A New Scorpionate Ligand: Tris(4,4-dimethyl-2-oxazolinyl)borate and Its Zirconium(IV) Complexes

James Francis Dunne
Iowa State University, jfdunne@iastate.edu

Jiachun Su
Iowa State University, jcsu@iastate.edu

Arkady Ellern
Iowa State University, ellern@iastate.edu

Aaron D. Sadow
Iowa State University, sadow@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs
Part of the Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/226. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
A New Scorpionate Ligand: Tris(4,4-dimethyl-2-oxazolinyl)borate and Its Zirconium(IV) Complexes

Abstract
The first example of a new class of oxazoline-based scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate, [ToM]−, is prepared by reaction of 2-lithio-4,4-dimethyl-2-oxazolide and 0.3 equiv of dichlorophenylborane. The steric bulk of this ligand is greater than that of tris(3,5-Me2-pyrazolyl)borate (Tp*), as quantified by comparison of solid angles of crystallographically characterized zirconium(IV) complexes.

Keywords
Oxazoline (Oxa), scorpionate ligand, chemical modification, ligands, nitrogen compounds, zirconium

Disciplines
Chemistry

Comments
A New Scorpionate Ligand: Tris(4,4-dimethyl-2-oxazolinyl)borate and Its Zirconium(IV) Complexes

James F. Dunne, Jiachun Su, Arkady Ellern, and Aaron D. Sadow*

Department of Chemistry, U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111

Received March 18, 2008

Summary: The first example of a new class of oxazoline-based scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate, $[\text{Tp}^*\text{Bu}]$, is prepared by reaction of 2-lithio-4,4-dimethyl-2-oxazolidine and 0.3 equiv of dichlorophenylborane. The sterically encumbered tris(pyrazolyl)borate (Tp*), as quantified by comparison of solid angles of crystallographically characterized zirconium(IV) complexes.

Sterically encumbered tris(pyrazolyl)borate ligands, such as Tp* (HB(3,5-Me2-pyrazolyl)), TpBuMe (HB(3-Bu-5-Me-pyrazolyl)), and TpMe6 (HB(3-mesitylpyrazolyl)), have recently captured attention as useful ancillary ligands in early transition metal chemistry.1–3 Early transition metal complexes of these bulky ligands as well as those of parent tris(pyrazolyl)borate (Tp) show interesting stoichiometric chemistry2,8,9 and display catalytic activity in reactions such as olefin polymerization.2,4,8a,9,10 However, unsymmetrically substituted Tp derivatives (e.g., 3-mesitylpyrazolyl) are susceptible toward isomerization processes, giving mixtures of 3- and 5-substituted tris(pyrazolyl)borate complexes.4 In highly reactive complexes such as $[\text{Zr}(\kappa^3-\text{Tp})^*\text{CH}2\text{C}6\text{H}5]_2^{+}$, ligand decomposition through B^-N cleavage hinder possible utility in catalysis.5 In fact, isomerization via 1,2-sigmatropic shifts and B^-N bond cleavage are common reaction pathways for pyrazolylborate ligands in a range of transition metal complexes.1c,d,5,11

To avoid this decomposition mechanism, we designed the tris(oxazolyl)borate scorpionate ligand that contains B–C linkages, proposed to have greater resistance to cleavage and isomerization processes.12 The synthesis of tris(4,4-dimethyl-2-oxazolinyl)phenyl borate, $[\text{ToM}]^-$, the first example of this new ligand class, and its coordination chemistry in new zirconium (IV) complexes are reported here. Lithium tris(4,4-dimethyl-2-oxazolin-2-yl)phenyl borate (Li[ToM]) is prepared by deprotonation of 4,4-dimethyl-2-oxazoline with n-BuLi (1.05 equiv) at -78°C followed by addition of 0.30 equiv of dichlorophenylborane (eq 1).

Quantitative deprotonation of the oxazoline is necessary, as mixtures of 2H-oxazoline, 2-lithio-oxazolidine, and dichlorophenyloborane produce Li[ToM] and several unidentified products. Independent experiments show that interaction of 4,4-dimethyl-2-oxazoline and PhBCl2 in THF accounts for two of the side products. Also, a slight excess of 2-lithio-oxazolidine (0.30 equiv of PhBCl2) is necessary, as 0.33 equiv of PhBCl2 and shorter reaction times (< 26 h) afford inseparable mixtures of Li[ToM] and a species assigned as bis(4,4-dimethyl-2-oxazolin-2-yl)phenylborane on the basis of integration of its ^1H NMR spectrum and its 11B NMR chemical shift (−7.26 ppm).

The 1H NMR spectra of Li[ToM]$^+$ dissolved in benzene-d_6, chloroform-d_4, or methylene chloride-d_2 contained broad resonances at 1.4 and 3.3 ppm as well as aryl resonances. In contrast, the 4,4-dimethyl and methylene groups (at 1.19 and 3.60 ppm) on equivalent oxazoline rings gave sharp singlet resonances in acetonitrile-d_3. The formation of the borate center is supported by the integrated ratio of oxazoline methyl to phenyl resonances (18:5 H) as well as the broad singlet observed at -16.9 ppm in the 11B NMR spectrum.

This salt elimination route to Li[ToM]$^+$ is related to the synthesis of bis(oxazolyl)diphenylborate ligands (borabox).

Amine elimination also proved to be a viable route for the preparation of [ToM]$^+$Zr complexes. Thus, reaction of Zr(NMe$_2$)$_2$ and H[ToM]$^+$ in benzene yields [Zr(κ$_3$-ToM)(NMe$_2$)$_3$] as a white solid (73%, eq 4). A micromolar scale reaction was monitored in situ by 1H NMR spectroscopy, revealing that 1 equiv of NHMe$_2$ is rapidly formed (<10 min). The 1H NMR spectrum (benzene-d_6) of the C$_3$-symmetric product contained one set of oxazoline resonances (3.41 and 1.09 ppm) and a singlet corresponding to equivalent NMe$_2$ groups (3.15 ppm).

The same compound is also obtained by heating a mixture of Li[ToM]$^+$ and ZrCl$_4$ in toluene to reflux for 24 h. In fact, [Zr(κ$_3$-ToM)(NMe$_2$)$_3$] is recovered without decomposition after isolated material is redissolved and heated in toluene at reflux for 7 days. C$_3$-Symmetric [Zr(κ$_3$-ToM)Cl$_3$] is characterized by equivalent oxazoline groups that are observed in the 1H NMR spectrum (benzene-d_6) as singlet resonances at 3.28 (CH$_2$) and 1.36 ppm (Me). A comparison of the IR spectra of Li[ToM]$^+$ versus [Zr(κ$_3$-ToM)Cl$_3$] showed the stretching frequency of the C=N double bond shifts from 1607 cm$^{-1}$ to lower energy at 1545 cm$^{-1}$.

Amine elimination also proved to be a viable route for the preparation of [ToM]$^+$Zr compounds. Thus, reaction of Zr(NMe$_2$)$_2$ and H[ToM]$^+$ in benzene yields [Zr(κ$_3$-ToM)(NMe$_2$)$_3$] as a white solid (73%, eq 4). A micromolar scale reaction was monitored in situ by 1H NMR spectroscopy, revealing that 1 equiv of NHMe$_2$ is rapidly formed (<10 min). The 1H NMR spectrum (benzene-d_6) of the C$_3$-symmetric product contained one set of oxazoline resonances (3.41 and 1.09 ppm) and a singlet corresponding to equivalent NMe$_2$ groups (3.15 ppm).

The acidic pro-ligand H[ToM]$^+$ is prepared by flash chromatography of Li[ToM]$^+$ on silica gel in C$_6$H$_{14}$/i-PrOH/NEt$_3$ (15:1:1), giving the product as an off-white solid (eq 2).

$\text{Li[ToM]}^+ \xrightarrow{\text{sila gel}} \text{H[ToM]}^+$

The 1H NMR spectrum of H[ToM]$^+$ (benzene-d_6) contained sharp singlet resonances at 1.02 (Me) and 3.55 ppm (CH$_2$), in contrast to the broad resonances observed for Li[ToM]$^+$ in this solvent. In acetonitrile-d_3, the oxazoline peaks are shifted downfield by 0.1 and 0.3 ppm (to 1.29 and 3.90 ppm) in comparison to Li[ToM]$^+$. Crystals of H[ToM]$^+$ are obtained from the chromatography solvent mixture after slow evaporation. Although the crystals diffracted weakly, single-crystal X-ray diffraction confirms the constitution and connectivity of [ToM]$^+$, in particular the formation of a tetrahedral borate center containing four B–C bonds (Figure 1).

The symmetry of [ToM]$^+$ in the solid state is C$_s$, as two of the oxazolines’ C=N are coplanar (N1=C7–C17=N3 dihedral $=0^\circ$), oriented toward each other as if to form a bidentate chelate, and related by a mirror plane. That mirror plane contains the phenyl group and the third oxazoline. However, the 1H NMR spectrum of H[ToM]$^+$ (benzene-d_6) as well as via amine elimination with H[ToM]$^+$ and Zr(NMe$_2$)$_2$. A salt elimination reaction occurs when a mixture of Li[ToM]$^+$ and 1.05 equiv of NHMe$_2$ is rapidly formed (<10 min). The 1H NMR spectrum (benzene-d_6) of the C$_3$-symmetric product contained one set of oxazoline resonances (3.41 and 1.09 ppm) and a singlet corresponding to equivalent NMe$_2$ groups (3.15 ppm).

\[\text{Li[ToM]}^+ \xrightarrow{\text{CH}_2\text{Cl}_2, 4 \text{ days}} \text{LiCl} \xrightarrow{-}\text{Ph-BZrCl}_3 \text{ [Zr(κ$_3$-ToM)Cl$_3$]} \text{ 77.8% yield}\]

In contrast, salt metathesis of [Zr(κ$_3$-ToM)Cl$_3$] and 3 equiv of LiNMe$_2$ (benzene-d_6, room temperature, 24 h) provides a C$_3$-symmetric product. The 1H NMR spectrum of the crude reaction mixture revealed a 1:1 ratio of [ToM]$^+\cdot$NMe$_2$ groups,
providing support for its assignment as \([\text{Zr}(\kappa^3-\text{To}^3)(\text{NMe}_2)\text{Cl}_2]\). Under more forcing conditions (6 equiv of Li[NMe]_2, 24 h, 60 °C), \(\text{Zr}([\text{NMe}_2]_4\) and \(\text{Li}[\text{To}^3\text{M}]\) are obtained. Although substitution of one chloride in \([\text{Zr}(\kappa^3-\text{To}^3)\text{Cl}_3]\) by \([\text{NMe}_2]^-\) occurs, formation of \([\text{Zr}(\kappa^3-\text{To}^3)(\text{NMe}_2)]\) via salt elimination has not been observed.

To further explore chloride substitutions, a toluene solution of \([\text{Zr}(\kappa^3-\text{To}^3)\text{Cl}_3]\) and KO-\(t\)-Bu was stirred overnight at room temperature to provide \([\text{Zr}(\kappa^3-\text{To}^3)(\text{O-}t\text{-Bu})\text{Cl}_2]\).

The \(^1\text{H}\) NMR spectrum of \([\text{Zr}(\kappa^3-\text{To}^3)(\text{O-}t\text{-Bu})\text{Cl}_2]\) highlights its \(C_s\)-symmetry. As a result of the mirror plane that includes the tert-butoxide oxygen, zirconium center, and \(\text{trans-oxazoline}\), the \(-\text{CMe}_2\) and \(-\text{CH}_2\) groups on that ring are equivalent and appear as singlet resonances (1.52 and 3.38, respectively, labeled as \(\text{trans}\)) in the Newman projection in Figure 2).

Although the other two oxazoline rings are related by the mirror plane, the \(-\text{CH}_2\) within each ring are \(\text{endo}\) or \(\text{exo}\) with respect to the tert-butoxide and were observed as two coupled doublets (3.38 and 3.25 ppm, \(^{2}J_{\text{HH}} = 8.72\) Hz). The methyl substituents in the \(\text{CMe}_2\) groups of these oxazolines are also inequivalent (but not coupled), resulting in two singlet resonances (1.45 and 1.05 ppm are \(\text{exo}\) and \(\text{endo}\), respectively, assigned with a NOESY experiment). Cross-peaks in a \(^{1}\text{H}\)–\(^{15}\text{N}\) HMBC experiment verify that these two peaks are \(\text{cis}\) to the tert-butoxide, as they correlate to a \(^{15}\text{N}\) resonance at 239 ppm (\(N \text{~trans} \) is at 241 ppm).

A solid-state structure of the product confirmed the N,N,N-\(\kappa^3\)-coordination of \([\text{To}^3\text{M}]^-\) to zirconium, as well as the overall connectivity of the molecule (Figure 3). The zirconium center’s geometry is distorted octahedral with a relatively short \(Zr-\text{O}\) bond (1.891(3) Å) for a six-coordinate zirconium geometry is distorted octahedral with a relatively short \(Zr-\text{O}\) bond (1.891(3) Å) for a six-coordinate zirconium center. The size of this pocket is best described by 3.76 to 4.23 Å, creating an unusual steric pocket around the zirconium center. Thus, all Zr\(\text{-CH}_2\text{-NMMe}_2\) are positioned equatorial (pointed toward zirconium) or axial.

Figure 2. Newman projection illustrating the \(C_s\)-symmetry of \([\text{Zr}(\kappa^3-\text{To}^3)(\text{O-}t\text{-Bu})\text{Cl}_2]\). The groups attached to N represent \(\text{CH}_2\) and \(\text{CMe}_2\) substituents on the oxazoline.

Figure 3. ORTEP diagram of \([\text{Zr}(\kappa^3-\text{To}^3)(\text{O-}t\text{-Bu})\text{Cl}_2]\) at 50% probability. Hydrogen atoms are omitted for clarity.

to 43% of a sphere’s surface. For comparison, the solid angle for \(\text{Tp}^*\) is 3.62 steradians (130° corresponding to 30% of a sphere’s surface, determined for \(\text{To}^3\text{M}(\text{CH}_2\text{C}_6\text{H}_5)_3\)).

These values for solid angles show that the 4,4-dimethyl-oxazolino substituents in \([\text{To}^3\text{M}]^-\) encompass the zirconium center to a greater extent than the 3,5-dimethylpyrazole groups in \(\text{Tp}^*\). Thus, trans(4,4-dimethyl-2-oxazolino)borate may offer enhanced steric protection for highly reactive metal centers, such as those of carboxylonium alkyl and hydride complexes. Additionally, optically active \(C_3\)-symmetric tris(oxazoliny)borates are readily accessible due to the availability of enantiopure \(2\text{H}-\)oxazolines. These chiral tris(oxazolino)borates will complement the chemistry of the related optically active tris(pyrazolyl)borates pioneered by Tolman. We are currently investigating our achiral complexes as catalysts, as well as preparing chiral analogues for stereoselective polymerizations.

Acknowledgment. We thank the U.S. DOE office of Basic Energy Sciences, through the Catalysis Science Grant No. AL-03-380-011, the Roy J. Carver Charitable Trust, and Iowa State University for financial support. We also thank Dr. Bruce Fulton for assistance with \(^{15}\text{N}\) NMR measurements.

Supporting Information Available: Experimental procedures, characterization, and X-ray crystallographic data are available free of charge at http://pubs.acs.org.

OM800252P