2005

Visual Methods for Examining Support Vector Machine Results, with Applications to Gene Expression Data Analysis

Doina Caragea
Iowa State University

Dianne Cook
Iowa State University, dicook@iastate.edu

Vasant G. Honavar
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the [Artificial Intelligence and Robotics Commons](http://lib.dr.iastate.edu/cs_techreports)

Recommended Citation

http://lib.dr.iastate.edu/cs_techreports/190

This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Visual Methods for Examining Support Vector Machine Results, with Applications to Gene Expression Data Analysis

Abstract
Support vector machines (SVM) offer a theoretically well-founded approach to automated learning of pattern classifiers. They have been proven to give highly accurate results in complex classification problems, for example, gene expression analysis. The SVM algorithm is also quite intuitive with a few inputs to vary in the fitting process and several outputs that are interesting to study. For many data mining tasks (e.g., cancer prediction) finding classifiers with good predictive accuracy is important, but understanding the classifier is equally important. By studying the classifier outputs we may be able to produce a simpler classifier, learn which variables are the important discriminators between classes, and find the samples that are problematic to the classification. Visual methods for exploratory data analysis can help us to study the outputs and complement automated classification algorithms in data mining. We present the use of tour-based methods to plot aspects of the SVM classifier. This approach provides insights about the cluster structure in the data, the nature of boundaries between clusters, and problematic outliers. Furthermore, tours can be used to assess the variable importance. We show how visual methods can be used as a complement to cross-validation methods in order to find good SVM input parameters for a particular data set.

Keywords
Classification Problems, Support Vector Machines, Visual Methods, Gene Expression Data

Disciplines
Artificial Intelligence and Robotics

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/190
Visual Methods for Examining Support Vector Machine Results, with Applications to Gene Expression Data Analysis

Doina Carageaa, Dianne Cookb and Vasant Honavara

aDepartment of Computer Science, Iowa State University, USA
bDepartment of Statistics, Iowa State University, USA

Abstract

Support vector machines (SVM) offer a theoretically well-founded approach to automated learning of pattern classifiers. They have been proven to give highly accurate results in complex classification problems, for example, gene expression analysis. The SVM algorithm is also quite intuitive with a few inputs to vary in the fitting process and several outputs that are interesting to study. For many data mining tasks (e.g., cancer prediction) finding classifiers with good predictive accuracy is important, but understanding the classifier is equally important. By studying the classifier outputs we may be able to produce a simpler classifier, learn which variables are the important discriminators between classes, and find the samples that are problematic to the classification. Visual methods for exploratory data analysis can help us to study the outputs and complement automated classification algorithms in data mining. We present the use of tour-based methods to plot aspects of the SVM classifier. This approach provides insights about the cluster structure in the data, the nature of boundaries between clusters, and problematic outliers. Furthermore, tours can be used to assess the variable importance. We show how visual methods can be used as a complement to cross-validation methods in order to find good SVM input parameters for a particular data set.

Key words: Classification Problems, Support Vector Machines, Visual Methods, Gene Expression Data

1 Introduction

The availability of large amounts of data in many application domains (e.g., bioinformatics or medical informatics) offers unprecedented opportunities for knowledge discovery in such domains. The classification community has focused primarily on building accurate predictive models from the available

Preprint submitted to Elsevier Science 13 December 2005
data. Highly accurate algorithms that can be used for complex classification problems have been designed. Although predictive accuracy is an important measure of success on a classification problem, for many data mining tasks understanding a classification model is as important as the accuracy of the model itself. Finding the role different variables play in classification provides an analyst with a deeper understanding of the domain. In applications, such as medical informatics such an understanding can lead to more effective screening, preventive measures and therapies.

The SVM algorithm [1] is one of the most effective machine learning algorithms for many complex binary classification problems (e.g., cancerous or normal cell prediction based on gene expression data [2]). In the simplest case, SVM algorithm finds a hyperplane that maximizes the margin of separation between classes. This hyperplane is defined by a subset of examples, called support vectors, which “mark” the boundary between classes. However, understanding the results and extracting useful information about class structure, such as what variables are most important for separation, is difficult. SVM is mostly used as a black box technique.

The SVM algorithm searches for “gaps” between clusters in the data, which is similar to how we cluster data using visual methods. Thus, SVM classifiers are particularly attractive to explore using such visual methods. In this paper, we focus on dynamic visual methods, called tours [3–6]. Tours provide mechanisms for displaying continuous sequences of low-dimensional linear projections of data in high-dimensional Euclidean spaces. They are generated by constructing an orthonormal basis that represents a linear subspace. Tour-based methods are most appropriate for data that contain continuous real-valued variables. They are useful for understanding patterns, both linear and non-linear, in multi-dimensional data. However, because tours are defined as projections (analogous to an object shadow) rather than slices, some non-linear structures may be difficult to detect. Tours are also limited to applications where the number of variables is less than 20 because otherwise the space is too large to randomly explore within a reasonable amount of time. Hence when we have more than 20 variables, it is important to perform some dimensionality reduction prior to applying tour methods. In classification problems, tours allow us to explore the class structure of the data, and see the way clusters are separated (linearly or not) and the shape of the clusters.

Visualization of data in the training stage of building a classifier can provide guidance in choosing variables and input parameters for the SVM algorithm. Visualization of the SVM outputs can help to understand the results of the algorithm. We plot classification boundaries, support vectors and other key aspects of the SVM solution in high-dimensional spaces given by the most important variables. We also show how tours can be used as a complement to cross-validation methods to tune the SVM parameters.
Effective application of machine learning algorithms, SVM included, often requires careful choice of parameters in order to arrive at a satisfactory solution. Hence, a human analyst is invaluable at the training phase of building a classifier. The training stage can be laborious and time-intensive, but once a classifier is built it can repeatedly be used on large volumes of data. Therefore, it is valuable to take the time to explore alternative parameter settings, plot the data, meticulously probe the data, to generate accurate and comprehensible classifiers.

Our analysis is conducted on a particular data problem, SAGE gene expression data [7] where the task is to classify cells into cancerous or normal cells based on the gene expression levels. The classification task is particularly difficult as the cell samples are obtained from various in vivo or in vitro tissues.

The rest of the paper is organized as follows:

- The methods section describes the algorithms for SVM and tours, and describes the quantities we will study to understand the SVM model.
- The examples section shows how these methods are used on the SAGE gene expression data.
- A summary and discussion section summarizes our methods, describes their strengths and limitations, and presents some related work.

2 Methods

2.1 Support Vector Machines

The SVM algorithm [1] is a binary classification method that takes as input labeled data from two classes and outputs a model (a.k.a., classifier) for classifying new unlabeled data into one of those two classes. SVM can generate linear and non-linear models.

Let \(E = \{(x_1, y_1), (x_2, y_2), \cdots, (x_l, y_l)\} \), where \(x_i \in \mathbb{R}^p \) and \(y_i \in \{-1, 1\} \) be a set of training examples. Suppose the training data is linearly separable. Then it is possible to find a hyperplane that partitions the \(p \)-dimensional pattern space into two half-spaces \(\mathbb{R}^+ \) and \(\mathbb{R}^- \). The set of such hyperplanes (the solution space) is given by \(\{x | x \cdot w + b = 0\} \), where \(x \) is the \(p \)-dimensional data vector and \(w \) is the normal to the separating hyperplane.

SVM selects among the hyperplanes that correctly classify the training set, the one that minimizes \(||w||^2 \) (subject to the constraints \(y_i(x_i \cdot w + b) \leq 1 \)), which is the same as the hyperplane for which the margin of separation between
the two classes, measured along a line perpendicular to the hyperplane, is maximized (see Figure 1).

![Support Vectors](image)

Fig. 1. (Left) Maximum margin separation found by the SVM algorithm. (Right) Arbitrary separation.

The algorithm assigns a weight α_i to each input point x_i. Most of these weights are equal to zero. The points having non-zero weight are called *support vectors*. The separating hyperplane is defined as a weighted sum of support vectors. Thus, $w = \sum_{i=1}^{s} (\alpha_i y_i) x_i = \sum_{i=1}^{s} (\alpha_i y_i) x_i$, where s is the number of support vectors, y_i is the known class for example x_i, and α_i are the support vector coefficients that maximize the margin of separation between the two classes.

The classification for a new unlabeled example can be obtained from $f_{w,b}(x) = \text{sign}(w \cdot x + b) = \text{sign}(\sum_{i=1}^{s} \alpha_i y_i (x \cdot x_i) + b)$.

If the goal of the classification problem is to find a linear classifier for a non-separable training set (e.g., when data is noisy and the classes overlap), a set of *slack variables*, ξ_i, is introduced to allow for the possibility of examples violating the constraints $y_i (x_i \cdot w + b) \leq 1$. In this case the margin is maximized, paying a penalty proportional to the cost C of constraint violation, i.e., $C \sum_{i=1}^{s} \xi_i$. The decision function is similar to the one for the linearly separable problem. However, in this case, the set of support vectors consists of *bounded support vectors* (if they take the maximum possible value, C) or *unbounded (real) support vectors* (if their absolute value is smaller than C).

If the training examples are not linearly separable, the SVM works by mapping the training set into a higher dimensional *feature* space using an appropriate kernel function k. Therefore, the problem can be solved using linear decision surfaces in the higher dimensional space. Any consistent training set (i.e., one in which no instance is assigned more than one class label) can be made separable with an appropriate choice of a feature space of a sufficiently high dimensionality. However, in general, this can cause the learning algorithm to overfit the training data resulting in poor generalization. In this case, the classification of new examples can be obtained from $f_{w,b}(x) = \text{sign}(\sum_{i=1}^{s} \alpha_i y_i k(x, x_i) + b)$.

The SVM algorithm has:
• the input parameters, C, tolerance in the termination criterion, ϵ, and kernel function, to vary;
• and outputs, support vectors (SV), w, and predicted values, to study to assess the model.

In this paper, we use the SVM implementation available in the R (www.r-project.org) package called e1071. The SVM implementation in e1071 is based on the LIB-SVM implementation [8]. The reason for using this implementation is that the R language allows us to quickly calculate other diagnostic quantities and to link these numbers to graphics packages.

2.2 Tours Methods for Visualization

Tours display linear combinations (projections) of variables, $x' A$ where A is a $p \times d (\leq p)$-dimensional projection matrix. The columns of A are orthonormal. Often $d = 2$ because the display space on a computer screen is 2, but it can be 1 or 3, or any value between 1 and p. The earliest form of the tour presented the data in a continuous movie-like manner [3], but recent developments have provided guided tours [4] and manually controlled tours [5]. Here we use a $d = 2$-dimensional manually-controlled tour to recreate the separating boundary between two groups in the data space. Figure 2 illustrates the tour approach.

We use the tour methods available in the data visualization software ggobi (www.ggobi.org), and the R package Rggobi that makes ggobi functionalty accessible from R.
2.3 SVM and Tours

Understanding the classifier in relation to the data at hand requires an analyst to examine the suitability of the method on the data, adjust the performance of the method (e.g., by appropriate choice of parameters) and adjust the data (e.g., by appropriate choice of attributes, i.e., variables, used for building the classifier) as necessary to obtain the best results on the problem at hand. We will show that tour methods can be used as exploratory tools to gain insights into the behavior of the SVM algorithm. In particular, we will explore the use of tour methods for:

1. Examination of the outputs of SVM classifier that can be observed visually;
2. Study of the stability of the model with respect to sampling;
3. Tuning of the SVM input parameters according to the outputs observed;
4. Assessment of the importance of the variables based on the best projections observed.

2.3.1 Examining SVM classifier

There are several observations that we can make when exploring SVM results using tours. First, as the support vectors specify the classifier generated by the SVM algorithm, we want to observe their location in the data space and examine their importance (position) relative to the other data points. We expect to see the unbounded support vectors from each group roughly indicating the margin between the groups in some projection. The bounded support vectors should lie inside this margin.

Second, we want to examine the boundaries between classes in high dimensional spaces. To begin we generate a rectangular grid of points around the data, by choosing a number of grid points between the minimum and maximum data value of each variable. For example, with two variables, 10 grid values on each axis will give $10^2 = 100$ points on a square grid, or with four variables we would have $10^4 = 10000$ points of a 4D grid. We then compute the predicted values $\mathbf{w} \cdot \mathbf{x} + b$ for each point in the grid. The points that are close to the boundary will have predicted values close to 0. For two variables the boundary is a line, for three variables the boundary is a 2D plane, and for four variables the boundary is a 3D hyperplane. The boundary can be examined using tour methods. When using linear kernels with SVM, we expect to see very clear linear boundaries between the two groups. For non-linear kernels, the boundaries will be more complex. Obviously the grid approach will only work for a fairly small number of variables because the number of points in the grid increases exponentially.
Third, we want to investigate anomalies in the data, the misclassified samples and the outliers, to get insights about how these points differ from the rest of the data. The anomalies will be isolated from their group in some way. We will look at a separate test set after the classifier was built from a training data set and the projection that shows the training separation is found.

It might be useful to employ the weights of the separating hyperplane to directly control the projection shown in the tour, but the interface to do this in Rggobi is not yet available.

2.3.2 Stability of the classifier

Machine learning algorithms typically trade-off between the classification accuracy on the training data and the generalization accuracy on novel data. The generalization accuracy can be estimated using a separate test set or using bootstrap and cross-validation methods. All these methods involve sampling from the initial data set. It is useful to explore how the sampling process affects the classifier for the particular data at hand. This can be accomplished by studying the variation of the separation boundary, which can provide insights about the stability of the algorithm.

2.3.3 Tuning the parameters

The performance of the classifier depends on judicious choice of various parameters of the algorithm. For SVM algorithm there are several inputs that can be varied: C bound, the tolerance of the termination criterion (e.g., $\epsilon = 0.01$), the type of kernel that is used (e.g., linear, polynomial, radial or Gaussian), and the parameters of the kernel (e.g., degree or the coefficients of the polynomial kernel), etc. It is interesting to explore the effect of changing the parameters on the performance of the algorithm. Visual methods can complement cross-validation methods in the process of choosing the best parameters for a particular data set. In addition, examination of the SVM results for different parameters can help understanding better the algorithm and the resulting classifiers.

2.3.4 Assessing variable importance

Real world data sets are described by many variables (e.g., for gene expression data there are commonly a lot more variables than examples). A classifier may be unreliable unless the sample size is several times as large as the number of variables [9]. A small number of the variables often suffices to separate the classes, although the subset of variables may not be unique [10]. Variable selection is also useful before running tours, because the smaller the space
the more rapidly it can be explored. There are many methods for variable selection [11–17] and the subsets of variables that they return can be very different. Which subset is the best? We use tours to explore and select subsets of variables than can be used to separate the data.

We first order the variables according to several criteria (e.g., PDA-PP index [16], BW index [15] and SVM variable importance [12]) and form small subsets either by taking the best \(k \) variables according to one criterion or by combining the best variables of two or more criteria. After running SVM on the subsets formed with the variables selected, we explore the difference between results.

Once we have selected a good subset of variables and we have explored the SVM model for that subset, we can assess the importance of the variables in the subset. The support vectors from each group roughly indicate a boundary between the groups in some projection. The variables contributing to the projection provide an indication of relative importance of the variables to the separation. The coefficients of the projection (elements of \(P \)) are used to examine the variable contribution.

3 Application

We will illustrate the application of the visual methods proposed using a publicly available gene expression data set.

3.1 Data description

We use SAGE (Serial Analysis of Gene Expression) [18] data to illustrate the visual methods described in this paper. SAGE is an experimental technique that can be used to quantify gene expression and study differences between normal and cancerous cells [19]. SAGE produces tags (10-base sequences) that identify genes (mRNA). The frequencies of these tags can be seen as a measure of the gene expression levels in the sampled cells. Different from microarray technology, SAGE does not need the sequences of the set of genes to be known. This allows for the possibility that genes related to cancer, but whose sequences or functionality have not been discovered, to be identified. However, SAGE technology is very expensive and there is little data available. SAGE data is available at http://www.ncbi.nlm.nih.gov/sage.

It is believed that cancers are caused by mutations that alter the normal pattern in gene expression [19]. Genes exhibiting the greatest differences in the expression levels corresponding to normal or cancerous cells are most likely
to be biologically significant. One difficulty with SAGE data, when trying to identify genes that distinguish between cancerous and normal cells, is that different samples can come from very different types of tissues (e.g., brain, breast, lung, etc.) as well as from \textit{in vivo} and \textit{in vitro} samples. It is known that different types of tissues are characterized by different expression patterns and they cluster together [20]. The same is believed to be true for \textit{in vivo} and \textit{in vitro} conditions. This makes it difficult to assert that genes whose expression levels are different in cancerous versus non-cancerous cells are indeed responsible for cancer. However, given the scarcity of the data (not too many samples from the same tissues) any findings along these directions are often interesting and useful in clinical applications.

Analysis of SAGE data has received a lot of attention in the last few years. The data set that we use for our analysis is introduced in [7], which also provides information about the data preprocessing. The data set was assembled from the complete human SAGE samples by selecting a subset of tags corresponding to a minimal transcriptome set. Our subset contains the expression values (transcripts per cell) for 822 genes found in 74 human cells. The study in [7] shows that genes with similar functionality cluster together when a strong-association-rule mining algorithm is applied.

We examine this data with SVM and use visual methods to explore the results.

3.2 \textit{Visualizing SVM outputs}

In this section, we show how to explore the SVM outputs using tours. Various subsets of variables are used. A detailed description of how these variables were chosen from the set of 822 variables ($V_1, V_2, \cdots, V_{822}$) is presented in the next section.

Suppose that the set of important variables for the analyst is $S = \{V_{800}, V_{403}, V_{535}, V_{596}, V_{357}, V_{398}, V_{113}\}$. We apply SVM algorithm on this data set. The results are shown in Figure 3. The two classes are colored with different colors. The real support vectors (2 in one class and 4 in the other class) have larger glyphs and the bounded support vectors are shown as open circles. The plots show a projection where the linear separation found by SVM can be seen. In one projection (left plot) the real support vectors line up against each other defining the boundary between the two classes. The bounded support vectors lie mostly on the opposite side of their class boundary (middle plot). The coefficients of the projection are also shown on the right plot. The separation between the two classes is in the top left to bottom right direction, which is a combination of most of the variables, particularly variables 5 and 6 (V_{800}, V_{403}).
Fig. 3. SVM results for a 7-dim data set. A projection where the linear separation found by SVM can be seen is shown. (Left) The real support vectors line up against each other defining the boundary between the two classes. (Middle) The bounded support vectors lie mostly on the opposite side of their class boundary. (Right) The coefficients of the projection are also shown.

If we limit the number of variables (e.g., to 4 variables – see Figure 4 (Left)), it is easy to generate a grid around the data. The class of grid points can be predicted using SVM algorithm. Coloring the grid points according to the predictions allows us to see the boundary estimated by SVM. A good separation of the grid can be seen in the middle plot in Figure 4. Coloring the grid points that have predicted values close to 0 allows us to focus on the boundary between the two groups (right plot in Figure 4).

Fig. 4. SVM results for a 4-dim data set. (Left) A projection where the linear separation found by SVM can be seen is shown. (Middle) A grid over the data colored according to the class colors is shown. (Right) The grid points that have predicted values close to 0, define a nice linear boundary between the two groups.

To assess the quality of the model we divide the examples into training and test sets, build the model for the training data, and find the projection showing the separation between classes. We then plot the test data in the same projection to see how well it is separated, and to examine errors and outliers (Figure 5).

If we use SVM with non-linear kernels, non-linear separations can also be viewed. Figure 6 shows the non-linear separations for a polynomial (Top) and a radial (Bottom) kernel, respectively. For this data, the non-linear kernels are
Fig. 5. A subset of the data (2/3 from each class) is used for training and the rest of the data is used for test. (Left) A projection showing the separation for the training set. (Middle) Bounded support vectors are also shown. (Right) The test set is shown with respect to the separating hyperplane found by the algorithm. We can see the errors. They belong entirely to one group.

probably not necessary. There is so little data, that a simpler model suffices, as there are fewer parameters to estimate.

Fig. 6. Non-linear separations are shown. The first one is for a polynomial kernel, the second one for a radial kernel.

The ggobi brushing interface allows the user to shadow or show different groups of points, making it very easy to focus on different parts of the model for exploratory analysis (Figure 7).

The ggobi main interface allows selecting different groups of variables to be shown (Figure 8).
3.3 Gene Selection

To construct reliable classifiers from SAGE data, we need to select a small set of genes. This is necessary due to the unreliability of the resulting classifier when the sample size is small relative to the number of variables ratio [9]. As Liu et al. [10] have shown, variable selection for gene expression data usually improves the accuracy of the classifier. Variable selection is also necessary in order to make it possible to view the data using tours. As mentioned earlier the initial set has 822 variables (genes) making it impossible for visual analysis.

The data set was standardized so that each gene has mean 0 and variance 1 across samples. Three different methods, BW index [15], PDA-PP index [16] and SVM variable importance [12], are used to order the 822 variables accord-
Fig. 8. GGobi variable selection interface.

Fig. 9. GGobi identity interface for identifying points in the plot with points in the data.
ing to their importance with respect to the criterion used by each method. The BW index of a set of genes gives the ratio of their between-group to within-group sums of squares. The PDA-PP index represents a projection pursuit index corresponding to the penalized discriminant analysis [21]. The SVM importance of the variables is determined by running SVM iteratively several times, each time the less important variable - with the smallest w_i^2 - being eliminated. The reverse order of the eliminated variables represents the order of importance [12].

The best 40 genes based on BW index are:

The best 40 genes based on PDA-PP index are:

The best 40 genes based on SVM variable importance are:

In general, SVM takes more time to run than methods such as BW index. Therefore, we also considered the possibility of first ordering all the 822 genes according BW index and subsequently ordering the best 40 genes found by BW index according to the SVM variable importance. The result is shown below:

The selection of genes by each method is quite different. However, there are two genes that are on the lists of all three methods: \textbf{V721 and V357}. Surprisingly many more genes are common for the BW and SVM gene selection methods: V596, V409, V4, V721, V138, V488, V208, V165, V736, V70, V357, V398, V94.
Given the difference in subsets of important genes, the question is: which one is the best? Not very surprisingly, different subsets of genes give comparable results in terms of classification accuracy, which makes the choice difficult. However, this is where visual methods can help. We use tours to explore different sets of genes and visualize the results of SVM algorithm on those particular subsets. This gives us an idea about how different sets of genes behave with respect to SVM algorithm.

First, to determine how many genes are needed to accurately separate the two classes, we select subsets of the 40 genes and study the variation of the error with the number of genes, using cross-validation. The initial data set is randomly divided into a training set (2/3 of all data) and a test set (1/3 of all data), then SVM is run on the training set, and the resulting model is used to classify both the training set and the test set. The errors are recorded together with the number of unbounded (real) and bounded support vectors for each run. This is repeated 100 time and the average over the measured values is calculated. Then a new variable is added and the process is repeated.

Plots for the variation in average accuracy for the training and test sets (i.e., fraction of the misclassified examples relative to the number of training or test examples, respectively), as well as for the fraction of unbounded support vectors and bounded support vectors (relative to the number of training examples) with the number of variables, are shown in Figure 10. The variables used are the best 20 SVM variables selected from the set of the best 40 BW variables. The average training error decreases with the number of variables and it gets very close to 0 when 20 variables are used. In the test error the average decreases and then starts to rise around 12 variables. There is a dip at 4 variables in both training and test error, and a plateau at 7 variables in the test error. The observed number of unbounded and bounded support vectors shows that there is a negative correlation between the two: as the number of unbounded support vector increases, the number of bounded support vectors decreases. This corresponds to our intuition: as the number of dimensions increases, more unbounded support vectors are needed to separate the data.

As the tours are easier to observe when less variables are used, we chose to look at sets of 4 variables. Although the errors for 4 variables are slightly higher than the errors obtained using more variables, the analysis should give a good picture of class separations in the data and about the SVM model.

We tried various combinations of subsets of 4 variables formed from the lists of most important variables. Some of these subsets gave very poor accuracy, some gave reasonable good accuracy. Table 1 shows a summary of the results obtained for three subsets of variables that give good accuracy: $S_1 = \{V800, V403, V535, V596\}$ (first 4 most important SVM genes from the best 40 BW genes), $S_2 = \{V390, V389, V4, V596\}$ (first 4 most impor-
Fig. 10. (Top) The variation of the average (over 100 runs) training and test errors (i.e., fraction of the misclassified examples relative to the number of training or test examples, respectively) with the number of variables. (Bottom) The variation of the average (over 100 runs) fraction of real and bounded support vectors (relative to the number of training examples) with the number of variables.

Important SVM genes from all 822 genes) and $S_3 = \{V_{800}, V_{721}, V_{357}, V_{596}\}$ (a combination of the 2 important SVM genes from best 40 BW genes and 2 important genes for all three methods).

Because the variation in the errors seems to not be very high for the three sets of variables shown in Table 1, we looked at the results of an SVM run with each of these sets of variables (all data was used as training data). The projections where the separation found by SVM can be seen are shown in Figure 11.
Table 1
Result summaries for three subsets of 4 variables: $S_1 = \{V800, V403, V535, V596\}$, $S_2 = \{V390, V389, V4, V596\}$ and $S_3 = \{V800, V721, V357, V596\}$. The values are averaged over 100 runs.

<table>
<thead>
<tr>
<th>Subset</th>
<th>Tr Err</th>
<th>Std Tr</th>
<th>Ts Err</th>
<th>Std Ts</th>
<th>RSV</th>
<th>Std RSV</th>
<th>BSV</th>
<th>Std BSV</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.134</td>
<td>0.032</td>
<td>0.178</td>
<td>0.070</td>
<td>0.084</td>
<td>0.019</td>
<td>0.426</td>
<td>0.051</td>
</tr>
<tr>
<td>S2</td>
<td>0.160</td>
<td>0.040</td>
<td>0.195</td>
<td>0.073</td>
<td>0.106</td>
<td>0.019</td>
<td>0.446</td>
<td>0.060</td>
</tr>
<tr>
<td>S3</td>
<td>0.166</td>
<td>0.032</td>
<td>0.217</td>
<td>0.063</td>
<td>0.092</td>
<td>0.016</td>
<td>0.426</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Fig. 11. Visualization of SVM results using three different subsets of the data, corresponding to three different sets of 4 variables. (Left) Gene subset $S_1 = \{V800, V403, V535, V596\}$, (Middle) Gene subset $S_2 = \{V390, V389, V4, V596\}$, (Right) Gene subset $S_3 = \{800, V721, V357, V596\}$.

Although we get similar accuracy for all three sets S_1, S_2, S_3, there is some difference in the results. Even though S_1 has smallest error, S_2 has a larger margin between the real support vectors.

In Figure 12, we examine the boundary for a single set of genes, and see that the separation is visible in several different projections. Closer examination reveals that several of these projections are quite similar to each other. Along the main direction of the separation in each projection variables 5 and 6 ($V800$, $V403$) have the largest coefficients, which suggests that these are most important.

3.4 Model stability

With regard to the dependence of the separation on sampling, the separating hyperplane should not vary much from one training sample to another. We might expect more variability if the data is not separable.

To explore this conjecture, we ran the SVM algorithm on all examples using the variables $S_3 = \{V800, V721, V357, V596\}$ and identified the bounded
support vectors. Then, we removed the bounded support vectors (33 examples), obtaining a linearly separable set (containing the remaining 41). We ran SVM on samples of this set (about 9/10 points were selected for each run), found the projection showing the linear separation and kept this projection fixed for the other runs of SVM. We examined how the separation boundary between the two data sets changes. The results are shown in Figure 13. There is some variation in the separating hyperplane from sample to sample. In some samples the separating hyperplane rotated substantially from that of the first sample, as seen by the thick band of grid points.

To see how much the coefficients of the variables actually change between samples we start with the projection showing the separation for the first run, we keep this projection fixed and plot results of the second run, then slightly rotate this second view until the best projection is found for the second run. This is shown in Figure 14. The coefficients change only a tad, with those of variable 6 changing the most.

3.5 Varying input parameters to the SVM learning algorithm

In the last set of experiments we study the dependence of the margin found by the SVM algorithm on the parameter C. We ran SVM with all the data corresponding to the set $S3 = \{V800, V403, V535, V596\}$ and for each run we found a projection clearly showing the separation. Figure 15 shows the best projections when $C = 1$, $C = 0.7$, $C = 0.5$ and $C = 0.1$. Recall that C can be seen as the cost of making errors. Thus, the higher the C bound the less errors are allowed, corresponding to a smaller margin. As C decreases, more errors are allowed, corresponding to a larger margin. This can be seen in the plots, as you look from top row ($C = 1$) to bottom row ($C = 0.1$), the margin around the separating hyperplane increases. Which is the better solution?

Table 2 shows the variation of the training error (the proportion of misclassified
Fig. 13. We examine the variation of the separating hyperplane when sub-sampling the data. We find the projection that shows the linear separation for the first data set and we keep this projection fixed for the subsequent views. There is some variation in the separating hyperplane from sample to sample. In some samples the separating hyperplane rotated substantially from that of the first sample, as seen by the thick band of grid points.
Fig. 14. Two different runs of the SVM with slightly different training data sets (9/10 points of the whole data set are selected at each run). The projection is kept fixed in the (Left) and (Middle) plots. A small rotation of the data shows the clear separation found by the second run of the SVM.

elements relative to the number of training examples) with the parameter C. The values corresponding to the plots shown in Figure 15 are highlighted. It can be seen that the smallest error is obtained for $C = 1$, which corresponds to the plot with the smallest margin (or equivalently, the plot with the smallest number of bounded support vectors).

Table 2
The dependence of the training error on the parameter C. The highlighted values correspond to the plots shown in Figure 15.

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>0.9</th>
<th>0.8</th>
<th>0.7</th>
<th>0.6</th>
<th>0.5</th>
<th>0.4</th>
<th>0.3</th>
<th>0.2</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>0.162</td>
<td>0.148</td>
<td>0.148</td>
<td>0.175</td>
<td>0.189</td>
<td>0.189</td>
<td>0.175</td>
<td>0.202</td>
<td>0.202</td>
<td>0.229</td>
</tr>
</tbody>
</table>

4 Summary and discussion

4.1 Summary

We have presented visual methods that can be used in association with SVM to study many aspects of the model fitting and solution. The reason for using these methods is to gain a better understanding of the model and better characterize the fit.

We have shown how tour methods can be used to visualize and examine the position of the support vectors found by SVM relative to the other data points and anomalies in the data. They can also be used to explore boundaries between classes in high dimensional spaces. This can be done by generating a rectangular grid around the data and computing the predicted values for each point in the grid. The values close to the boundary will have predicted values close to zero. The main hindrance to drawing the boundary is that the grid
Fig. 15. Variation of the margin with the cost C. Plots corresponding to values $C=1$, $C=0.7$, $C=0.5$, $C=0.1$ are shown. As C decreases the margin increases.

of points increases in size exponentially with the number of variables. Hence, alternative ways for showing the boundary are of interest.

We have shown how visual methods can be used to get insights about the stability of the model found by the algorithm and to tune the parameters
of the algorithm. Therefore, these methods can be used as a complement to cross-validation methods in the training phase of the algorithm.

Finally, we have shown how we can use visual methods in association with variable selection methods to find sets of variables that are important with respect to the separation found by the SVM algorithm.

We have illustrated the proposed methods on a publicly available SAGE gene expression data set. The implementation of these methods will be made available to the research community as an R package.

4.2 Discussion

The importance of the visual methods in the area of knowledge discovery and data mining (KDD) is reflected by the amount of work that has combined visualization and classification methods during the last few years [22–24]. This work forms a sub-area of KDD, called Visual Data Mining (VDM) [25,26]. Visual methods for understanding results of several classes of classifiers have been proposed, e.g., decision tree classifiers [27,28], Bayesian classifiers [29], neural networks [30], temporal data mining [31], etc.

However, there has been relatively little work on visualizing the results of SVM algorithm in high dimensional spaces, with a few notable exceptions [28,32–34].

Poulet [28,32] has proposed approaches to visualizing the results of SVM. Here, the quality of the separation is examined by computing the data distribution according to the distance to the separating hyperplane and displaying this distribution as a histogram. The histogram can be further linked to other visual methods such as 2-dimensional scatter plots and parallel coordinates [35] in order to perform exploratory data analysis, e.g., graphical SVM parameter tuning or dimensionality and data reduction. These methods have been implemented in a graphical data-mining environment [36]. Similar to our methods, Poulet’s approaches have been applied to visualize the results of SVM algorithm applied to bio-medical data [37].

Our previous work [33] has demonstrated the synergistic use of SVM classifiers and visual methods in exploring the location of the support vectors in the data space, the SVM predicted values in relation to the explanatory variables, and the weight vectors, \(\mathbf{w} \), in relation to the importance of the explanatory variables to the classification. We have also explored the use of SVM as a pre-processor for tour methods, both in terms of reducing the number of variables to enter into the tour, and in terms of reducing the number of instances to the set of support vectors (which is much smaller than the data set).
Also in previous work [34], we have shown that using visual tools it is possible not only to visualize class structure in high-dimensional space, but also to use this information to tailor better classifiers for a particular problem. The study has lead to suggestions for adaptations to the SVM algorithm and ways for other classifiers to borrow from the SVM approach to improve the result.

References

M. Ankerst, Report on the sigkdd-2002 panel the perfect data mining tool: Interactive or automated, SIGKDD Explorations 4 (2).

