Discovering Web Services over the Semantic Web

Jyotishman Pathak
Iowa State University

Neeraj Koul
Iowa State University, neeraj.kaul@gmail.com

Doina Caragea
Iowa State University

Vasant Honavar
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Artificial Intelligence and Robotics Commons

Recommended Citation
http://lib.dr.iastate.edu/cs_techreports/237

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact digirep@iastate.edu.
Discovering Web Services over the Semantic Web

Jyotishman Pathak Neeraj Koul * Doina Caragea Vasant G Honavar
Artificial Intelligence Research Laboratory
Department of Computer Science
Iowa State University
Ames, IA 50011-1040, USA
{jpathak, neeraj, dcaragea, honavar}@cs.iastate.edu

Abstract

This paper describes a framework for ontology-based flexible discovery of Semantic Web services. The proposed approach relies on user-supplied, context-specific mappings from an user ontology to relevant domain ontologies used to specify Web services. We show how a user’s query for a Web service that meets certain selection criteria can be transformed into queries that can be processed by a matchmaking engine that is aware of the relevant domain ontologies and Web services. We also describe how user-specified preferences for Web services in terms of non-functional requirements (e.g., QoS) can be incorporated into the Web service discovery mechanism to generate a partially ordered list of services that meet user-specified functional requirements.

Keywords: Semantic Web, Web Service Discovery, Ontologies, Quality of Service.

1 Introduction

The creation, deployment, and use of services that meet the needs of individuals and communities in virtually all areas of human endeavor is one of the hallmarks of civilization. We select suitable service providers based on recommendations from friends, family, acquaintances or experts, or by looking them up in directories (e.g., Yellow Pages). Such human-oriented service selection and utilization serve as motivation for Web service discovery in a Service-Oriented Architecture (SOA) [16]. SOA supports a directory in which service providers can advertise their services in a form that enables potential clients to find and invoke them over the Internet. The notion of Semantic Web services [9,21] takes us one step closer to interoperability of autonomously developed and deployed Web services, where a software agent or application can dynamically find and bind services without having a priori hard-wired knowledge about how to discover and invoke them. OWL-S [4] is a specific OWL [2] ontology designed to provide a framework for semantically describing such services from several perspectives (e.g., discovery, invocation, composition). During the development of a service, the abstract procedural concepts provided by OWL-S ontology can be used along with the domain specific OWL ontologies which provide the terms, concepts, and relationships used to describe various service properties (i.e., Inputs, Outputs, Preconditions, Effects or IOPE’s). In general, ontology-based matchmaking is used to discover and invoke service providers against a specific service request [19,24]. However, this approach suffers from several limitations. In a SOA, individual users or communities of users are expected to query for services of interest to them using descriptions that are expressed using terms in their own ontologies. But with proliferation of independently developed and deployed services, the semantic correspondences between the user ontology on which the user queries are based and the domain ontologies on which the service descriptions are based, are likely to vary. Consequently, users ought to be able to specify inter-ontology correspondences to facilitate matchmaking between the service requests and service advertisements. Unfortunately, the current technology for describing services on the Semantic Web using languages like OWL-S [4], do not provide a formal model for such translation capability. Although lately, there has been an increasing amount of research and development towards development of two new frameworks, namely WSMO [5] and WSDL-S [6], for describing Semantic Web services, which provide a

*Neeraj Koul is also affiliated to UGS Corporation, 2321 North Loop Drive, Ames, IA 50010-8615 USA
model for ontology translation. But, at this point we are not sure which of these approaches will become a standard and widely adopted by academia and industry. As a result, we consider the OWL-S approach for the rest of this paper. Also, existing state-of-the-art technologies for publishing and finding services (e.g., WSDL [3], UDDI [1]) use static descriptions for service interfaces as a result of which, the process of finding and establishing bindings with services is static in nature. Such approaches do not take into consideration dynamic service selection based on the assessment of non-functional attributes such as Quality of Service. Even though, there have been a few approaches in incorporating QoS features for service discovery, either they do not consider semantic correspondences during the discovery process [10,32] or try to extend the existing data structure of already widely used standard models like UDDI [27]. As a result, these approaches have their own limitations in terms of functionality offered as well as large-scale adoption. Finally, with the proliferation of Web services and service providers, it is inevitable that there will be services offered by multiple providers with the same functionality. In such scenarios, the users should be able to rank (or order) the discovered services based on some criteria e.g., quality of service (QoS) ratings, cost, etc. However, existing approaches for service selection [19,20,24] make no provision for user-specified ranking criteria as part of the service request.

Against this background, this paper builds on the recent developments on Semantic Web services [21] and ontology-based solutions for service selection [19,20,24] to develop an approach for discovery of Semantic Web services. In particular, we allow the users to specify context-specific semantic correspondences between multiple ontologies to resolve semantic differences between them. These correspondences are used for selecting services based on the user’s functional and non-functional requirements, which are then ranked using a user-specified criteria.

The rest of the paper is structured as follows. Section 2 describes an example to provide a better formulation of the problem. In Section 3 we introduce *interaction constraints* to specify mappings between the user ontologies and the domain ontologies used for service description, and a *service selection criteria*, which provides a way to dynamically select and rank services based on functional and non-functional aspects. Our prototype implementation is described in Section 4. In Section 5 we discuss related work, and finally, we summarize our work in Section 6.

2 Motivating Example

![Figure 1. Domain Ontology for Home Delivery of Food](image_url)

Suppose there exist community-based domain ontologies which describe various concepts and their properties for home delivery of food by different restaurants $O_{\text{HomeDelivery}}$ (Figure 1) and different types of Chinese food $O_{\text{ChineseFood}}$ (Figure 2). Now, assume, there exists a Web service W_1 which allows the users to order Chinese food for home delivery and uses the domain ontologies (Figure 1 & 2) to specify its capabilities (i.e., IOPE’s) and the service it offers. W_1 may expect the name of the food item (where, the different types of food that it serves is specified by $O_{\text{ChineseFood}}$), user’s credit card information and delivery address as its inputs, and an email confirmation might be sent upon successful completion of the order (its outputs). In addition, sufficient credit balance
and a valid delivery address could be the pre-requisites for invoking the service (its preconditions), whereas, charging the credit card for the appropriate amount of money and delivering the ordered food (via some delivery personnel), the effects after a successful invocation of the service (its postconditions). Similarly, another Web service W_2 may also provide the same service for home-delivery of Chinese food and use the domain ontologies to describe its capabilities. However, it might have a different customer rating or items that are being served.

![Figure 2. Domain Ontology for Chinese Food](image)

Now, suppose there exists a user U, who wants to order some Chinese food from his/her home via the Internet (using some agent). It is quite conceivable that the user might have his/her own understanding of the domain in discourse and hence have user ontologies, $O^U_{Delivery}$ and $O^U_{Chinese}$ (Figure 3), which might be different from the shared domain ontologies, $O_{HomeDelivery}$ and $O_{ChineseFood}$. In such a situation, it is not possible for the user’s agent to discover candidate services from a repository because the concepts in the different ontologies may be semantically different. To reconcile such semantic heterogeneity, there is a need for the user (or some kind of a mediator/service) to provide mappings or translations such that, the Web service discovery engine can translate the concepts in the user’s request in terms of the concepts in domain ontologies, and hence, can select candidate service providers (from some repository) by doing matchmaking.

For example, in our case, the user would map Food (in $O^U_{Delivery}$) to FoodItem (in $O_{HomeDelivery}$) and Chicken (in $O^U_{Chinese}$) to Poultry (in $O_{ChineseFood}$). Also, one would need to specify a mapping (e.g., from YY-MM to MM-YY) between the values of the properties Has_ExpireDate (in $O^U_{Delivery}$) and Has_CardExpireDate (in $O_{HomeDelivery}$). Apart from this, the user might also want to select those services which have a higher customer service rating and rank the discovered candidate service providers based on some criteria (e.g., increasing physical distance of the restaurant from the delivery location). Similarly, another user U', with different ontologies, willing to order Chinese food via the Internet for home delivery has to follow the same procedure as U.

Thus, discovering of Semantic Web services comprises of two important steps:

- Specifying mappings between the terms and concepts of the user ontologies and the domain ontologies (which are used to describe the services).
- Specifying a service selection criteria which uses the mappings to select candidate service providers against a service request query and rank/order them based on user-specified ranking criteria.

3 Discovering Semantically Heterogeneous Web Services

3.1 Ontologies and Mappings

An ontology is a specification of objects, categories, properties and relationships used to conceptualize some domain of interest. We introduce a precise definition of ontologies as follows.

Definition (hierarchy) [12]: Let S be a partially ordered set under ordering \leq. We say that an ordering \preceq defines a hierarchy for S if the following three conditions are satisfied:

1. $x \preceq y \rightarrow x \leq y; \forall x, y \in S$. We say (S, \preceq) is better than (S, \leq)),
2. (S, \preceq) is the reflexive, transitive closure of (S, \leq),
3. No other ordering \subseteq satisfies (1) and (2).

An ontology associates orderings to their corresponding hierarchies. For example, let $S = \{Food, ChineseFood, Appetizer\}$ (Figure 2). We can define the partial ordering \subseteq on S according to an is-a (or sub-class) relationship. For example, Appetizer is-a sub-class of ChineseFood, ChineseFood is-a sub-class of Food and, also Appetizer is-a sub-class of Food. Besides, every class
can be regarded as a sub-class of itself. Thus, \((S, \leq) = \{(\text{ChineseFood, ChineseFood}), (\text{Appetizer, Appetizer}), (\text{Food, Food}), (\text{Appetizer, ChineseFood}), (\text{Appetizer, Food}), (\text{ChineseFood, Food})\}\). The reflexive, transitive closure of \(\leq\) is the set: \((S, \leq) = \{(\text{ChineseFood, Food}), (\text{Appetizer, ChineseFood})\}\), which is the only hierarchy associated with \((S, \leq)\).

In order to make ontologies interoperable, so that the terms in different ontologies are brought into correspondence, we need to provide mappings. These mappings are specified through interoperation constraints.

Figure 3. User Ontologies about Chinese Food and Home Delivery of Food

Definition (interoperation constraints) [12]; Let \((H_1, \leq_1)\) and \((H_2, \leq_2)\), be any two hierarchies. We call a set of Interoperation Constraints (IC) the set of relationships that exist between elements from two different hierarchies. For two elements, \(x \in H_1\) and \(y \in H_2\), we can have one of the following Interoperation Constraints:- \(x : H_1 = y : H_2, x : H_1 \neq y : H_2, x : H_1 \leq y : H_2,\) and \(x : H_1 \not\leq y : H_2\). For example, in the Chinese food domain, assuming that the ontologies \(O^U_{\text{Chinese}}\) and \(O^U_{\text{ChineseFood}}\) associate is a orderings to their corresponding hierarchies, we can have the following interoperation constraints, among others- Chicken : \(H^U_{\text{Chinese}} = \text{Poultry} : H^U_{\text{ChineseFood}}\), Fish : \(H^U_{\text{Chinese}} = \text{SeaFood} : H^U_{\text{ChineseFood}}\), Chicken : \(H^U_{\text{Chinese}} \neq \text{Appetizer} : H^U_{\text{ChineseFood}}\), and so on.

3.2 Service Selection Criteria

The service selection criteria in our framework comprises of two components: **Selection** of the service providers and then, **Ranking** the selected providers.

3.2.1 Service Selection

The first step in service selection is to determine a set of service providers which offer the requested functionality. We call this set as **candidate service providers**.

Definition (candidate service providers): Let \(\mathcal{S} = \{S_1, \cdots, S_n\}\) denote the set of services which are available (or registered with our system). We call, \(\mathcal{S}' \subseteq \mathcal{S}\), the set of candidate providers, if they meet the requested functional properties of the user (in terms of IOPE’s).

In general, some services will match all the requested IOPE parameters, while others will not. To distinguish between them, we categorize them based on the **degree of match** [19, 24]: Exact, Plug-in, Subsumption, Intersection, and Disjoint. Such a categorization also provides an (implicit) ranking amongst the potential providers (e.g., Exact match is given the highest rank). Since, the set of services which fall under Intersection and Disjoint categories do not match the service request (in terms of functional aspects), we ignore them for the rest of the service selection process and only consider the services which belong to Exact, Plug-in and Subsumption categories.

The second step in the service selection process further refines the set of candidate service providers based on user-specified non-functional attributes, namely Quality of Service (QoS). In unison with [15], we define Quality of Service as a set of non-functional attributes that may impact the service quality offered by a Web service. Because, Web services are distributed as well as autonomous by their very nature, and can be invoked dynamically by third parties over the Internet, their QoS can vary greatly. Thus, it is vital to have an infrastructure which takes into account the QoS provided by the service provider and the QoS desired by the service requester, and ultimately find the (best possible) match between the two during service discovery.
However, there are many aspects of QoS important for Web services and different classes of services may use a large and varying number of non-functional attributes to describe their QoS properties. For example, \textbf{bits per second} will be an important criteria to a service which provides online streaming multimedia, as opposed to, \textbf{security} for a service which provides online banking. As a result, we categorize them into: \textit{domain dependent} and \textit{domain independent} attributes. As an example, Figure 4 shows the taxonomy that captures the QoS properties of those restaurant Web services which provide home delivery. The domain-independent attributes represent those QoS characteristics which are not specific to any particular service (or a community of services). Examples include, \textbf{Scalability}, \textbf{Availability} etc. A detailed list and explanation about such attributes can be found in [26]. On the other hand, the domain-dependent attributes capture those QoS properties which are specific to a particular domain. For example, the attributes \textbf{Overall RestaurantRating}, \textbf{PresentationDecor} etc. shown in Figure 4 correspond to the restaurant domain. As a result, the overall QoS taxonomy is flexible and enhanceable as different service providers (or communities) can define QoS attributes corresponding to their domain.

However, in certain cases, a user might consider some non-functional attributes valuable for his/her purpose (and hence, are defined in the user ontology), instead of all the attributes in the QoS taxonomy (Figure 4). We use those attributes to compose a quality vector comprising of their values for each candidate service. These quality vectors are used to derive a quality matrix, Q.

\textbf{Definition} (quality matrix): A quality matrix, $Q = \{V(Q_{ij}); 1 \leq i \leq m; 1 \leq j \leq n\}$, refers to a collection of quality attribute-values for a set of candidate services, such that, each row of the matrix corresponds to the value of a particular QoS attribute (in which the user is interested) and each column refers to a particular candidate service. In other words, $V(Q_{ij})$, represents the value of the i^{th} QoS attribute for the j^{th} candidate service. These values are obtained from the profile of the candidate service providers and mapped to a scale between 0 & 1 by applying standard mathematical maximization and minimization formulas based on whether the attribute is positive or negative. For example, the values for the attributes \textbf{Latency} and \textbf{Fault Rate} needs to be minimized, whereas \textbf{Availability} needs to be maximized. Also, to give relative importance to the various attributes, the users can specify a weight value for each attribute, which are used along with the QoS attribute values to give relative scores to each candidate service using an additive value function [17], f_{QoS}. Formally,

$$f_{QoS}(Service_j) = \sum_{i=1}^{m} (V(Q_{ij}) \times Weight_i) \quad (1)$$

where, m is the number of QoS attributes in Q. This function assumes mutual preferential independence [28], which says that, each attribute is important and does not affect the way in which one trades off the other attributes against each other.

For a particular service request query, our system selects one or more services which satisfies user’s constraints (in terms of IOPE’s) and has an overall score (for the non-functional attributes) greater than some threshold value specified by the user. If several services satisfy these constraints, then they would be ranked according to the user-specified ranking criteria (section 3.2.2). But, if no service exist, then an exception is raised and the user is notified appropriately. For example, let $S = \{S_1, S_2, S_3\}$ be the set of candidate service providers which match the requested IOPE’s. Assuming, that the user is interested in attributes \textbf{Scalability} and \textbf{Availability}, let the quality matrix be:

$$Q = \begin{pmatrix} S_1 & S_2 & S_3 \\ Scalability & 0.90 & 0.80 & 0.30 \\ Availability & 0.90 & 0.45 & 0.20 \end{pmatrix}$$

Further assuming that, the user specifies $Weight_{Scalability} = 0.80$, $Weight_{Availability} = 0.50$, and threshold score value, $U_{Threshold} = 0.50$, only S_1 and S_2 will be selected (after calculation of their respective f_{QoS} scores).
3.2.2 Service Ranking

In a real world scenario, given a service request, it is conceivable that there exist scores of service providers, which not only satisfy the functional requirements of the requester, but also the non-functional requirements. As a result, it is of vital importance to let the requesters specify some ranking criteria (as part of the service request query), which would rank the retrieved results (i.e., the list of potential service providers). The traditional approach for ranking the results of matchmaking is completely based on the degree of match [19,24] between the profiles of the service requester and service provider. In our framework also, we use degree of match to categorize (and implicitly order) the set of candidate service providers based on the functional requirements of the user. We further refine each category and select only those candidate service providers which satisfy the non-functional requirements of the user.

Although this is beneficial, we believe the requester should have additional capabilities to specify personalized ranking criteria as part of the service request query. For example, Chinese food restaurants which may not have the highest quality ratings for food tastiness, but provide speedier home delivery, may be of higher value for a person who is in a hurry (and hence wants faster food delivery), compared to a food connoisseur, who will have a preference for tastier food. As a result, the former user would want to rank the candidate service providers based on their promptness of delivery, whereas the latter would prefer to have the service providers ranked based on the quality of food they serve.

To achieve this, we introduce the notion of ranking attributes and a ranking function (based on those attributes), which will be used to rank the selected candidate service providers. Once the service providers are ranked, it is left at user’s discretion to select the most suitable provider (e.g., the user may do some trade off between the services which meet all the non-functional requirements, but not all the functional requirements exactly).

Definition (ranking attributes): The set of ranking attributes, \(R_A \), comprises of all the concepts (its sub-concepts, properties) in the domain QoS taxonomy which have correspondences (via interoperation constraints) to the concepts in the user ontology, \(O_U \), that capture the non-functional aspects/requirements of the user. For example, if \(O_U \) has a QoS concept ServicePerformance which has a correspondence to the concept Performance in the domain QoS taxonomy (Figure 4), then \(\{ \text{Performance}, \text{Throughput}, \text{Latency} \} \subseteq R_A \).

Definition (ranking function): Let \(S \) represent the set of candidate services which match the functional and non-functional requirements of the user, \(x \in R_A \) is the ranking attribute, and \(R_O \in \{\text{ascending,descending}\} \) is the ranking order, then: \(f_{\text{Rank}}(S,x,R_O) = S' \), is called the ranking function, which produces \(S' \), the ordered set of candidate services. For example, let \(S = \{S_1,S_2\} \) be the set of services selected based on the desired QoS properties (from the previous section/example), \(x = \{\text{Cost}\} \), and, \(R_O = \{\text{ascending}\} \). Assuming, \(\text{Cost} \) of \(S_1 \) is more than \(S_2 \), we have, \(f_{\text{Rank}}(S,x,R_O) = \{S_2,S_1\} = S' \).

4 Prototype Implementation

Figure 5 shows a simple architecture of our prototype implementation for discovery of Web services over the Semantic Web. Initially, the Service Providers advertise their services (namely, profile, process, grounding in OWL-S [4] terminology) with the Service Registry. This registry serves as a repository for the service advertisements, against which the service request queries are matched. At the time of registration, the Service Registering API parses the OWL-S descriptions (by using Jena\(^1\)) and converts an OWL ontology into a collection of JESS\(^2\) facts, which are stored as triples (i.e., \(\langle \text{Subject}, \text{Predicate}, \text{Object} \rangle \)) in the JESS KB. These facts are analogous to a row in database table, whereas, the fact’s slots correspond to the table columns. A named template defines the structure of a fact, which specifies the fact’s name

\(^1\)http://jena.sourceforge.net

\(^2\)http://herzberg.ca.sandia.gov/jess
and the number of slots. For example, the following statement defines a template named `restaurant` with slots for storing its `name`, `type` (e.g., Asian, American, Italian etc.), and `city`: `(deftemplate restaurant (slot name) (slot type) (slot city)). The JESS reasoning engine can infer more facts to ensure that all the `<S, P, O>` triples implied by the ontology are stored as facts in JESS KB. The Service Registering API also translates preconditions and conditions for outputs and effects in the service description ontology into JESS rules, which are also stored in the JESS KB. Typically, the JESS rules can be considered to be analogous to the conditional `if...then` statements used in various programming languages. This is because a JESS rule consists of a conditional expression, and a series of commands to execute when that expression is satisfied. The conditional expression occurs on the Left-Hand-Side (LHS) of a rule, whereas, the set of commands to be executed occur on the Right-Hand-Side (RHS). For example, the following defines a JESS rule named `wok-rule`, which prints out: “Master Wok chinese restaurant is located in NYC” if the corresponding fact exists in the knowledge base:

(defrule wok-rule
 (restaurant (name MasterWok) (type Chinese) (city NYC))
 ⇒
 (printout (“Master Wok chinese restaurant is located in NYC”)))

For our purposes, during the process of translating preconditions (or conditions for outputs and effects) into JESS rules, the LHS of the rule will represent a precondition, which encode the terms of the condition in JESS, and the RHS will be empty because we are only interested in knowing whether the LHS is satisfied (i.e., nothing needs to happen when it is). For example, let `Restaurant` be an OWL class with an URI “http://www.dining.com/classes.owl#Restaurant” and `<Restaurant rdf:ID=“Master Wok”>` an instance of the class. Then, a process which has a precondition that an instance of `Restaurant` class must exist (before it can be executed) in the JESS KB, could be represented as the following JESS rule:

(defrule restaurant-precondition
 (triple (subject ?x)
 (predicate “http://www.w3.org/1999/rdf-syntax-ns#type”)
 (object “http://www.dining.com/classes.owl#Restaurant”)))

Once all the JESS facts and rules for the service advertisements are stored in the JESS KB, they are evaluated during the matchmaking process against a service request.

The `Service Requester` specifies a request for service selection using the `Service Requesting API`. Such a request is also described using OWL-S. The requester also specifies the interoperation constraints (IC’s) between the terms and concepts of its ontologies to the domain ontologies. These ontologies along with the set of IC’s are stored in the `Ontology Database`. For our first prototype, these constraints are defined manually. However, we are working towards incorporating (semi) automatic approaches for specifying such correspondences [8]. With the help of these translations, the service requesting API transforms the requestor’s query, into a domain-specific query. In other words, the API transforms the original service request description (using the terms and concepts from the user ontology) into a pseudo description (using the terms and concepts from the domain ontologies). These descriptions are also translated into JESS facts and rules (as described above). The matchmaking engine then tries to find service advertisement(s) which match the user’s request. The matchmaking algorithm that we implemented is based on [24]. This algorithm typically uses subsumption reasoning to find similarity between service advertisements with the requests based on the match between inputs and outputs. We extend their algorithm by incorporating semantic matching based on service category, preconditions and effects (apart from inputs and outputs). Each of these matches are individually scored and the results aggregated to determine a set of `candidate service providers` (Section 3.2.1), which are then categorized based on their degree of match. These candidate service providers (for each category) are further refined based on whether they satisfy the non-functional requirements of the requester and then ranked on some user-specified ranking criteria (if any), e.g., physical distance between the requestor and the service. Finally, the user selects a service provider (from the ordered list of services) using his/her prudence.

5 Related Work

Recently, there have been a few proposals for Web services discovery based on OWL ontologies and Description Logic inferences [19,20,24]. We build on these approaches. However, the important distinction is that ontology translation and personalized service ranking forms a core part of our framework. With the help

We use JESS engine for doing subsumption reasoning.
of the interoperation constraints, the terms and concepts in the different ontologies are brought into correspondence which are used during the service discovery. The set of discovered services are then ranked/ordered based on the user-specified ranking criteria. On a similar note, doing ontology translation to support automatic interoperation between Web services is one of the facets of the WSMO framework [5]. Specifically, in the WSMO architecture various mediators (e.g., OO-Mediators) address the interoperability problems that arise when various Web services work together. In our framework, we realize the OO-Mediators by explicitly specifying the set of interoperation constraints which are stored in the Ontology Database (and Mapping Storage) and are accessed by the matchmaking engine for doing mediation. METEOR-S discovery [23] framework also addresses the problem of discovering services in a scenario where service providers and requesters may use terms from different ontologies. Their approach relies on annotating service registries (for a particular domain) and exploiting such annotations during discovery. Sycara et al. introduced LARKS [30] for describing agent capabilities and requests, and their matchmaking. The discovery/matching engine of the matchmaker agent is based on various filters of different complexity and accuracy which users can choose. However, the model lacks in defining how service requests will be specified by users. Also, LARKS assumes the existence of a common basic vocabulary for all users. Banaei-Kashani et al. developed the WSPDS system [7], a peer-to-peer discovery service with semantic-level matching capability. Their framework is guided by the principle that a decentralized design for Web services discovery is more scalable, fault tolerant and efficient as opposed to a centralized approach (e.g., UDDI [1]). WSPDS also semantically-annotates the WSDL files using the WSDL-S framework described in [6, 29]. One advantage of this approach is that it makes the WSDL-S file agnostic to any ontology representation language (e.g., OWL [2], WSMO [5]). However, at the same time, adopting such a framework means that WSDL files for the existing Web services would have to be rewritten, which is an additional overhead. Colgrave et al. [13] also proposed a similar ontology-language independent approach for service discovery in UDDI based on external matching. Their framework allows service providers to publish the location of external descriptions of their service capabilities in the UDDI registry, whereas service requesters can indicate that they would like external description matching to be performed for their requests by the registry. The UDDI registry can then select suitable external matching services and dynamically invoke the selected matching service to carry out external description matching of compatible services against the requesters requirements, which are also specified as external descriptions. Another interesting approach for discovering semantic web services is proposed in [18]. Here, the authors adopt a 2-stage matchmaking process, during which they consider static and dynamic aspects of service descriptions. Such dynamic aspects capture the various contracting capabilities of the services, hence providing more accurate results to a request.

For related work in incorporating QoS attributes with Web services, there is research related to describing, advertising and signing up to Web and Grid services at defined QoS levels. A good summary about them can be found in [15]. However, one drawback of such approaches (e.g., IBM’s Web Service Level Agreement Language) is that they are mainly developed for XML-based specification of SLA’s, customized for different Web services. As opposed to them, we specify a QoS taxonomy comprising of domain-dependent (and independent) QoS attributes. This taxonomy is based on OWL instead of a purely XML architecture, which allows a better understanding and specification of the service advertisements because of well-defined cardinality, domain and range constraints. Zhou et al. [32] also proposed a DAML-QoS ontology for specifying various QoS properties and metrics. However, their framework assumes the existence of a single QoS ontology for the service providers and requesters, and hence does not take into consideration the specification of semantic correspondences. Also, there is no provision for the user’s to specify ranking criteria (based on non-functional attributes) for service selection. Similarly, QoS ontology-based service discovery was proposed in [10]. Here, the authors propose a service ontology architecture for service publication and discovery that extends the traditional UDDI registry functionalities. An analogous approach to extend the functionality of UDDI was suggested by Ran [27]. However, this approach tried to extend the original UDDI data structure for incorporating QoS properties, as a result of which the existing (and widely adopted) UDDI frameworks might have to be re-implemented.

There is also a lot of work in semantic interoperability and ontology mapping. Noy [22] summarizes many of these approaches. We leverage those frameworks for specifying semantic correspondences. However, the service requesters in our system currently specify the ontology mappings manually. Such an approach does not scale up when the ontologies are large. Hence, there is a need to develop automated technologies for specifying such mappings. We intend to build on the recent techniques [14,31] to automating mappings between ontolo-
gies to assist users in this process. Another limitation of our framework is that we do not handle intersection matches between service requests and service advertisements. In this context, the work related to service discovery by exploiting service composition [11] is of our interest.

6 Conclusion

The work proposed in this paper provides an approach for flexible discovery of Web services over the Semantic Web. We lay stress on the fact that, since different users may use different ontologies to specify the desired functionalities and capabilities of a service, some kind of ontology mapping is needed during service discovery, such that terms and concepts in the service requester’s ontologies are brought into correspondence with the service provider’s ontologies. We also propose a taxonomy for the non-functional attributes, namely QoS, which provide a better model for capturing various domain-dependent and domain-independent QoS attributes of the services. These attributes allow the users to dynamically select services based on their non-functional aspects. Finally, we introduced the notion of personalized ranking criteria, which is specified as part of the service request, for ranking the (discovered) candidate service providers (e.g., ranking service providers from high to low based on their Availability). Such a criteria ‘enhances’ the traditional ranking approach, which is primarily based on the degree of match [19, 24]. Our prototype implementation serves as a proof-of-concept by executing the examples presented in this paper. Some of our work in progress is aimed at extending our approach to service discovery, to support service invocation and workflow composition for specific data-driven applications in computational biology [25].

Acknowledgment. This research was supported in part by grants from the National Science Foundation (0219699) and the National Institutes of Health (GM066387) to Vasant Honavar.

References

[17] R. L. Keeney and H. Raiffa. Decisions with Multi-

