2011

Millimeter-wave study of London penetration depth temperature dependence in Ba(Fe0.926Co0.074)2As2 single crystal

A. A. Barannik
National Academy of Sciences of Ukraine

N. T. Cherpak
National Academy of Sciences of Ukraine

Ni Ni
Iowa State University

Makariy A. Tanatar
Iowa State University, tanatar@iastate.edu

S. A. Vitusevich
Forschungszentrum Juelich

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs

Part of the Condensed Matter Physics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/211. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Authors
A. A. Barannik, N. T. Cherpak, Ni Ni, Makariy A. Tanatar, S. A. Vitusevich, V. N. Skresanov, Paul C. Canfield, Ruslan Prozorov, V. V. Glamazdin, and K. I. Torokhtii

This article is available at Digital Repository @ Iowa State University: http://lib.dr.iastate.edu/ameslab_pubs/211
Millimeter-wave study of London penetration depth temperature dependence in Ba(Fe0.926Co0.074)2As2 single crystal
A. A. Barannik, N. T. Cherpak, N. Ni, M. A. Tanatar, S. A. Vitusevich, V. N. Skresanov, P. C. Canfield, R. Prozorov, V. V. Glamazdin, and K. I. Torokhtii

Citation: Low Temperature Physics 37, 725 (2011); doi: 10.1063/1.3660321
View online: http://dx.doi.org/10.1063/1.3660321
View Table of Contents: http://scitation.aip.org/content/aip/journal/ltp/37/8?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Pressure effects on magnetic pair-breaking in Mn- and Eu-substituted BaFe2As2

Quasiparticle relaxation across the multiple superconducting gaps in the electron-doped BaFe1.85Co0.15As2

Angular dependence of pinning potential, upper critical field, and irreversibility field in underdoped BaFe1.9Co0.1As2 single crystal

Flux pinning and vortex transitions in doped BaFe2As2 single crystals

Magnetic states of BaFe2–x Co x As2 single crystals: Magnetization and electron spin resonance study
LETTERS TO THE EDITOR

Millimeter-wave study of London penetration depth temperature dependence in Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ single crystal

A. A. Barannik and N. T. Cherpa

A. Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12 Acad. Proskura Str., Kharkiv 61085, Ukraine

N. Ni

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

M. A. Tanatar

Ames Laboratory USDOE, Ames, Iowa 50011, USA

S. A. Vitusevich

Peter Grünenberg Institut, Forschungszentrum Juellich, 1 Leo-Brandt Str., Juellich 52425, Germany

V. N. Skresanov

A. Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12 Acad. Proskura Str., Kharkiv 61085, Ukraine

P. C. Canfield and R. Prozorov

Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA and Ames Laboratory USDOE, Ames, Iowa 50011, USA

V. V. Glamazdin

A. Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12 Acad. Proskura Str., Kharkiv 61085, Ukraine

K. I. Torokhtii

Physical Engineering Department, National Technical Institute "KhPI" 21 Frunze Str., Kharkiv 61002, Ukraine

(Submitted April 4, 2011)

In-plane surface Ka-band microwave impedance of optimally doped single crystals of the Fe-based superconductor Ba(Fe$_{0.926}$Co$_{0.074}$)$_2$As$_2$ ($T_c = 22.8$ K) was measured. Sensitive sapphire disk quasi-optical resonator with high-T_c cuprate conducting endplates was developed specially for Fe-pnictide superconductors. It allowed finding temperature variation of London penetration depth in a form of power law, namely $D_k(T) \propto T^n$ with $n = 2.8$ from low temperatures up to at least 0.6 T_c consistent with radio-frequency measurements. This exponent points towards nodeless state with pair-breaking scattering, which can support one of the extended s-pairing symmetries. The dependence $k(T)$ at low temperatures is well described by one superconducting small-gap ($D \% 0.75$ in kT_c units, where k is Boltzmann coefficient) exponential dependence. © 2011 American Institute of Physics [doi: 10.1063/1.3660321]
measurements of small-sized superconductors with high Q-factor, namely, $Q > 10^5$ in temperature interval from 4 to 30 K. We also developed a novel technique for processing the frequency response of the resonators with partial removal of mode degeneracy and perturbed resonance Lorenz line, which allowed us precise determination of the resonance frequency and the Q-factor and thus accurate finding Z_s.

The results of resonant frequency $f(T)$ measurement of the resonator with and without the studied crystal are shown in Fig. 1. To obtain $X_s(T)$ from measured $f(T)$ we use the well-known expressions (see, e.g., Refs. 22, 24, and 25). One can obtain expression for surface temperature variation of the surface reactance $\Delta X_s(T)$ through the temperature changing the resonator frequency $\Delta \omega(T)$,

$$A_s\Delta X_s(T) = -2\Delta \omega(T)/\omega(T), \quad (1)$$

where $\omega = 2\pi f$, A_s is the inclusion coefficient of the sample under test. It depends on geometry and dimensions of the sample and field structure (mode) in the resonator. In a given work A_s was evaluated by simulation of the resonator using Microwave Studio CST. We obtain $A_s = 2.83 \cdot 10^{-3}$ mOhm$^{-1}$ at interaction of HE$_{11}$-mode with a sample of $2.50 \times 3.50 \times 0.10$ mm dimensions.

Evidently, in a case of WGM slotted resonator (see inset in Fig. 1), analogously to other resonator techniques, the most appropriate approach can be one, at which variation $X_s(T)$ is determined as

$$\Delta X_s(T_{ref}) = X_s(T_{ref}) - X_s(T_{ref}), \quad (2)$$

where T_{ref} is a certain reference temperature. Because $X_s(T) = \omega(T)\mu_0\lambda(T)$ at $T \ll T_c$, we can write

$$\Delta X_s(T_{ref}) = \omega(T)\mu_0\Delta \lambda(T_{ref}), \quad (3)$$

where $\Delta \lambda(T_{ref}) = \lambda(T)-\lambda(T_{ref})$. From (1) and (3) $\Delta \lambda(T_{ref})$ can be expressed as

$$\Delta \lambda(T_{ref}) = -2\Delta \omega(T_{ref})/A_s\omega^2(T)\mu_0, \quad (4)$$

where $\Delta \omega(T_{ref}) = \omega(T) - \omega(T_{ref})$.

The experimental temperature law $\Delta \lambda(T_{ref})$ allows one to extrapolate it to $T \to 0$ and, knowing $\lambda(0)$ from other measurements, to determine $\lambda(T)$.

It is worthy to note that in $\Delta \omega(T_{ref})$ the variations $\Delta \omega_{\mu}(T_{ref})$ and $\Delta \omega_{\epsilon}(T_{ref})$ conditioned by temperature dependences both of sapphire permittivity ϵ and the disk dimensions are deducted by means of subtracting the

FIG. 1. The resonant frequency shift of the resonator with (curve 1) and without (curve 2) single crystal Ba$_{1-x}$Co$_{x}$Al$_2$ sample depending on temperature. Inset shows the slotted sapphire disk resonator with a single crystal Ba$_{1-x}$Co$_{x}$Al$_2$ in a slot. The superconducting films (1) are sputtered on the sapphire sapphire substrates (2), a sapphire disk (3) with a single crystal Ba$_{1-x}$Co$_{x}$Al$_2$ (4) in a radial slot is sandwiched between superconducting YBa$_2$Cu$_3$O$_{7-\delta}$ endplates (1).
corresponding curves of $f(T) = \cos(2\pi)$ in Fig. 1. The value of $X_c(T)$ was determined from the measured dependence $\Delta(T)$, calibrated using the value $\lambda(0) = 208\text{ nm}$ from the previous measurement.

The temperature variation of London penetration depth, $\Delta(T)$, determined from microwave data is presented in Fig. 2. The observed dependence of $\Delta(T)$ follows a power law, $\Delta(T) \sim T^n$ with $n = 2.8$ from low temperatures up to at least $0.6T_c$. The obtained dependence is similar to frequency range measurements, although n is rather distinguished from them. When the given work results were processed, a work was arrived indicating $n \approx 2.66$. The difference $\Delta(T) = \Delta(T) - \lambda(0)$ and the superfluid density, $n_s(T) = [\lambda(0)/\lambda(T)]^2$, are commonly used to analyze penetration depth data and compare the calculations making certain assumptions regarding the superconducting gap structure.

The temperature dependence $[\lambda(0)/\lambda(T)]^2$ is shown in Fig. 2 (see inset), where one can see the calculated curves for a power law $\Delta(T) \sim T^{n-2.8}$ and for exponential law $\Delta(T) \sim \exp(-\Delta(0)/kT)$ with $\Delta(0) = 0.75\text{ nm}$ in kT_c units, where k is Boltzmann coefficient. At low temperatures $\Delta(0) \approx \Delta(T)$ up to $T \approx T_c/3$. One can see that at least at low temperatures both functional laws are very close. The fact means that the temperature dependences of both London penetration depth and the superfluid density indicate evident absence of nodes of superconducting gap function and allow concluding about one of the expended s-wave symmetries of the studied pnictide.

In summary, we carried out microwave surface impedance measurements of the optimally doped single crystal BaFe$_{1-x}$Co$_x$As$_2$ ($x = 0.074$) with critical temperature $T_c = 22.8\text{ K}$ and found the power-law exponent $n = 2.8$ in temperature dependence of the London penetration depth. The obtained dependence is similar to radio-frequency measurements indicating no noticeable frequency dependence of the response. This exponent points towards nodeless state with pairbreaking scattering, which can support one of the extended s-pairing symmetries. The temperature dependence $[\lambda(0)/\lambda(T)]^2$ calculated for a power law $\Delta(T) \sim T^{0.8}$ and exponential law for one superconducting small-gap ($\Delta kT_c = 0.75$) superconductor are very close. If another gap exists, it has a small weight coefficient.

This article was published in English in the original Russian journal. Reproduced here with stylistic changes by AIP.