Localized Charge Distributions. I. General Theory, Energy Partitioning, and the Internal Rotation Barrier in Ethane

Walter Bernard England
Iowa State University

Mark S. Gordon
Iowa State University, mgordon@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the [Chemistry Commons](http://lib.dr.iastate.edu/chem_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/257. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Localized Charge Distributions. I. General Theory, Energy Partitioning, and the Internal Rotation Barrier in Ethane

Abstract
Energy-localized orbitals are used to define localized distributions of positive charge and an energy partitioning of ab initio molecular orbital wave functions in the localized representation is derived. This partitioning is specialized to the INDO approximation using results from Ruedenberg's theory of chemical bonding. An interpretation is given for the internal rotation barrier in ethane with particular emphasis on the effects of geometry optimization. It is found that the origin of the barrier can be ascribed to one-electron interference energy differences among vicinal hydrogens, and that these are related to hyperconjugate effects.

Keywords
Institute for Atomic Research

Disciplines
Chemistry

Comments

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/257
TITLE: Localized charge distributions. I. General theory, energy partitioning, and the internal rotation barrier in ethane

AUTHOR: Walter England, Mark S. Gordon

PUBLICATION: Journal of the American Chemical Society

PUBLISHER: American Chemical Society

DATE: Sep 1, 1971

Copyright © 1971, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.