Localized Charge Distributions. V. Internal Rotation Barriers in Methylamine, Methyl Alcohol, Propene, and Acetaldehyde

Mark S. Gordon
North Dakota State University - Main Campus, mgordon@iastate.edu

L. G. England
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/254. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Localized Charge Distributions. V. Internal Rotation Barriers in Methylamine, Methyl Alcohol, Propene, and Acetaldehyde

Abstract
The internal rotation barriers of methylamine, methyl alcohol, propene, and acetaldehyde are investigated within the context of localized charge distributions defined in earlier papers. It is shown that, as for ethane, hydrogen peroxide, and borazane, the barriers can be understood in terms of changes in vicinal interference interactions within those orbitals adjacent to the axial bond. These vicinal interactions are compared with those in molecules studied previously. Such a comparison leads to a straightforward explanation of the observed trends in the barriers.

Disciplines
Chemistry

Comments
Reprinted (adapted) with permission from Journal of the American Chemical Society 95 (1973): 1753, doi:10.1021/ja00787a010. Copyright 1973 American Chemical Society.

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/254
Localized charge distributions. V. Internal rotation barriers in methylamine, methyl alcohol, propene, and acetaldehyde

Author: Mark S. Gordon, Walter. England

Publication: Journal of the American Chemical Society

Publisher: American Chemical Society

Date: Mar 1, 1973

Copyright © 1973, American Chemical Society

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.