then shaded to
show what kind of structure the member blocks are a part.
Furthermore, this helps to show how the different structures
interact. For example, consider the nested loop in Figure 5.
The inner loop is composed of two blocks, the loop condi-
tion and the loop body. These two blocks are shaded in the
figure. We can see that both of these blocks (the entire in-
ner loop) are contained within another structure since they
are contained in a larger shaded box. This structure is the
loop body of the outer loop which is shown clearly by the
shading.

Code: main
int main(){ lea Ox4(%esp),%ecx
int x,y; and $OxFfffff0,%esp
while(x < 10){ pushl -0x4 (% ecx)
i < push %ebp
Whllel(y 10){ mov %esp,%ebp
Yt push %ecx
} sub $0x10,%esp
} jmp newLabel3
y--; T
} 1|
1
Language: C ' Y —
I
File: Browse... i newLabel4: addl $0x1,-0x8(%ebp)
Reset Send :
1
Legend ' newLabel5: cmpl $0x9,-0x8(%ebp)
Block Types \ jle newLabeld
Loop Body - et ~
Loop Condition newLabel3: cmpl $0x9,-0xc(%ebp)
Self Loop(do-while) jle newLabel5
If Body
If Condition S
subl $0x1,-0x8(%ebp)
Else _BOdy add $0x10,%esp
Edge Types pop %ecx
—’Con(litional Jump pop %ebp
- --DUnconditl‘onal Jump E\‘: -0x4 (%oecx), %esp
~——>No Jump

Figure 5. A simple nested while loop

This drawing of blocks shows how target code is laid out.
Then the coloring helps to quickly show how components in
familiar high-level code are represented in the target code.
Furthermore, by breaking this representation down, we can
focus on a smaller subset of the code. Next, we describe how
edges are illustrated.

4.2.5 Paths

The edges between blocks represent the paths that can be
taken at run-time. A jump in the target code can have up to

two possible next instructions. The paths show these possible
next instructions. For example, in Figure 3, we see that the
loop condition (shown in green) has two outgoing paths:
one edge leading to the loop body (if the condition is true
— conditional jump) and one edge leading to the next block
after the loop which exits the loop (if the condition is false —
no jump / fall-through).

In combination with blocks, edges help the user see how
different structures are represented. For example, consider
the first block in Figure 3. This figure illustrates how, in the
target code, you first jump past the loop body to the loop
condition (using and unconditional jump) for this type of
loop. This illustrate a key difference between while and
do-while loops since do-while loops are not organized
this way.

As mentioned previously, the instruction (and block) or-
dering in the target code can be confusing to students be-
cause it is frequently different than the source code ordering.
Our graphical representation of blocks helps by highlighting
the components of the different control structures. Illustrat-
ing the ordering of control structures is helpful, however, we
still need to show execution flows between these structures.
Figure 5 shows an example of a nested loop where paths help
to illustrate the initially confusing code layout. In this figure,
we see that the edge corresponding to entering the inner loop
actually goes to the second block in the inner loop. This is
slightly confusing at first since the path does not go to the
beginning of the inner loop code. This example shows that
it is important to understand how execution enters and ex-
its loops. Furthermore, understanding how execution flows
through others structures such as if /else blocks is also
important. Thus, we take steps to help contrast the differ-
ences between edges.

4.2.6 Edge Types

There are multiple types of edges. We illustrate the different
types by using different styles of lines and arrowheads for
drawing the edges. For example, in Figure 3, we see all three
different types of edges. We now give a brief description of
each edge type.

e First, we have “unconditional jumps”. In the figure, this
jump is illustrated with a dashed line and an empty trian-
gular arrowhead. In Figure 3, the first block ends with the
instruction jmp newLabel3. With this type of jump,
the path is taken whenever the instruction is executed.

e Next, we have “no jump" (or “fall through” | “branch
not taken”) edges. This edge type is illustrated with a
thin edge and a “wedge shaped” arrowhead. This edge
type goes to the next sequential instruction when either
the current instruction is not a jump or a condition is
false. For example, the edge going from the loop body
to the loop condition in the figure. In this case, since the
block does not end with a jump, the next instruction is
just the next sequential block. Another example of this

2011/5/9

type of edge is the edge from the loop condition to the last
block in Figure 3. This edge is taken when the condition
on the jump, in this case $0x9 >= -0x8 (%ebp), is
false. This may seem trivial since the “no jump” edge is
always the edge to the next sequential block, however, for
students, this concept may not be immediately obvious.

Finally, we have “conditional jump” (or “branch taken”)
edges. These edges are drawn with a thick solid line and a
solid triangular arrowhead. These edges are those which
are taken when a jump condition is true. For example, in
Figure 3, we have an edge from the loop condition block
to the loop body block. This edge is taken whenever the
loop condition on the loop is true. Another example is
shown in Figure 6. In this example we can see a branch
taken edge from the if condition block to the else body
block. This edge is taken whenever the condition is true,
however, in the source version, we have that this edge is
taken whenever the if condition is false. This is another
interesting difference between source and target code
which is nicely illustrated by this part of the tool.

Code: int main(){ main
int x = 5;
if(x < 10){
X++;
}
else{
X--;
}
}

Language: C

File: Browse...
=l e addl $0x1,-0xB(%ebp) |
jmp newLabeld
Legend
Block Types /
Loop Body \ newLabel3: subl $0x1,-0x8(%ebp) |
Loop Condition . -
Self Loop(do-while) TTemommTTTo RN
If Body)
If Condition
Else Body newLabeld: add $0x10,%esp
pop %ecx
Edge Types pop %ebp
—’Conditional Jump lea -0x4(%ecx),%esp
- —-DUnconditional Jump ret
——>No Jump

Figure 6. if-else block

This edge drawing helps illustrate the finer details of the
target code. This includes how individual instructions such
as jumps are created and how complex control structure
components such as nested loops, interact . Together with
our block drawing and coloring, this component of the tool
generates informative and easy to understand figures which
illustrate how code generation is performed.

Summary of Representation The block layout and col-
oring in combination with the edge drawing greatly helps to
teach the instruction layout of low-level language code. Fur-
thermore, when viewed alongside familiar source code, this
representation makes the process of understanding translat-
ing between the two languages significantly easier. With its
simple and easy to use interface, Frances is easy to use in

a course, will help students understand these difficult con-
cepts, and save valuable course time for other topics.

4.3 Graphical layout of machine state

We now discuss in detail each aspect of the graphical repre-
sentation of the machine state.

4.3.1 Previous / next instruction

The first part of the interface consists of the blocks marked
“Last Instruction” and “Next Instruction”. As the labels sug-
gest, these denote the previously executed instruction that
gave the current state and the next instruction to be executed.
For example, in Figure 7, a mov instruction was just exe-
cuted and push %ecx is next.

Last Instmction Next Instmuction
[orconsion] | L]
Registers
eax ebx ecx edx
Oxb fffe7f4 0x596ff4 0xbfffe770 0x1
esi edi eflags
Ox43ecal 0x0 0x286 (PF SFIF)
esp ebp eip
i

syz(
2dd egé

Oxbfffe758 || 0xbfffeTcB

Contents

Oxbfffe75c||0x00458390

Oxbfffe760(|0x0043ecal

Figure 7. Architecture state portion from Figure 2.

This allows the user to find the current location in pro-
gram execution. Then, they can consider the changes caused
by the last instruction. For example, in Figure 7 the user can
see that in the last instruction the value in $esp should have
been placed into $ebp. By inspecting the current state, the
user can see that these two registers currently contain the
same value. Next, they can try to determine the effects of
the next instruction before it executes. For example, the user
could predict that the stack will grow by a location which
will contain the value in $ecx.

It is interesting to note that the “Next Instruction” box
contains the actual next instruction, not just the next sequen-
tial instruction. That is, if the “Last Instruction” was a con-

2011/5/9

ditional jump and the branch is set to be taken, the “Next
Instruction” is the target of the branch not the fall-through
case.

Last Instmiction Next Instruction
Registers
eax ebx ecx edx
Oxbfffe7f4 0x596ff4 0xbfffe770 0x1
esi edi eflags
Ox43ecal 0x0 0x2806 (PF SFIF)
esp ebp eip
Oxbfffe744 Oxbfffe758 -
7
i
7
Stack/
Aaddgess ﬁ,ontents
OxbfffeT44 bxbfffe?fc
ODxbfffeTag0xbfffeT68
OxbfffeTdc
Oxbfffef/50|0x00431940
Oxbffﬁé?Sé Oxbfffe770
Oxbfffe7b8||0xbfffeTcB
Oxbfffe75c||0x004583590
Oxbfffe7760||0x0043ecal

Figure 8. Frances state running the same code example as
Figure 2 after the seventh instruction (int x = 0;).

4.3.2 Registers

Next, the system’s registers are separated from the rest of
the state. Within this group of registers there are logical sep-
arations. In Figure 8, notice that the first row of registers
are the general purpose registers $eax, $ebx, $ecx, and
%$edx (even though all of the registers are general purpose,
many are typically used for specific purposes). In the next
row, the two registers $esi and $edi are placed together
since these are typically used for storing addresses for mem-
ory reads and writes (again, the programmer need not follow
this). Also in this row is the eflags register which con-
tains the results of compare instructions as well as other sec-
ondary results of operations. In this figure, we can see that
the PF, SF, and IF flags are set (all others are unset). The
interested user is presented the actual hex value of this regis-
ter. In the final row, there are three pointer registers. The first
two are stack pointers, $esp and $ebp. By looking at the

values contained in the figure, one can determine that these
addresses are located on the stack. The final register in this
row is $e1ip, the instruction pointer.

4.3.3 Stack

Next, consider the representation of the stack. Figure 8§,
shows a stack containing 8 elements. Each element has its
own row with columns specifying the address of the stack
location and the contents at that location. The stack locations
are important since they contain most local variables (some
never leave the registers) as well as other temporary values.
For example, in Figure 8, the last instruction moved the
value 0 to the third stack location. This corresponds to the
assignmentof int x = 0; from the code in Figure 2. The
addresses are included in the representation so that users can
see how contents of registers correspond to locations on the
stack (e.g. stack pointers $esp and $ebp). In the figures, it
is easy to inspect the contents of these stack pointer registers
and find the corresponding locations on the stack.

Next Instruction

Last Instmiction

Registers
eax ebx ecx edx
Oxbfffe70c Ox596ff4 Oxbfffe730 0x1

esi edi eflags

Ox43ecal 0x0 0x200282 (SFIFID)
esp ebp eip
Oxbfffe704 Oxbfffe718 -
7
i
7
Stacy

ad ss féonten ts
Oxbfffe704 bxbfffe?bc
Oxbfffe Oxbfffe728
OxbfffeT@c||0x00000000
Oxbfffef 10

Oxbfffe 0

0xbfffeT718|0xbfffe788
OxbfffeTlc||0x00458390
Oxbfffe720||0x0043ecal

Figure 9. Frances state running the same code example as
Figure 2 after the tenth instruction (int *y = &x;).

2011/5/9

4.3.4 Edges

Now, let us consider the edges in the figures. First, in Fig-
ure 8 notice that there are two edges, one for both of the
pointers into the stack. It is easy to see where these two reg-
isters point to on the stack. If the user is stepping through the
simulation step by step, it is easy to see that the $ebp regis-
ter points to the location on the stack before the 4 locations
are added by the sub $0x10, $esp instruction. From the
figure it is clear that the $esp register points to the top of
the stack. This helps illustrate the purposes of the $esp and
$ebp registers.

Also interesting to note are the edges in Figure 9. In
this figure, the last instruction executed moved the value in
%eax (address of x, &x) to the fourth location on the stack.
As a result, there is now an edge from the stack location
containing this value to the stack location corresponding to
variable x (third location on the stack). This illustrates the
behavior of pointers in the machine. This is an important yet
difficult concept for introductory students.

4.3.5 Color coding

Until this point, we have ignored the color coding of the ma-
chine state representation in these figures. We now describe
this aspect of Frances which helps illustrate the purposes of
the instructions and their impact on the machine state.

First, the green boxes are used to denote portions of the
state that always change and are not referenced directly (pre-
vious and next instructions as well as instruction pointers).
The purpose of separating out these components is to make
it clear for users not to spend too much time trying to under-
stand how these components are directly impacted by the in-
structions since they are only implicitly impacted. Note that
the flags are not included in this scheme since they are not
updated at each step.

Next, consider the color coding of the boxes for registers.
Yellow boxes around the register contents signify that the
last instruction accessed these registers (either read or write).
For example, in Figure 9, we can see that the $eax register
has been read (also note that it was the first operand in the
last instruction). Additionally, the $ebp register has been
accessed when calculating the stack location for the target
of the operation.

Red highlighting of the register contents means that the
contents was changed by the last instruction. Consider Fig-
ure 2 where the $ebp register has been modified to contain
the value from %esp.

Similarly, we use red highlighting to show which stack
contents have been modified. For example, in Figure 8, the
value of 0 was assigned to the stack location corresponding
to variable x. Thus, the corresponding stack location is red.
This avoids the need for the user to try to determine the offset
of the stack location manually.

Finally, consider the edge color coding. In Figure 9, no-
tice that the two stack pointers are drawn in black whereas

the pointer in the stack corresponding to variable y is drawn
in red. Like the register and stack coloring, edges in red have
been recently changed. In this example, since the pointer was
modified the edge is red.

4.4 Reverse stepping

Another important feature of Frances which is rare among
similar tools is the ability to step backwards through execu-
tion. We consider this a necessary feature that allows stu-
dents to revisit complicated steps and groups of steps in
the simulation. Note that reversing can also be simulated in
a tool by rerunning the simulation, however, students may
loose the context of simulation if too many steps are required
for revisiting the previous instruction. With Frances a stu-
dent can step back and forth to ascertain every detail of an
instruction’s impact on the machine state.

We color code changes to the state in red, however, this
may not be enough. Thus, we allow students to go back so
that they can revisit the state before it was modified. For
example, when moving stack pointers, in order to understand
behavior and purpose of the different pointers, it may be
important to go back to see the previous target of the pointer
register. Need for such a feature may be seen from Figure 2.
We can see that the $ebp register has been changed to point
to the top of the stack. However, we know nothing about
where it pointed to previously. By simply clicking the “Last
Instruction” button, we can clearly see the previous target of
the register.

4.5 Backend

On the backend, we make use of the GDB debugger [15].
Aside from this, we use several scripts and programs to
visually present the state as well as determine changes. After
this, we use the GraphViz DOT program [12] to draw the
visualization of the machine code and machine state.

5. Evaluation

To evaluate the Frances tool we consider multiple ap-
proaches. First, Frances is compared with other similar tools.
Second, we provide a discussion of classroom experiences.
Third we provide results from a small experimental study
introducing Frances to groups of randomly selected students
with various levels of computer architecture experience.

5.1 Tool Comparison

First, we compare the retrieval and setup of various systems
in Table 1. This includes both systems that help with under-
standing program control flow, code generation, and assem-
bly language as well as those that help illustrate architectural
details.

This table shows that while many of the tools work on a
variety of systems, there are minor limitations to where they
can be used. Our tool may be used on any system that has a
web browser (even new devices like cell phones and tablets).

2011/5/9

Tool OS Platform Req. Install Free
Frances Any No Yes
MarieSIM Linux,Mac(10.3+),Windows | Download Jar Yes
Mieru Compiler Unix variants, Windows Build Yes
GSPIM Unknown Unknown Unknown
SimpleScalar (ss-vis) Unix variants Yes Academic
Simple Computer Source Build Yes
GDB Unix variants, Windows Yes Yes
KDBG Linux Yes Yes
ICD-C Linux,Solaris, Windows Yes No
Avora JVM Download Jar Yes
aiCall Linux,Mac,Windows Yes Academic?

Table 1. Comparison of Tool Setup

Further, while there are a couple systems that only require
downloading a java jar file to run (a JVM must be installed),
ours is the only that requires no downloading or installation
whatsoever. Finally, most of the tools we compare against
are also free.

Next, in Table 2, we compare how various tools repre-
sent and interact with the user with respect to the low-level
language.

This table shows that many of the related tools also use a
real assembly language. However, unlike ours, most use only
RISC languages and do not have the flexibility to change as-
sembly languages. For comparing high-level and low-level
languages we currently support Intel and AT&T x86 syntax
and MIPS. Adding additional languages simply involves in-
stalling a cross compiler. Next, nearly all the tools did not
show how user entered high-level code corresponds to low-
level code. Debuggers and debugger front-ends frequently
show the version of the program side-by-side (users may also
do this manually), but this is no more than a simple text com-
parison. Ours is the only tool we know of that automatically
shows how the two versions compare and breaks the com-
plex assembly code into its control structures graphically.
Similar to text-based representations (which are difficult to
understand for beginners), our tool maintains actual instruc-
tion ordering in our graphical representation of the machine
code. While nearly all the tools in the table display a con-
trol flow graph, none of these graph based tools maintain
actual instruction order. Next, most of the tools also distin-
guish between path types, however, most only distinguish
between inter- vs intra-procedural edges (sometimes as sep-
arate graphs). Finally, most of the tools also use some sort
of coloring to make reading the control flow graphs easier.
However, most are quite limited in what they differentiate
between. For tools that illustrate execution, they often just
highlight the current node. Others often just show procedure
entry points or decision nodes.

Now, in Table 3, we compare how various tools represent
and interact with the user with respect to simulation and il-
lustrating execution at the architecture level. Note that this

is just a small subset of the tools that are more suitable in
undergraduate level education. We leave out many research
and advanced tools from this table (most of these are text/-
command line based).

First, among the tools, there is quite a mix of assembly
languages including real languages (both RISC and CISC)
and custom languages. However, aside from the debuggers,
ours is the only tool which also shows a high-level language
version of the program being run and allows users to enter
simulation code in a high-level language. Additionally, our
tool is the only tool we found that allows users to step back-
wards through execution. We believe this to be an important
feature for revisiting complicated steps or sets of steps. Fi-
nally, several of the tools creat graphical version of the ma-
chine state like our tool. Some also even color code parts of
the machine state (e.g. recently read or written values). How-
ever, ours is the only tool we found which illustrates pointers
in the machine state and colors the edges of these pointers to
show which have been changed recently.

Summary In summary, this comparison illustrates the
key feature differences between Frances and related tools.
We have shown that Frances is easier to start using than
related tools (platform independent, doesn’t require install,
and is free). Further, among related tools, Frances is the
only tool that graphically shows relationships between high-
level and low-level languages while maintaining instruction
order. Finally, Frances is the only tool which allows students
to step backwards to revisit complex steps/procedures and
illustrates edges (pointers) in the machine state.

5.2 Classroom Experiences

Educational materials have been developed for use in several
courses. The materials associated with the Frances tool have
been successfully used in multiple sections of an upper level
compiler construction course. The students had no previous
experience with assembly language programming. Students
at this level benefited from the easy to understand and easy
to use introduction to assembly language. They used the tool
to help in the development of a compiler created as part of

2011/5/9

Tool Asm. Lang | HLL < | Instruction | CF Path Types Coloring
ASM Ordering Graph

Frances

Mieru Compiler Text Actual (text) | No N/A Current code

GSPIM No Not-actual Calls vs. Jumps Current node

ICD-C N/A N/A Not-actual Unknown

Avora N/A Not-actual Calls vs. Jumps Entry points

aiCall N/A N/A Not-actual Decision nodes,
Entry points,
Edge types

Table 2. Comparison of Tool Assembly Representation. Irrelevant tools from Table 1 removed.

Tool Simulation Step Graphical | Color Edges Edges
Language Back Machine | Machine | Machine | Color
Frances
MarieSIM ASM (Custom) | No No No No
GSPIM ASM (MIPS) No No N/A N/A N/A
SimpleScalar (ss-vis) | Pisa Binary No No N/A
Simple Computer ASM (Custom) | No No N/A N/A N/A
GDB \ No No N/A N/A N/A
KDBG \ | No N/A

Table 3. Comparison of Tool Machine Visualization. Irrelevant tools from Table 1 removed.

the course. Students reported that they found the tool easy
to use and scored an average of 93.8% on the seven lab as-
signments using Frances to understand AT&T x86 assembly
language. Furthermore, as indicated by responses to exam
questions in which students scored on average 97% students
retained knowledge of the material learned from the Frances
system. Additionally, students reported using the tool in an
exploratory manner to gain insight into generating assembly
code for the compiler constructed as a course project. Sub-
sequently the Frances tool and course materials have been
integrated into the course curriculum at McKendree Univer-
sity.

Additionally, Frances and associated course materials
have been introduced into a computer architecture course.
The course materials, developed for integration into the
course, allow the instructor to continue using a standard
textbook in the subject and interject the Frances materials
for many of the topics. The Frances tool has also been intro-
duced as an explanatory tool, in CS1 courses with promising
results. Students were able to get a sense of the translation
process from high-level to low-level language. Students gave
positive comments in regards to understanding how instruc-
tions are processed in the computer. As part of our future
work we plan to incorporate high-level language aspects
into the Frances system in an effort to help facilitate further
integration into CS1/CS2.

15

5.3 Empirical Evaluation

Our classroom experiences with Frances indicated that the
tool is useful for its intended purpose. In an effort to collect
data for the ease of use and effectiveness of the Frances tool
an experimental design was developed. The experiment was
intended to collect data in several categories including, ease
of use; effectiveness in regards to making a connection be-
tween High-Level languages and Low-Level languages; ef-
fectiveness in understanding machine states; and effective-
ness in introducing assembly language. Students were ran-
domly selected from undergraduates majoring in computer
science, computational science, and information systems.
The students had various experiences with computer archi-
tecture. Some students had completed a course in computer
architecture (DONE), some were currently enrolled (IP) and
some had no experience with the subject (NONE).

5.3.1 Experimental Setup

The students were gathered in a computer lab and given Les-
son 1 (available at http://frances.cs.iastate.edu).
Three minutes of instruction on what tasks to complete fol-
lowed. No instruction or background was given about the
Frances system itself or the topics involved. Students were
required to complete the Lesson 1 worksheet while an in-
structor was available to answer any questions, and complete
the Lesson 2 worksheet, found on the Frances website, on
their own. Students had no prior knowledge of the system,
its purpose, or the material covered in the system. The rea-
son for taking this approach is that Frances is intended as an

2011/5/9

educational tool that supplements the standard curriculum.
Students using the system without the context of a course
or instructor help provide a stronger indication of the tool’s
effectiveness and ease of use without external help. As in-
dicated from the classroom experience section of this paper,
in the context of a course, students easily understood how to
use the system and found it to be very effective component
of the learning experience.

5.3.2 Ease of Use

Students completed Lesson 1 in 45 to 53 minutes. The in-
structor only answered four student questions. One student
did not understand to step through the instructions to see
changes in the machine state. Two students did not under-
stand which program was the default program. These stu-
dents had no experience with computer architecture and re-
quired a brief explanation that it was assembly language and
registers being displayed. One student wanted to know what
each assembly instruction did and was instructed to try to
figure it out from context and stepping forward and back-
ward.

Students were able to read through Lesson 1, which pro-
vides a one page explanation of the Frances tool, includ-
ing the connection between the source code and assembly
code; the connection between assembly code and machine
states; the color coding of assembly instructions; and the
color scheme of the machine states. Additionally this page
describes how to enter, compile and step through programs;
a description of the assembly language format; and a de-
scription of registers, addresses, and value prefixes in the
assembly instructions. These explanations are very brief, fit-
ting on a single page.

Students then went on to use the Frances system com-
pleting the lessons and answering 24 questions pertaining
to assembly language, computer architecture concepts, and
machine states with an overall average score of 86.5 out of
120. This equates to 72.11%. Thus in general students were
easily able to use the system with little instruction or con-
text and successfully demonstrate an understanding of the
material. Stratifying these results across prior experience re-
veals more information. Students with no architecture course
(NONE) averaged a score 60.17%, IP students averaged a
score of 76.88%, and DONE students averaged a score of
82.29%. Boxplots of this data are shown in Figure 10.

When surveyed on a scale of 1-5 (1 being very difficult,
3 neutral and 5 very easy) students rated ease of use at 3.14
overall. Again, stratifying on computer architecture experi-
ence NONE rated ease of use at 2.8, IP at 3.25 and DONE
at 3.5. Box plots of this data are presented in Figure 11. This
indicates that the opinion of the ease of use is tied to an un-
derstanding of the material covered. Students with less con-
text of the experience felt that the system was not as easy to
use as those that had a background in the topics.

Ease of Use
100
904
804
o
3 70+ T
@
604
504
404 T
T T T
DONE P NONE
Comp. Arch. Experience

Figure 10. Scores regarding ease of use. DONE: Completed
computer architecture course. IP: Currently enrolled in com-
puter architecture course. NONE: Not completed or enrolled
in computer architecture course.

Ease of Use

5 4
o
£
]
e 4
©
S
7]
o
S
& 3
¢
>
®
o 2
3
2

14

T T T
DONE P NONE
Comp. Arch. Experience

Figure 11. Rating for ease of use

5.3.3 Effectiveness

In this subsection, we consider the effectiveness of the tool.
Table 4 provides the mean and standard deviation of the
student responses to the lesson questions. The first three
columns show the results for the respective computer archi-
tecture experience and the last column provides the aggre-
gate results for all students. The first row gives the results
for all questions and the last three rows give the results for
high level/low-level, machine state, and assembly language
concepts, respectively. Overall students were very success-
ful with the system. As shown in the first row of Table 4, the
average score is 72.12%. Separating students by experience
reveals more. Students with no background in computer ar-
chitecture scored, on average, 60.17%. This indicates that in
less than two hours, students without experience in the sub-
ject or proper context of the system were able to learn the
system, use it to gain knowledge and answer the questions
with a 60.16% score. Students with experience in computer

2011/5/9

NONE 1P DONE ALL
Mean | St.Dev. || Mean | St.Dev. || Mean | St.Dev. || Mean | St.Dev.
Overall 60.17 | 19.06 76.88 9.66 82.29 | 16.60 72.12 | 17.75
HL/LL 50.0 35.7 70.0 334 86.67 | 13.05 67.44 | 31.60
Machine St. 58.0 31.9 79.0 9.02 83.5 23.9 72.31 | 25.38
Assembly 80.0 30.8 717.5 22.2 82.5 35.0 80.0 27.39

Table 4. Scores for lessons 1 and 2 (%)

architecture scored 76.88% and 82.29% for IP and DONE,
respectively. These students have experience with a tradi-
tional course in computer architecture, but no exposure to
a real assembly language or architecture. Again they were
able to successfully understand the system and material out-
side the context of a course, in less than two hours.

Next we break the data down into components to in-
vestigate the effectiveness of the system for aiding in the
understanding of the connection between High-level and
Low-level Language, machine state constructs, and Assem-
bly Language.

High-level and Low-level Language Relationships
Students scored an average of 67% (NONE 50%, IP70%,
DONE 87%) with questions regarding the connection be-
tween high-level and low-level languages. None of the stu-
dents had previous experience with a real assembly lan-
guage. The questions asked students to write a high-level
language program, step through the resulting assembly lan-
guage program segment and describe the result of each as-
sembly instruction, relating it to the high-level code; identify
the storage location of a variable by relating the high-level
instructions to the assembly instructions; and determine the
function of other low-level instructions. All were short an-
swer questions that required students to use only the system
in determining the answers with no other hints. The 50%
score by students with no previous experience indicates that
Frances has helped the students understand the material to
some degree without any other resources. As reflected by
the results, students with more experience in the subject had
a better context from which to answer the questions.

Machine State Students scored an average of 72.4%
(NONE 58%, 1IP79%, DONE 83.5%) with questions about
the machine state. Students were asked to step through
program segments, indicate how register and stack values
change; how and where various variable types are stored;
and the process of storing values. Again, all questions re-
quired the students to provide short answers without any
outside resources.

Assembly Language Students scored an average of 80%
(NONE 80%, IP 77.5%, DONE 82.5%) with questions di-
rectly addressing assembly language. These are questions
regarding the format and function of several assembly in-
structions given in the assignment. The first page of the Les-
son 1 provided a short description of x86 AT&T assembly
language format. The results here were much higher than

the other two concepts. The questions regarding assembly
language were near the end of the Lesson 2 worksheet. For
students to get to the end of this worksheet they had spent
about one and half hours working with the system. Also,
the questions associated with high-level/low-level constructs
and machine state involved some knowledge of assembly
language. So that when these final questions were encoun-
tered the students had enough understanding of the subject
to correctly answer questions.

6. Conclusion and Future Work

Low-level details of computing are an important part of com-
puter science curricula impacting core courses such as com-
puter organization, compiler design, and programming lan-
guages. Unfortunately, learning these topics is difficult since
they are very different from the introductory high-level lan-
guage programming courses that most students begin with.
To ease the process of learning these low-level details, and
help bridge the gap from the familiar high-level language
concepts, we present Frances. A key benefit of Frances is
its usability in that it is easy to learn, easy to use, and re-
quires no setup. Further, we take several steps to enhance its
effectiveness. This includes illustrating key differences be-
tween high-level and low-level languages, logical separation
of components in machine states (including different regis-
ter types), edge drawing to show control flow paths, pointer
targets, and stack behavior, color coding to show the purpose
of code as well as accesses and writes of components in the
system to show behavior of each instruction, and finally the
ability to step both backwards and forwards though execu-
tion.

We have presented experimentation and course use ex-
periences that demonstrate both the ease of use and effec-
tiveness of these tools. Most importantly, students with no
experience of computer architectures or low-level languages
were able to complete assignments without any help.

Future extensions to the tool involve the following. First,
we may include more portions of the machine state (e.g.
heap, floating point registers) to illustrate concepts such as
dynamic allocation and data structures. For now, we focus
less on data structures and more on visualizing simple pro-
grams. Second, we would like to add support for additional
high-level and low-level languages. Frances is designed to be
easy to swap in different architectures, it simply requires in-
stalling additional software on the server and minor changes

2011/5/9

to the presentation. Third, we plan to extend the tool to han-
dle tracking values of high-level variables. Finally, we plan
to continue evaluating and improving the tool based on both
student and expert evaluations.

The authors would like to thank the students who tested
the tool as well as the anonymous reviewers for their com-
ments and suggestions. Sondag and Rajan were supported
in part by US NSF under grants 06-27354, 07-09217, and
08-46059.

References

[1] Abslnt. aiSee - Graph Visualization. http://www.absint.com/aisee/.

[2] Alexander Aiken. Cool: a portable project for teaching
compiler construction. SIGPLAN Not., 31(7):19-24, 1996.

[3] Frances E. Allen. Control flow analysis. In Symposium on
Compiler optimization, pages 1-19, 1970.

[4] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-
oriented full-system simulation using M5. In Workshop
on Computer Architecture Evaluation using Commercial

Workloads, 2003.

[5] Patrick Borunda, Chris Brewer, and Cesim Erten. GSPIM:
graphical visualization tool for MIPS assembly programming
and simulation. SIGCSE Bull., 38(1):244-248, 2006.

[6] Grant Braught and David Reed. The knob & switch computer:
A computer architecture simulator for introductory computer
science. J. Educ. Resour. Comput., 1(4):31-45, 2001.

[7] Carl Bredlau and Dorothy Deremer. Assembly language
through the Java virtual machine. In SIGCSE "01: Proceed-
ings of the 32nd ACM technical symposium on Computer
science education, 2001.

[8] CC’08. Computing curricula 2008: An interim revision of cs
2001. CC’08, 2008. http://www.acm.org/education/curricula/
ComputerScience2008.pdf.

[9] P. S. Coe, F. W. Howell, R. N. Ibbett, R. McNab, and L. M.
Williams. An integrated learning support environment for
computer architecture. In WCAE-3 ’97: Proceedings of the
1997 workshop on Computer architecture education, page 8,
New York, NY, USA, 1995. ACM.

[10] Matthew J. Conway and Randy Pausch. Alice: easy to
learn interactive 3d graphics. SIGGRAPH Comput. Graph.,
31(3):58-59, 1997.

[11] Marc L. Corliss and E. Christopher Lewis. Bantam: a
customizable, Java-based, classroom compiler. In SIGCSE
"08: Proceedings of the 39th ACM technical symposium on
Computer science education, 2008.

[12] John Ellson, Emden R. Gansner, Eleftherios Koutsofios,
Stephen C. North, and Gordon Woodhull. Graphviz - open
source graph drawing tools. Graph Drawing, pages 483-484,
2001.

[13] Margarita Esponda-Arguero. Algorithmic animation in
education—review of academic experience. Journal of
Educational Computing Research, 39:1-15, 2008.

[14] Free Software Foundation. GNU BinUltils: a collection of bi-
nary tools, May 2009. http://www.gnu.org/software/binutils/.

[15] Free Software Foundation. GDB: The GNU Project
Debugger, May 2010. http://www.gnu.org/software/gdb/.

[16] Katsuhiko Gondow, Naoki Fukuyasu, and Yoshitaka Arahori.
Mierucompiler: integrated visualization tool with "horizontal
slicing" for educational compilers. In SIGCSE ’10: Pro-
ceedings of the 41st ACM technical symposium on Computer
science education, pages 7-11, New York, NY, USA, 2010.
ACM.

[17] Neill Graham. Introduction to computer science (3rd ed.).
West Publishing Co., St. Paul, MN, USA, 1985.

[18] Christopher D. Hundhausen. Integrating algorithm visualiza-
tion technology into an undergraduate algorithms course:
ethnographic studies of a social constructivist approach.
Comput. Educ., 39(3):237-260, 2002.

[19] Kenji Kise, Takahiro Katagiri, Hiroki Honda, and Toshitsugu
Yuba. The simcore/alpha functional simulator. In WCAE *04:
Proceedings of the 2004 workshop on Computer architecture
education, page 24, New York, NY, USA, 2004. ACM.

[20] M. C. Loui. The case for assembly language programming.
IEEE Transactions on Education, E-31(3):160-164, 1988.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In
PLDI 05: Proceedings of the conference on Programming
language design and implementation, pages 190-200, 2005.

[22] Myles McNally, Thomas L. Naps, David Furcy, Scott Gris-
som, and Christian Trefftz. Supporting the rapid development
of pedagogically effective algorithm visualizations. Journal
of Computing Sciences in Colleges, 23(1):80-90, 10/2007
2007.

[23] Steven S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[24] Thomas L. Naps, Guido Rossling, Vicki Almstrum, Wanda
Dann, Rudolf Fleischer, Chris Hundhausen, Ari Korhonen,
Lauri Malmi, Myles McNally, Susan Rodger, and J. Angel
Velazquez-Iturbide. Exploring the role of visualization and
engagement in computer science education. In I7iCSE-WGR
’02: Working group reports from ITiCSE on Innovation and
technology in computer science education, pages 131-152,
New York, NY, USA, 2002. ACM.

[25] Bosko Nikolic, Zaharije Radivojevic, Jovan Djordjevic, and
Veljko Milutinovic. A survey and evaluation of simulators
suitable for teaching courses in computer architecture and
organization. IEEE Transactions on Education, 52:449 —
458, 11/2009 2009.

[26] Linda Null and Julia Lobur. MarieSim: The MARIE
computer simulator. J. Educ. Resour. Comput., 3(2):1, 2003.

[27] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve.
RSIM: Rice simulator for ILP multiprocessors. SIGARCH
Comput. Archit. News, 25(5):1, 1997.

[28] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary Sevitsky,
John M. Vlissides, and Jeaha Yang. Visualizing the
execution of Java programs. In Revised Lectures on
Software Visualization, International Seminar, pages 151—
162, London, UK, 2002. Springer-Verlag.

[29] Kris Powers, Paul Gross, Steve Cooper, Myles McNally,
Kenneth J. Goldman, Viera Proulx, and Martin Carlisle.

2011/5/9

Tools for teaching introductory programming: what works?
SIGCSE Bull., 38(1):560-561, 2006.

[30] Blaine A. Price, Ian S. Small, and Ronald M. Baecker.

A taxonomy of software visualization. Journal of Visual
Languages and Computing, 4:211-266, 1992.

[31] Steven P. Reiss. Visualizing Java in action. In SoftVis
'03: Proceedings of the 2003 ACM symposium on Software
visualization, pages 57—{f, New York, NY, USA, 2003. ACM.

[32] R. Daniel Resler and Dean M. Deaver. Vcoco: a visualisation
tool for teaching compilers. SIGCSE Bull., 30(3):199-202,
1998.

[33] Guido Rossling and J. Angel Veldzquez-Iturbide. Editorial:
Program and algorithm visualization in education. Trans.
Comput. Educ., 9(2):1-6, 2009.

[34] Dean Sanders and Brian Dorn. Jeroo: a tool for introducing
object-oriented programming. In SIGCSE '03: Proceedings
of the 34th SIGCSE technical symposium on Computer
science education, pages 201-204, New York, NY, USA,
2003. ACM.

[35] Herb Schwetman. Csim: a c-based process-oriented simu-
lation language. In Conference on Winter simulation, pages
387-396, New York, NY, USA, 1986. ACM.

[36] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. In ASPLOS-X: Proceedings of the
10th international conference on Architectural support for
programming languages and operating systems, pages 45—
57, New York, NY, USA, 2002. ACM.

[37] Johannes Sixt. A graphical debugger interface, May 2010.
http://www.kdbg.org/.

[38] Tyler Sondag and Hridesh Rajan. A more precise abstract
domain for multi-level caches for tighter wcet analysis.
In Proceedings of the 2010 31st IEEE Real-Time Systems
Symposium, 2010.

[39] Tyler Sondag and Hridesh Rajan. Phase-based tuning
for better utilization of performance-asymmetric multicore
processors. In CGO: Proceedings of the 9th annual
IEEE/ACM International Symposium on Code Generation
and Optimization, 2011.

[40] Jeffrey A. Stone. Using a machine language simulator to
teach CS1 concepts. SIGCSE Bull., 38(4):43-45, 2006.

[41] Jaishankar Sundararaman and Godmar Back. HDPV:
interactive, faithful, in-vivo runtime state visualization for
C/C++ and Java. In SoftVis "08: Proceedings of the 4th ACM
symposium on Software visualization, pages 47-56, New
York, NY, USA, 2008. ACM.

[42] The Informatik Centrum Dortmund (ICD). ICD-C Compiler
Framework. http://www.icd.de/es/icd-c/.

[43] B. Titzer, D.K. Lee, and J. Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Information
Processing in Sensor Networks (IPSN), 2005.

[44] Jaime Urquiza-Fuentes and J. Angel Veldzquez-Iturbide. A
survey of successful evaluations of program visualization
and algorithm animation systems. Trans. Comput. Educ.,
9(2):1-21, 06/2009 2009.

[45] Ursula Wolz, John Maloney, and Sarah Monisha Pulimood.

’scratch’ your way to introductory cs. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium on
Computer science education, pages 298-299, New York, NY,
USA, 2008. ACM.

[46] Hui Zeng, Matt Yourst, Kanad Ghose, and Dmitry Pono-
marev. MPTLsim: a cycle-accurate, full-system simulator
for x86-64 multicore architectures with coherent caches.
SIGARCH Comput. Archit. News, 37(2):2-9, 2009.

[47] Craig Zilles. Spimbot: an engaging, problem-based approach
to teaching assembly language programming. SIGCSE Bull.,
37:106-110, February 2005.

2011/5/9

	9-6-2010
	Frances: A Tool For Understanding Computer Architecture and Assembly Language
	Tyler Sondag
	Kian L. Pokorny
	Hridesh Rajan
	Recommended Citation

	Frances: A Tool For Understanding Computer Architecture and Assembly Language
	Abstract
	Keywords
	Disciplines

	tmp.1396557070.pdf.tBDE1

