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Open Effects: A Hybrid Type-and-Effect System to Tackle Open World
Assumption and its Application to Optimistic Concurrency

Abstract
This work tackles the challenge of applying a type-and-effect system to reason about object-oriented programs
with an open world assumption. An open world assumption challenges the design of a type-and-effect system
when (1) all subclasses of a class are not known, and (2) an upper bound on effects of all subclasses is not
available, e.g. when an effect specification is not available for that class – a common phenomenon in modern
OO programs. The main problem is in the computation of the effects of a dynamically dispatched method
invocation, because all possible dynamic types of its receiver are not known statically, and no static upper
bound in the form of effect specification is available. Our new concept open effects solves these problems. The
basic idea is to take a programmer-guided hybrid approach. Instead of using a predefined upper bound, our
type-and-effect system takes the effects of a programmer-selected dynamically dispatched method call as open
effects that encapsulate statically known information about the call, e.g. static type of receiver. The static part
of our type-and-effect systems treats open effects as unknown, but the dynamic part of our type-and-effect
systems reifies open effects. We also apply open effects to create a sound trust-but-verify type-and-effect
system, to better enable concurrent execution of dynamically dispatched method invocations. If a programmer
annotates the receiver of a certain method invocation as open, then the type system trusts the programmer
and assigns an open effect to the method. The open effect is, optimistically, not supposed to conflict with
other effects. Such optimistic assumptions are verified statically, if possible, or at runtime otherwise.
Performance evaluations of an open effects-based type system for concurrency, on various benchmarks, show
that it incurs negligible annotation and runtime overheads.
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Abstract
This work tackles the challenge of applying a type-and-
effect system to reason about object-oriented programs with
an open world assumption. An open world assumption chal-
lenges the design of a type-and-effect system when (1) all
subclasses of a class are not known, and (2) an upper bound
on effects of all subclasses is not available, e.g. when an ef-
fect specification is not available for that class – a common
phenomenon in modern OO programs. The main problem is
in the computation of the effects of a dynamically dispatched
method invocation, because all possible dynamic types of its
receiver are not known statically, and no static upper bound
in the form of effect specification is available. Our new con-
cept open effects solves these problems. The basic idea is to
take a programmer-guided hybrid approach. Instead of using
a predefined upper bound, our type-and-effect system takes
the effects of a programmer-selected dynamically dispatched
method call as open effects that encapsulate statically known
information about the call, e.g. static type of receiver. The
static part of our type-and-effect systems treats open effects
as unknown, but the dynamic part of our type-and-effect sys-
tems reifies open effects. We also apply open effects to create
a sound trust-but-verify type-and-effect system, to better en-
able concurrent execution of dynamically dispatched method
invocations. If a programmer annotates the receiver of a cer-
tain method invocation as open, then the type system trusts
the programmer and assigns an open effect to the method.
The open effect is, optimistically, not supposed to conflict
with other effects. Such optimistic assumptions are verified
statically, if possible, or at runtime otherwise. Performance
evaluations of an open effects-based type system for concur-
rency, on various benchmarks, show that it incurs negligible
annotation and runtime overheads.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
A type-and-effect system is a very important reasoning aid
[23, 36]. It has been shown to help programmers in analyzing
locking disciplines [4], dynamic updating mechanisms [38],
checked exceptions [6, 32], detecting race conditions [12],
etc. Basic idea behind a type-and-effect system is to add an
encoding of computational effects into semantic objects of a
language and a discipline for controlling these effects into its
type system [49]. These effects describe how the state of a
program will be modified by expressions in the language,
e.g. a field expression may have a read or write effect to
represent reading from or writing into memory [30, 49].

The open world assumption [39], which says class hier-
archies can be extended even after static type checking, is an
important property of modern object-oriented languages that
enables modularity and reuse, and is key to creating libraries
and frameworks. For example, it allows programmers to ex-
tend abstract classes defined in libraries and continue to use
algorithms defined in libraries without having to type check
those libraries again. However, this assumption makes the
design of a type-and-effect system challenging. The main
problem is in the computation of the effects of a dynamically
dispatched method invocation, because all possible dynamic
types of its receiver may not be known statically.

One solution is to use static effect annotations that pro-
vide an upper bound on the effects of a dynamically dis-
patched method [10, 25]. However, such effect annotations
are not yet broadly available. Furthermore, the upper bound
given by effect annotations should be broad enough, to cover
the effect of all methods that could be possibly executed
as the result of invocation of the dynamically dispatched
method, but not too broad to lose effectiveness.

We put forth a new approach for handling an open world
assumption in a type-and-effect system. Basic idea is to take
a programmer-guided hybrid approach. We allow program-
mers to instruct the type-and-effect system to take the effects
of certain dynamically dispatched method invocation as an
unknown open effect statically (instead of using a conser-
vative estimate), make static effect-guided decisions while
assuming these unknowns, and if necessary verify those de-
cisions when the receiver’s dynamic type is known.
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Library
1 class Pair {
2 int fst, snd;
3 @open Op f; // Let static effects be open.
4 // If needed, defer effect-guided decisions.
5 Pair init() { fst = 1; snd = 2; this }
6 Op setOp(Op f) { this.f = f }
7 int apply() {
8 // fork{e1,e2} executes e1 and e2 concurrently if
9 // their effects don’t conflict, otherwise sequentially

10 fork{
11 fst = f.op(fst),
12 snd = f.op(snd)
13 }
14 }
15 }

17 class Op {
18 int res;
19 Op init() { res = 0; this }
20 int op(int o) { 0 }
21 }

Prog1: a client program that uses Library
22 class Prefix extends Op {
23 int op(int o) { // Effects: writes res
24 res += o
25 }
26 }
27 Pair pr = new Pair().init();
28 Op pf = new Prefix().init();
29 pr.setOp(pf);
30 pr.apply()

Prog2: another independent client program that uses Library
32 class Hash extends Op {
33 int op(int o) { // Effects: None
34 int key = o;
35 // Hash computation
36 key = ..
37 }
38 }
39 Pair pr = new Pair().init();
40 Op ha = new Hash().init();
41 pr.setOp(ha);
42 pr.apply()

Figure 1. Library class Pair with open field f and clients Prog1 and Prog2 extending Op.

1.1 Motivating Example: Optimistic Concurrency
To motivate, consider computation of the effects of the
dynamically dispatched method op in Figure 1 to decide
whether to run two invocations of op, on lines 10–13, con-
currently. The code contains the library classes Pair and Op
which represent a pair of integers and operations carried out
on pairs of elements, respectively. It also contains client pro-
grams Prog1 and Prog2 that extend the library class Op and
override its method op, in the Prefix and Hash classes.
Prefix computes a prefix sum in its effectful overriding of
op with the effect of writing into the field res, shown as
wr(res), whereas Hash computes a hash in its pure method
op with no memory effects, i.e. /0. To specify the effects of
the method op, in a typical type-and-effect system, its effects
should be broad enough to conservatively cover the effects
of its overriding methods in all of its subtypes, i.e. Prefix,
Hash, and possibly other still unknown subtypes. This re-
sults in the effect wr(res) for the dynamically dispatched
method op which is the union of the effects of its overriding
methods, i.e. union of wr(res) and /0, in all of its subtypes.

For two dynamically dispatched methods, a typical type-
and-effect system may disallow the concurrent execution of
their invocations, because their broadly specified static ef-
fects may conflict. However, such a conflict may not actually
happen at runtime, depending on the dynamic types of their
receivers. To illustrate, consider the two invocations of the
method op, on lines 10–13 of Figure 1, in the fork expres-
sion of the apply method. This, somewhat nontraditional,
fork expression fork{e1,e2} [9] executes the expressions e1
and e2 concurrently if their effects do not conflict, and runs
them sequentially otherwise. For a memory location, writing
into the location conflicts with other reads and writes of the

same location. A typical type-and-effect system would seri-
alize the execution of these invocations of the method op,
because their static effects wr(res) conflict with each other.
Such serialization of these method invocations makes sense
when their receiver f is of dynamic type Prefix, however,
these invocations could run concurrently, for example when
they have empty effects at runtime when their receiver f has
the dynamic type of Hash. A typical type-and-effect system
would miss such safe concurrency opportunities.

1.2 Open Effects for Optimistic Concurrency
We now explain the notion of open effects by showing its us-
age in creating a sound trust-but-verify type-and-effect sys-
tem for optimistic concurrency. This system uses program-
mer’s knowledge to better expose and enable safe concurrent
execution in the presence of dynamically dispatched method
invocations in open world object-oriented programs.

An effect system based on our work would have two
kinds of effects: open and concrete effects. Concrete effects
are standard. For example, a concrete effect may represent
standard memory effects, which are reads and writes of
memory locations [49]. An open effect represents the effects
of a dynamically dispatched method invocation where the
dynamic type of its receiver is not known statically, but
the receiver is qualified by the programmer with an open
annotation @open. We call such receiver references an open
reference. An open effect is concretized at runtime when
the dynamic type of open references is known. So, an effect
system based on our work would be hybrid with two parts:

• Static part, that (i) computes the effects of the methods,
one method at a time and independent of the dynamic
types of the receivers of dynamically dispatched method
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invocations; and (ii) possibly verifies the optimistic as-
sumptions. Optimistic concurrency is enabled by this part
of our type system as follows. If a programmer anno-
tates the receiver of certain method invocations as @open,
this static part trusts the programmer and assigns an open
effect to the method invocation, which supposedly does
not conflict with other effects, i.e. disjointness assump-
tion. Such optimistic disjointness assumptions are veri-
fied statically, if enough static information is available,
or at runtime otherwise.

• Dynamic part, that (iii) concretizes the statically com-
puted open effects, on demand, and updates them by
tracking open references and their values, and (iv) veri-
fies, using runtime checks, optimistic assumptions made
by the static part. For example, for optimistic concur-
rency this dynamic part verifies the disjointness assump-
tions that could not be verified statically.

We believe that this novel approach of using the program-
mer’s knowledge of their program to selectively combine
static and dynamic effect analyses [21, 41, 42] could help
bring out the best of both worlds, and offers a complemen-
tary approach for using type-and-effect systems to reason
about programs in object-oriented languages with an open
world assumption.

1.3 Revisiting Motivating Example
To revisit our example, imagine that a programmer marked
the field f of class Pair as open using an @open annota-
tion, on line 3 of Figure 1. Doing so, the programmer is hint-
ing the type-and-effect system that there may be parallelism
opportunities when invoking dynamically dispatched meth-
ods on the receiver f. The static part of our system trusts
the programmer and assigns the open effects open(f op γ1)
and open(f op γ2) to the method invocations f.op(fst),
on line 11, and f.op(snd), on line 12, respectively. The
open effect open(f op γ1) is the effect of the invocation of
the dynamically dispatched method op on the open receiver
f with the statically unknown effect of γ1. The open effect
open(f op γ2) is similar. These open effects are assumed to
not conflict with each other and other effects.

The static part continues by computing the effect of the
expression fst = f.op(fst) to be writing and reading
fields fst and f plus the effect of the invocation of the
method op on the open receiver f, i.e. σ1 = {wr(fst),rd(f ),
open(f op γ1)}1. Similarly, the effects of snd = f.op(snd)

is σ2 = {wr(snd),rd(f ), open(f op γ2)}. These two expres-
sions, of the fork expression on lines 10–13 could be exe-
cuted concurrently if their effects σ1 and σ2 do not conflict,
which in turn boils down to the verification of their open
effects not conflicting, since wr(fst) and wr(snd) do not con-
flict. This could be verified statically if there is enough static
information about the unknown effects of the method op

1 Write effect of a field, e.g. wr(fst) covers its read effect, e.g. rd(fst) [9].

or otherwise dynamically. Different modular static analyses
could be integrated into the open effects’ type-and-effect
system to boost its static analysis. In this work, we illustrate
the integration of a modular alias analysis [21] as well as the
integration of effect specifications [36? ]. Our implementa-
tion integrates other static analyses such as purity analysis
[41] and array effect analysis [42].

Open effects enables better exposure of safe concurrency
opportunities, in the presence of dynamically dispatched
method calls, as follows: for two subexpressions of a fork
expression with their statically computed effects, which may
contain open effects, there are three answers for the question
of do their effects conflict statically?: yes (conflict), no (dis-
joint), and unknown (may or may not conflict). Using open
effects and depending on the disjointness of the effects of its
subexpressions, a fork expression is soundly and statically
translated to:

(1) Yes (conflict): an unconditional sequential execution of
subexpressions of the fork expression.

(2) No (disjoint): an unconditional parallel execution of
subexpressions of the fork expression.

(3) Unknown (may or may not conflict): a conditional in
which the unknown open effects of subexpressions are
concretized and tested for conflicts. If the concretized
effects conflict then run the subexpressions sequentially,
i.e. (1), else in parallel, i.e. (2).

In Figure 1, there is not enough static information to decide
if σ1 and σ2, especially their open effects, conflict and thus
the case (3) above applies and the fork expression, on lines
10–13, translates to a conditional. This brings into the pic-
ture the dynamic part of our type-and-effect system that de-
cides the disjointness of effects that could not be decided
statically.

The dynamic part concretizes, or fills in, the unknown ef-
fects of open effects when the open references are known
at runtime. For example, upon the execution of the expres-
sion pr.setOp(pf), on line 29 of Prog1, the open refer-
ence f, of static type Op, in the open effects of open(f op γ1)
and open(f op γ2) is set to object pf, of the dynamic type
of Prefix. This causes these two open effects to be con-
cretized to wr(res), because the method op of type Prefix
has the effect of wr(res). With such concretization, the ef-
fects σ1 and σ2 conflict at runtime and thus the fork ex-
pression, and the invocations of the dynamically dispatched
method op, lines 10–13, is sequentialized. Unlike Prog1,
Prog2 assigning the object ha of dynamic type Hash to the
open reference f, via pr.setOp(ha) on line 41, and causes
the open effects open(f op γ1) and open(f op γ2) to be con-
cretized to empty set /0, because the method op of type Hash
is pure. This in turn allows the fork expression to be trans-
lated to concurrent execution of the invocations of method
op, as their effects σ1 and σ2 do not conflict. Depending
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on the dynamic type of the open field f, the fork expression
could run sequentially or in parallel.

1.4 Contributions
In summary, the main contributions of this work are the
following:

• Open effects and its usage in a trust-but-verify hybrid
type-and-effect system to expose safe concurrency in
open world concurrent programs with dynamic dispatch;

• Illustration of the integration of static alias analysis and
effect specifications into open effects;

• Static semantics of open effects, in §2, and its dynamic
semantics, in §3;

• Proof of soundness for open effects, in §3;
• OpenEffectJ , an OpenJDK prototype implementation of

open effects; and
• Speedup and overhead evaluations along with the inter-

play of static and dynamic parts of OpenEffectJ in §4.

§5 compares open effects with previous work on reason-
ing about effects of programs in three categories of static,
dynamic and hybrid techniques; and §6 concludes the paper
after discussing some avenues for future work.

2. Open Effects: A Hybrid Type-and-Effect
System

Our type-and-effect system has a static and a dynamic part.
The static part encoded in the typing rules, (i) computes the
effects of the methods, one method at a time and independent
of dynamic dispatch; and (ii) verifies optimistic disjointness
assumptions of open effects, using the available static infor-
mation. This section presents select typing rules that form
the novel basis of our static effect computation using open
effects in the presence of dynamically dispatched methods.
A complete list of the typing rules and their auxiliary func-
tions can be found in our technical report [34].

2.1 Syntax
To encode open effects as a type-and-effect system, we use
OpenEffectJ , a core expression language, shown in Figure 2,
which is based on Classic Java [22]. The A-normal form syn-
tax of OpenEffectJ is standard except for open annotations
@open and the disjoint check expression e1#e2. The disjoint-
ness expression statically checks if the effects of the expres-
sions e1 and e2 are disjoint and evaluates to true if they are,
and false otherwise. The disjointness expression e1#e2 de-
cides the disjointness of the effects of e1 and e2 but does
not evaluate e1 and e2. Figure 2 shows fields annotated with
@open, i.e. open fields, however, we also support open local
variables and open parameters [34]. For simplicity, we as-
sume unique field names, up to α-renaming, and no method
overloading. The notations term and [term] denote a finite
possibly empty sequence and an optional term, respectively.

prog ::= decl e
decl ::= class c extends d { field meth }
field ::= [@open] t f;
meth ::= t m ( arg ){ e }
t ::= c | int | bool
arg ::= t var, where var 6= this
e ::= x | null | arg = e;e “Var, Null, Definition”
| x.m(x) | new c() “Call, New”
| x ◦ x | n | b | loc “Binary, Number, Boolean, Location”
| if x then e else e “Conditional”
| this.f | this.f = x “Get, Set Field”
| e # e “Disjointness Check”

c ∈ C , set of class names
d ∈ C ∪{Object}
f ∈ F , set of field names

where m ∈ M , set of method names
n ∈ N , set of natural numbers
b ∈ {true, false},boolean constants

x,var ∈ V ∪{this}, set of variable names
◦ ∈ {+,−,∗,/}, set of binary operations

loc ∈ L , set of locations

Figure 2. Syntax for OpenEffectJ .

Using the programmer’s knowledge in annotating only
certain receiver fields as open is to have as less overhead
as possible compared to other alternatives. One alternative is
to annotate types as open, however, it causes every reference
of that type and its subtypes to be treated as open references
which in turn could cause considerable concretization and
verification overhead, especially when all references of a
type have to pay the price for one reference being open. The
same applies to another alternative in which every field of
every object is considered open.

2.2 Type-and-Effect Attributes
Figure 3 shows OpenEffectJ’s type-and-effect attributes. The
type of a program and its declarations are given as OK,
whereas (t → t,σ) in c, specifies the type of a method de-
fined in class c with parameter types t, return type t and a
latent effect σ [49]. The latent effect of a method is the ef-
fects of the body of the method [49]. Finally, the attribute
(t,σ) specifies an expression of type t with the effects σ .

θ ::= OK “program/decl types”
| (t→ t,σ) in c “method types”
| (t,σ) “expression types”

Π ::= {vari 7→ ti}i∈N “type environments”
σ ,γ ::= /0 | > | σ ∪σ “effects”

| rd(f ) “read effect”
| wr(f ) “write effect”
| open(f m γ) “open effect”

Figure 3. Type-and-effect attributes for OpenEffectJ , based
on [25, 49].
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There are two kinds of effects in Figure 3: concrete effects
and open effects. Concrete effects are standard read and
write memory effects2 rd(f ) and wr(f ),3 that read and write
a field f, along with the empty effect /0 and the top effect
>. The top effect allows read and write effects of any field
[9]. An open effect open(f m γ) represents the effects of
a dynamically dispatched method m invoked on an open
receiver f marked with @open. The placeholder γ represents
the unknown effect of the body of the method m. We slightly
misuse the set notation for presentation purposes.

Type checking rules use a standard implicit fixed class
table CT which contains a list of program declarations [22].
Each method in the class table CT has its statically computed
effects as part of its signature. The typing rules use a type en-
vironment Π, which maps a variable name var to its type t.
The typing judgement Π ` e e′ : (t,σ) says that with the
typing environment Π the expression e is translated to the ex-
pression e′ and has the type t and the effects σ . The semantic
preserving translation does not change the type or the ef-
fects of expressions and in spirit is similar to elaboration in
languages such as ML [37]. Subtyping is denoted using the
relation <: which is the standard reflexive-transitive closure
of the declared subclass relationships [22] in CT .

2.3 Disjointness
Two expressions e1 and e2 can safely run in parallel, if
their effects do not conflict, i.e. they are disjoint. Figure 4
shows the typing rules for the disjoint expression e1#e2. This
expression statically checks if the effects of the expressions
e1 and e2 conflict and depending on the answer translates
into true, false or unknown.

Using open effects, the disjointness can be decided stati-
cally, provided enough static information is available, as in
the rules (T-DISJOINT) and (T-CONFLICT), or otherwise it is
deferred to runtime, as in (T-UNKNOWN). The availability of
such static information is dependent on the static analyses
integrated into the type system. First, we assume no extra
static analysis to focus on the basic ideas behind open ef-
fects. Later we discuss adding a modular alias analysis and
integrating effect specifications, as examples of static infor-
mation that could be helpful in making some of the disjoint-
ness decisions statically.

In (T-DISJOINT), if there is no open effects in the effects
of the expressions, i.e. ↓O (σ1) = ↓O (σ2) = /0, then effects
of the expressions are disjoint only if their concrete effects
are disjoint, i.e. σ1

c # σ2
c . If the concrete effects of e1 and e2

are disjoint then e1#e2 statically translates to true, which in
turn means they can run concurrently. Since e1#e2 does not
execute any of the expressions e1 or e2, its effect is empty.
The auxiliary functions ↓O (σ) and ↓C (σ), return the set

2 Effects in our type-and-effect system are not accessible to programmers
and thus exposure of the implementation details is not a concern [25].
3 For simplicity, our formalism is not object sensitive, but our compiler
implementation is both field and object sensitive [20].

(T-DISJOINT)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

↓O (σ1) = ↓O (σ2) = /0
σ

1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
c # σ

2
c

Π ` e1#e2 true : (bool, /0)

(T-CONFLICT)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) !(σ1

c # σ
2
c )

Π ` e1#e2 f alse : (bool, /0)

(T-UNKNOWN)
Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

↓O (σ1) 6= /0 ∨↓O (σ2) 6= /0
σ

1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
c # σ

2
c

Π ` e1#e2 e′1#e′2 : (bool, /0)

Auxiliary Functions:

↓C (σ) = {ε|ε ∈ σ ∧ ε ∈ {rd(f ),wr(f ),>, /0}}
↓O (σ) = {ε|ε ∈ σ ∧ ε = open(f m γ)}

(READ-READ)
rd(f ) # rd(f ′)

(READ-WRITE)
f 6= f ′

rd(f ) # wr(f ′)

(WRITE-WRITE)
f 6= f ′

wr(f ) # wr(f ′)

(CONFLICT)
ε = rd(f )∨ε = wr(f )

!(wr(f ) # ε)

(EMPTY)
∀ε ∈ σ

ε # /0

(TOP)
∀ε ∈ σ

!(ε # >)

Figure 4. Deciding disjointness of the effects of expressions
e1 and e2.

of open and concrete effects of the effect set σ , respectively.
The function # simply checks for the disjointness of effects,
in which a write and read of a field f, i.e. wr(f ) and rd(f ),
conflict and other effects are disjoint. The top effect > con-
flicts with every other effect. And ε is an effect element in
the effect set σ .

Similar to (T-DISJOINT), the rule (T-CONFLICT) statically
decides the disjointness of the effects of e1 and e2 and trans-
lates the expression e1#e1 to f alse, if their concrete effects
conflict, i.e. !(σ1

c # σ2
c ). In this rule there is no need to check

the relation between open effects in σ1 and σ2 and such a
check could be skipped. More importantly, the concretiza-
tion of these open effects, at runtime, could be skipped which
in turn results in less runtime checks and better performance.

Decision about disjointness in e1#e2 is deferred to run-
time if it cannot be made statically using (T-DISJOINT) and
(T-CONFLICT). The rule (T-UNKNOWN) defers such a deci-
sion by translating e1#e2 to e′1#e′2. In (T-UNKNOWN), ex-
istence of open effects in either σ1 or σ2, i.e. ↓O (σ1) 6=
/0 ∨↓O (σ2) 6= /0, prevents static decision making about dis-
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(T-FORK-SEQUENTIAL)
Π ` e1#e2 f alse : (bool, /0) Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

Π ` fork{e1,e2} e′1;e′2 : (t2,σ1∪σ2)

(T-FORK-PARALLEL)
Π ` e1#e2 true : (bool, /0) Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2)

Π ` fork{e1,e2} e′1||e′2 : (t2,σ1∪σ2)

(T-FORK-UNKNOWN)
Π ` e1#e2 e′1#e′2 : (bool, /0)

Π ` e1 e′1 : (t1,σ1) Π ` e2 e′2 : (t2,σ2) σ
1
c = ↓C (σ1) σ

2
c = ↓C (σ2) σ

1
o = ↓O (σ1)

σ
2
o = ↓O (σ2) cond = (concretize(σ1

o ) # concretize(σ2
o ))∧ (concretize(σ1

o ) # σ
2
c )∧ (concretize(σ2

o ) # σ
1
c )

Π ` fork{e1,e2} if(cond) then e′1||e′2 else e′1;e′2 : (t2,σ1∪σ2)

Figure 5. Translation of fork{e1,e2}, to concurrent or sequential execution of e1 and e2.

jointness, as concretizations of these open effects may cause
conflicts at runtime. More static information could help
(T-UNKNOWN) to make some disjointness decisions stati-
cally, as discussed later.

Without open effects, expressions e1 and e2 may conflict
if either e1 or e2 causes an invocation of a dynamically dis-
patched method especially if the method does not have any
user-specified effect specifications. This is because a dynam-
ically dispatched method with an unknown dynamic type
and no effect specifications has the top effect that conflicts
with any other effect [9].

2.3.1 Fork: An Example Use Case of Disjointness
An example use case of the disjoint expression e1#e2 is to
combine static and runtime decision making about parallel
or sequential execution of two expressions e1 and e2 in a
fork expression. The fork expression fork{e1,e2}4 executes
e1 and e2 concurrently if their effects do not conflict, and
sequentially otherwise. Figure 1 illustrates a fork expression
on lines 10–13.

The rules (T-FORK-SEQUENTIAL) and (T-FORK-PARALLEL),
in Figure 5, statically translate the fork expression to se-
quential or parallel executions of e1 and e2, respectively.
The rule (T-FORK-UNKNOWN) defers such a decision to run-
time because of the lack of the static information to decide
disjointness of the effects of e1 and e2.

The rule (T-FORK-SEQUENTIAL) statically translates the
fork expression to the sequential composition e′1;e′2 in which
e′1 and e′2 run sequentially. The expressions e′1 and e′2 are
translations of e1 and e2, respectively. This translation is
sound because the effects of expressions e1 and e2 do con-
flict, i.e. Π ` e1#e2  f alse : (bool,σ). Similarly, the rule
(T-FORK-PARALLEL) translates the fork expression into the
parallel composition e′1||e′2, since the effects of e1 and e2 are
disjoint, i.e. Π ` e1#e2 true : (bool,σ).

4 Following previous work [9, 38], fork{e1,e2} and e1||e2 are used to
illustrate a use case of the disjointness expression e1#e2 and are not part of
the core syntax, in Figure 2.

If (T-FORK-SEQUENTIAL) and (T-FORK-PARALLEL) cannot
decide about sequential or parallel execution of the expres-
sions in the fork, the decision is deferred to runtime using the
rule (T-FORK-UNKNOWN). This rule translates a fork expres-
sion to an if expression if(cond) then e′1||e′2 else e′1;e′2,
which in its condition cond checks for disjointness of open
effects σo

1 and σo
2 of the expressions in the fork, and their

concrete effects σ c
1 and σ c

2 . The unknown open effects
should be concretized, before being checked for disjoint-
ness. The auxiliary function concretize is used to con-
cretize open effects at runtime. Concretization of open ef-
fects is discussed in §3. More static analyses, such as alias
or purity analysis, or static effect specifications may help
(T-FORK-UNKNOWN) to make some disjointness decisions
statically, as discussed later in this section.

Without open effects, the fork expression fork{e1,e2}
will be translated to the sequential composition e1;e2, if
either the expression e1 or e2 contains an invocation of a
dynamically dispatched method with no effect specifica-
tions. This again is mainly because a dynamically dispatched
method with an unknown dynamic type and no effect specifi-
cations has the top effect that conflicts with any other effect.

2.3.2 Alias Analysis Integration
Various modular static analyses could be integrated into our
hybrid type-and-effect system to increase the precision of its
static decision making about disjointness of the effects. In
this section, we integrate a modular definite alias analysis
[21] into open effects and illustrate its use.

For integration of alias analysis into open effects, we
add an aliasing environment A to the typing judgement and
change it to Π,A ` e e′ : (t,σ ,A′). The aliasing environ-
ment A maps a variable to its aliases, i.e. A ::= {vari 7→
ei}i∈N. The new typing judgement says that with the typ-
ing environment Π and aliasing environment A the expres-
sion e translates to e′ and has the type t, the effects σ and
the aliasing environment A′. For readability, some of the
typing rules use the shorter typing judgement Π,A ` x : t

6 2014/4/3



for variables that do not cause any effect or changes in the
aliasing. This shorter judgement stands for the judgement
Π,A ` x x : (t, /0,A).

The rules most concerned about aliasing information and
keeping them updated are (T-DEFINE) and (T-SET). The rule
(T-SET) assigns a variable x to a field f and creates the
aliasing relation x = this. f . This aliasing relation should
be added to the aliasing environment A after discarding older
aliasing relations for the field f via the kill operation A\ f .
In (T-SET), the auxiliary function typeOf , takes a field f and
returns the class d the field is defined in and its type t ′.

(T-SET)
typeOf ( f ) = (d, t ′) Π,A ` this : c Π,A ` x : t

c <: d t <: t ′ A′ = A\ f ∪{x = this. f}
Π,A ` this. f = x this. f = x : (t,wr(f ),A′)

In (T-DEFINE), a variable x is assigned the expression
e′1 in the scope of e′2, creating the aliasing relation x = e′1
that should be considered when evaluating e2. The notation
A;x = e′1 stands for extending the aliasing environment A
with the aliasing relation x = e′1.

(T-DEFINE)
Π,A ` e1 e′1 : (t1,σ1,A1)

Π;x : t,A1;x = e′1 ` e2 e′2 : (t2,σ2,A2) t1 <: t
Π,A ` t x = e1;e2 t x = e′1;e′2 : (t2,σ1∪σ2,A2)

Use case (1): observational purity The static aliasing
information maintained by the rules (T-SET) and (T-DEFINE)
could be used in detecting observational purity [36, 41], as
shown in the rule (T-CALL-PURE). The rule (T-CALL-PURE)
says that in an invocation of x0.m(x) if both the receiver
x0 and the parameters x of the method m are newly created
objects, then the effects of the invocation of m is empty [41],
i.e. /0. This means that we can statically decide to execute
the method invocation x0.m(x) with any other expression
concurrently without checking for their open effects. This is
true because the effects of the method invocation is empty
and does not conflict with any other effects of any other
expression. The auxiliary function findMeth looks up the
class table CT and returns the declaration of the method m
in the class c0 or its supertypes.

(T-CALL-PURE)
A ` x0 = new c0() ∀xi ∈ x. A ` xi = new ci()

findMeth(c0,m) = (c′, t,m(t var){e},σ)
∀xi ∈ x. (Π,A ` xi : t ′i)∧ (t ′i <: ti)

Π,A ` x0.m(x) x0.m(x) : (t, /0, /0)

Use case (2): tracking open references Another use case
of the static aliasing information is in statically tracking
the open references, in the rule (T-CALL-OPEN). This rule
assigns an open effect open(f m γ) to the method invocation
x0.m(x) in which the receiver x0 is an alias of the open field

f, i.e. A ` x0 = this. f . Without the aliasing information,
and not knowing that the receiver x0 is an alias of the open
field f , the invocation x0.m(x) may get the top effect >
because the runtime of its receiver is not known and it does
not have any effect specifications.

(T-CALL-OPEN)
A ` x0 = this. f typeOf ( f ) = (c,@open c0)

findMeth(c0,m) = (c′, t,m(t var){e},σ)
∀xi ∈ x. (Π,A ` xi : t ′i)∧ (t ′i <: ti)

Π,A ` x0.m(x) x0.m(x) : (t,open(f m γ), /0)

For another example of the use of static aliasing infor-
mation in deciding the disjointness of open effects, con-
sider Figure 6 which shows a simplified example adapted
from JavaGrande’s RayTracer [47]. In this figure, the class
RayTracer is responsible for rendering a display, and is ex-
tended by classes RayTracer2D and RayTracer3D to ren-
der two and three dimensional displays. Both of these sub-
types override the method run in their supertype. In this ex-
ample, using the purity analysis, one would conclude that
the two expression of the fork, lines 5 and 6 can run concur-
rently, because the expression on line 5 has empty effects,
the rule (T-CALL-PURE), and its pure effect does not conflict
with the effects of the other expression.

1 @open RayTracer rt1;
2 rt1 = new RayTracer2D(new Display());
3 fork{
4 { RayTracer rt3D =
5 new RayTracer3D(new Display()); rt3D.run() },
6 { rt1.run() }
7 }

Figure 6. Concurrent execution of fork, because of obser-
vational purity [41].

2.3.3 More Static Analyses
In our prototype implementation of open effects, in addition
to alias analysis, a few other static analyses such as purity
analysis [41] and array effect analysis [42] are integrated
into the type system. These analyses are not discussed here
to focus on the basic ideas behind open effects.

2.4 Dynamic Dispatch and Open World Assumption
Two rules (T-CALL-OPEN) and (T-CALL) in our type-and-
effect system type check dynamically dispatched method
invocations. The differences between these rules highlight
the contrast between handling of dynamic dispatch with and
without open effects.

The rule (T-CALL-OPEN), discussed previously, uses an
open effect to represent the unknown effects of a dynam-
ically dispatched method invocation on an open receiver,
and thus allowing it to run concurrently with other expres-
sions if their effects do not conflict, or sequentially other-
wise. In contrast, the rule (T-CALL) assigns the top effect >
as the effects of the invocation of a dynamically dispatched
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method on a non-open receiver, especially if there are no ef-
fect specifications for the method [9, 25], its receiver and
its parameters are not newly created objects, or its receiver
is not aliasing an open field. Assigning the top effect to a
method invocation on a non-open receiver statically sequen-
tializes its execution with any other expression, because the
top effect conflicts with any other effects. However, assign-
ing an open effect to invocation of a method with an open re-
ceiver, sequentializes execution of the method only if it can-
not prove disjointness of its effects with other expressions.
(T-CALL-OPEN) and (T-CALL) clearly show how open effects
could be useful in exposing safe concurrency opportunities.

(T-CALL)
Π,A ` x0 : c0 A ` x0 6= new c()∨ (∃xi ∈ x. A ` xi 6= new ci())
A`x0 6=this. f∨(A`x0=this. f∧typeOf ( f ) 6=(d,@open c′′))

findMeth(c0,m) = (c′, t,m(t var){e},σ)
∀xi ∈ x. (Π,A ` xi : t ′i)∧ (t ′i <: ti)

Π,A ` x0.m(x) x0.m(x) : (t,>, /0)

Field set There are two rules (T-SET) and (T-SET-OPEN)
for setting a field. The rule (T-SET), shown previously, sets
a non-open field which results in a write effect and updating
the aliasing information of the field. The rule (T-SET-OPEN)
is similar to (T-SET) except that it generates a top effect
>, instead of a write effect. This is because setting an
open field f results in concretizations of all open effects
open(f m γ) with the open field f and any other open effect
open(g m′ γ ′) where g transitively points to the object con-
taining f. The set expression does not know about all open
effects open(g m′ γ ′) or even open(f m γ) which are depen-
dent on its field f and thus to be sound it has to assume the
top effect > to cover all such effects. Concretization of open
effects is discussed in more detail in §3.

(T-SET-OPEN)
typeOf ( f ) = (d,@open t ′) Π,A ` this : c Π,A ` x : t

c <: d t <: t ′ A′ = A\ f ∪{x = this. f}
Π,A ` this. f = x this. f = x : (t,>,A′)

2.4.1 Effect Specification Integration
Effect specifications statically specify an upper bound for the
read and write memory effects of a dynamically dispatched
method, independent of the dynamic type of its receiver. Ef-
fect specifications could be integrated into our hybrid type-
and-effect system and used to discharge effect disjointness
checks statically.

To integrate effect specifications in our type-and-effect
system, similar to the class table CT , we assume an implicit
specification table ST that maps a method to its effect speci-
fications θ , if it has any. The effect specification θ is a set of
concrete read and write effects wr(f ) and rd(f ) to memory
locations f and does not contain any open effects.

Method declaration There are two rules (T-METHOD)
and (T-METHOD-SPEC) in our type-and-effect system to type

check a method declaration depending on if effect specifica-
tion for the method are available or not.

(T-METHOD)
(c, t m(t var){e′}) /∈ dom(ST)

override(m,c,(t→ t)) ∀ti ∈ t. isType(ti) isType(t)
(var : t,this : c), /0 ` e e′ : (t ′,σ ,A) t ′ <: t
` t m(t var){e} t m(t var){e′} : (t→ t,σ ,A) in c

The rule (T-METHOD) type checks a method declara-
tion that does not have any effect specifications. The rule
(T-METHOD) says that latent effect of a method is the same
as the effects of its body. In the absence of effect specifi-
cations for a method, the statically computed effects of the
method and the methods that override it do not have any
relation and can vary independently. This is represented in
the rule (T-METHOD) by not requiring any relation between
the effects σ of the method m and any other method with
effects σ ′ it may override. The auxiliary function override
only checks for compatibility of the argument and return
types of the overridden and overriding methods with no ef-
fect specifications and allows their effects to be independent.
The function isType checks for validity of a type.

(T-METHOD-SPEC)
θ = ST(c,m)

override(m,c,(t→ t)) ∀ti ∈ t. isType(ti) isType(t)
(var : t,this : c), /0 ` e e′ : (t ′,σ ,A) t ′ <: t
` t m(t var){e} t m(t var){e′} : (t→ t,θ ,A) in c

The rule (T-CALL-SPEC) type checks the declaration of a
method with effect specifications. The rule (T-CALL-SPEC)
says the latent effect of a method with effect specification
θ is θ instead of its statically computed effect σ . The aux-
iliary function ST(c,m) returns the effect specifications of
method m in class c. Effect specifications specify an upper
bound for memory effects of a method independent of dy-
namic dispatch. Such independence is achieved by enforcing
effect containment between the method and methods over-
riding it, such that the effect specifications of an overriding
method in a subclass is contained in the effects of the su-
perclass method it overrides. In (T-METHOD) the auxiliary
function override should enforce effect containment, which
boils down to checking if the set of effect specifications of
an overriding method is the subset of the set of effect speci-
fications of the method it overrides.

Method invocation The rules (T-CALL) and (T-OPEN-CALL)
discussed previously assume no effect specifications for a
method declaration. The rule (T-CALL-SPEC) type checks a
method invocation where the method has effect specifica-
tions. The rule (T-CALL-SPEC) says that effects of the invo-
cation of a method with effect specifications θ is the same
as θ independent of if its receiver being an open receiver
or not. Effect specifications, if available, improve the effect
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precision of method invocation rules, especially compared
to (T-CALL-OPEN) in which the effect of the method invo-
cation is the top effect >. For each write effect of a field
f in the specification of the method, its associated aliasing
information in the aliasing environment must be killed.

(T-CALL-SPEC)
Π,A ` x0 : c0 ST(c0,m) = θ

findMeth(c0,m) = (c′, t,m(t var){e},σ)
∀xi ∈ x. (Π,A ` xi : t ′i)∧ (t ′i <: ti) ∀ f ,wr(f ) ∈ θ . A′ = A\ f

Π,A ` x0.m(x) x0.m(x) : (t,θ ,A′)

3. A Dynamic Semantics with Open Effects
The dynamic part of open effects which is encoded in
OpenEffectJ’s dynamic semantics, (i) concretizes the stat-
ically computed open effects using the typing rules, and
updates the open effects by tracking their open references
and changes in their values; and (ii) verifies, using runtime
checks, the disjointness assumptions that could not be veri-
fied statically.

3.1 Dynamic Semantics Objects
The dynamic semantics of open effects transitions from one
configuration to another. A configuration Σ = 〈e,µ〉, shown
in Figure 7, consists of an expression e and a global store
µ . The store maps a location loc to an object record of the
form o = [c.F.E], containing the concrete type c of the ob-
ject loc, a field map F which maps field names of c to their
values, and a new dynamic effect map E which maps the
method names of c to their runtime effects. The effect map
is necessary in tracking and updating of runtime effects of
dynamically dispatched methods, for concretization of open
effects and efficient verification of their disjointness, as the
values of open references change during the program execu-
tion. Performance efficiency of these mechanisms is shown
in §4. Dynamic semantics rules are presented using a one-
step call-by-value reduction relation and a set of evaluation
contexts E [22] which specify the evaluation order. Omitted
semantics rules and auxiliary functions can be found in our
technical report [34].

Evaluation relation: ↪→: Σ 99K Σ

Domains:
Σ ::= 〈e,µ〉 “Configurations”
µ ::= {loci 7→ oi}i∈N “Stores”
o ::= [c.F.E] “Object Records”
F ::= { fi 7→ vi}i∈N “Field Maps”
v ::= null | loc | n | b “Values”
E ::= {mi 7→ σi}i∈N “Effect Maps”

Evaluation contexts:

E ::= − | t var = E;e

Figure 7. Domains and evaluation contexts.

3.2 Tracking and Updating of Open References
There are several rules in OpenEffectJ’s dynamic semantics,
including the rule for object creation and setting a field,
that are key in tracking open references and updating the
concretization of open effects dependent on these references.

(NEW)
loc /∈ dom(µ) F = { f 7→ default( f ) | f ∈ fields(c)}

µ
′ = µ⊕{loc 7→ [c.F.E]}

E={m 7→σ |m∈methods(c). findMeth(c,m)=(c′, t,m(t var),σ)}
〈E[new c()],µ〉 ↪→

〈
E[loc],µ ′

〉
The rule (NEW), in addition to initializing a new ob-

ject in memory, by assigning a fresh location loc to it,
generates and initializes the effect map E for the newly
created object. The effect map E maps the methods m of
class c to their statically computed effects σ which have
been computed using the typing rules as discussed in §2.
The auxiliary function findMeth returns the definition of a
method m of the class c in the class table CT . The func-
tion default returns the default value for each variable of a
type. The operator ⊕ is an overriding operator such that if
µ ′ = µ ⊕{loc 7→ o}, then µ ′(loc′) = o if loc′ = loc, other-
wise µ ′(loc′) = µ(loc′). To illustrate, the object record for
the newly created object pr of type Pair in Figure 1 is of
the form [Pair.{ f st 7→ 0,snd 7→ 0, f 7→ null}.{setOp 7→
{>},apply 7→ {wr(fst),wr(snd),rd(f ),open(f op γ)}}].

(SET)
[c.F.E] = µ(loc) µ0 = µ⊕ (loc 7→ [c.(F⊕{ f 7→ v}).E])

µ
′ = update(µ0, loc, f ,v)

〈E[loc. f = v],µ〉 ↪→
〈
E[v],µ ′

〉
Setting the field f of the object loc updates the concretiza-

tion of all open effects that are directly or transitively depen-
dent on the open field f , until a fixpoint is reached. This is
done using the auxiliary function update, in Figure 8, that
first concretizes the open effects in the effect map E of the
object loc. If the effect map E changes to E ′, i.e. E 6=E ′, then
it updates the concretization of all other transitively depen-
dent open effects. The function reverse backward traverses
the object graph, starting from loc, and finds all the open
fields dependent on f , directly or transitively. An open field
g is dependent on the open field f , if g, directly or transi-
tively points to the object loc containing the field f . In prac-
tice, reverse pointers can be used to optimize this [8], as in
our compiler’s implementation.

Concretization of Open Effects There are two varia-
tions of concretization, shown in Figure 8: (i) concretiza-
tion of an open effect when its open field is set, as in
(SET), by concretize(1) and (ii) concretization of an open
effect in use cases such as translation of the fork in the rule
(T-FORK-UNKNOWN) in §2, by concretize(2). The function
concretize(1), fills in the placeholder γ in open effects of the
form open(f m γ), upon setting the field f of the object loc.
Recall that open(f m γ) represents the effect of the invoca-
tion of the method m on the open field f . If f is set to null,
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update(µ, loc, f ,v) =


µ if E = E ′, where E ′ = updateEff (µ, f ,v,E),
µn if E 6= E ′, µ(loc) = [c.F.E]

µi = update(µi−1, loci, fi, loc)
{〈loci, fi〉}= reverse(µ, loc),1≤ i≤ n
µ0 = µ⊕{loc 7→ [c.F.E ′]}

reverse(µ, loc) = {
〈
loc′, f

〉
| F( f ) = loc∧ loc′ ∈ dom(µ)∧µ(loc′) = [c.F.E]}

updateEff (µ, f ,v,E) = { m 7→ {concretize(1)(µ, f ,v,ε)} | (m 7→ σ) ∈ E ∧ ε ∈ σ}

concretize(1)(µ, f ,v,ε) =


open(f m /0) if ε = open(f m γ), v = null
open(f m σ) if ε = open(f m γ), v = loc′, [c.F.E]=µ(loc′),

σ = ↓C (E(m)) ∪ {ε ′ ∈ σ ′| ε ′′ ∈ ↓O (E(m))∧ ε ′′ = open(f ′ m′ σ ′)}
ε otherwise

concretize(2)(µ, loc,ε) = σ where ε = open(f m γ), [c.F.E] = µ(loc),∃ m′ ∈ dom(E). open(f m σ) ∈ E(m′)

concretize(2)(σ) = (
⋃

concretize(2)(µ,this,ε))∪↓C (σ) where ε ∈ ↓O (σ)

Figure 8. Auxiliary functions update and concretize

then invocation of m on f will not have any effects, thus
replacing γ in open(f m γ) by the concretized effect /0, i.e.
open(f m /0). If f is set to an object loc′, then the invocation
of m on f will be the invocation of m on the object loc′, thus
replacing γ in open(f m γ) with the union of the concrete
effects of the method m in the object loc′, i.e. ↓C (E(m)),
and its concretized open effects, i.e. σ ′. Note that, the open
effect open(f m γ) is concretized whenever its open field f
is set. The function concretize(2) basically returns the effects
concretized by the first variation, rather than directly con-
cretizing them. This is because concretization of an open
effect happens only when its open field is set. For a non-
concretized open effect open(f m γ) with the open field f in
the object loc, its effect map E is searched till a concretized
effect open(f m σ) is found and σ is returned as the result.
The current store µ in the configuration and variable this
are implicitly passed to concretize(2) in which this is passed
as the value for loc.

To illustrate, consider concretization of the open effect
open(f op γ) of the method apply when its open field f is
set, by the expression pr.setOp(pf) on line 29 of Fig-
ure 1. In concretize(2), the parameter v will be equal to
pf and thus the placeholder γ in the open effect will be
replaced by wr(res), which is the effect of of method op

of pf. Concretization of the open effect open(f op γ) to
open(f op wr(res)) in the effect of apply causes the update
to be invoked which updates all open effects which are de-
pendent on pr, using reverse. In Figure 1, there is no object
pointing to pr and thus the fixpoint is reached and con-
cretization stops.

3.3 Soundness of Open Effects
The type-and-effect encoding of open effects is proven
sound using theorems that say: (i) statically computed ef-
fects are a sound approximation of concretized effects, The-
orem 3.1; and (ii) concretized effects soundly approximate
runtime effects, Theorem 3.2.

THEOREM 3.1. [Concretized effects refine static effects]
Given an expression e with the statically computed effects
σs, which could contain open effects, and its dynamic con-
cretization σc, i.e. σc = concretize(σs), if Π,A ` e  e′ :
(t,σs,A′) holds statically and (µ,A) ` e′ : (σc,A′) holds
dynamically for the runtime configuration 〈e′,µ〉, then:
σc ⊆ σs.

THEOREM 3.2. [Dynamic effects refine concretized effects]
For two configurations Σ = 〈e,µ〉 and Σ′ = 〈e′,µ ′〉, if Σ

transitions to Σ′ producing runtime effect η , i.e. Σ
η

↪→ Σ′, if
concretized effects of e is σc, i.e. (µ,A) ` e : (σc,A′), then
there is a concretized effect σ ′c such that:

(a) (µ ′,A1) ` e′ : (σ ′c,A
′
1) and σ ′c ⊆ σc;

(b) η ∈ σc

Proof Sketch: Theorem 3.1 is proved by structural induc-
tion on derivations of Π,A ` e e′ : (t,σs,A′) and (µ,A) `
e′ : (σc,A′) whereas proof of Theorem 3.2 is by cases on
transition steps for the transition relation Σ

η

↪→ Σ′ [34].

4. Evaluation
In this section, we describe an evaluation of the open effects
system. First, we describe benchmarks used in the experi-
ments. Then, we present a detailed performance evaluation.
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Finally, we analyze the distribution of static vs. dynamic
checks for these programs.

4.1 Benchmark programs
We use the following frameworks, benchmarks and libraries
in our experiments: a map-reduce framework (MapReduce),
adapted from JSR [1], a pipeline framework (Pipeline) [10],
Monte Carlo benchmark (MonteCarlo) [47], JDK’s merge
sort (MergeSort) and array list (ArrayList) libraries [1],
depth first search graph traversal (DFS), a numerical in-
tegration application (Integrate) [1] and a sequence align-
ment application (Alignment) [5]. In terms of annotation
overhead, except MapReduce and DFS, with 2 @open anno-
tations, open effects versions of other applications needed
only 1 annotation.

4.2 Performance Evaluation
We hypothesize that open effects is performance efficient
while exposing safe concurrency opportunities in frame-
works and libraries that could be extended with possibly
concurrency-unsafe code by clients. To test our hypothe-
sis we implemented open effects on top of OpenJDK5 and
parallelized a representative set of frameworks and libraries
using open effects and the following widely used concur-
rency techniques: (i) Deuce [2], software transactional mem-
ory (STM); (ii) Multiverse [3], STM; (iii) RoadRunner (RR)
[20], runtime race detector6; and (iv) Manually tuned con-
currency; and compared their speedups and overheads. Re-
sults of our experiments show that: open effects almost does
as well as manually tuned concurrency, with the negligible
overhead of only 0.1% to at most 4.1% and less overhead
compared to other techniques.

4.2.1 Setup
Client Code In MapReduce, the map phase computes the
sum of the magnitudes formula Math.sqrt(2∗Math.pow(o,2))
for each element o in a set of 100 million integers and the
reduce step simply adds the results. Pipeline models Radix
Sort in which the first stage generates a stream of 8 arrays of
1 million integers each and subsequent stages sort the arrays
on different radixes. MergeSort sorts a list of 10 million ran-
domly generated integers. For ArrayList, we apply the hash
(Hash), prefix sum (Prefix) computations, illustrated in Fig-
ure 1, and a heavier computation (Heavy), which computes
the same formula as in the MapReduce, on an array with 20
million elements. DFS solves an N-queens problem, with n
equal to 11. Integration uses a recursive Gaussian quadrature
of (2 ∗ i− 1) · x2∗i−1, summing over odd values of i from 1
to 12 and integrating from −5 to 6. Alignment uses a con-
stant function returning -1 if two characters do not match for
aligning two words of sizes 100 and 1 million.

5 OpenEffectJ ’s compiler and evaluations are available at http://
paninij.org/open/.
6 The race detection tool set −tool = T L : RS : LS was used.

Hardware All our experiments were run on a system
with a total of 4 cores (Intel Core2 chips 2.40GHz) running
Fedora GNU/Linux. For each experiment, an average of
the results over 30 runs was taken and the default JVM
parameters were used.

4.2.2 Overall Performance
DEFINITION 4.1. (Runtime Overhead and Speedup) For a
program p, with its sequential, open effects and manually
tuned parallel versions, which respectively take T1, T2, and
T3 seconds for their execution, the speed up is T1 / T2 and
overhead is (T2 - T3) / T3.

Figure 9 and Figure 10 show the performance results of
running our experiments in terms of speedup and runtime
overhead, as defined in Definition 4.1. Our results show that
the open effects (OpenEffectJ) versions of the evaluation ap-
plications are almost as fast as the manually tuned concur-
rent versions and incur very small overhead, ranging from
0.1% to 4.1% at most, which is significantly less compared
to other effect analysis techniques used in our experiments.
In Figure 9, Multiverse or Deuce versions of the applica-
tions, run slower especially for ArrayList, because Multi-
verse creates a separate runnable object for each transaction
which causes a slow down in applications with large num-
ber of transactions; Deuce, besides the transaction creation
overhead, stores array access effects in a fine-grained man-
ner, which could cause slow down for large arrays. Open-
EffectJ , instead, uses an indexed array effect [9, 42] and a
purity analysis, to decide about disjointness of effects. It is
conceivable that using similar techniques, performance for
Multiverse or Deuce’s versions could be improved.

4.2.3 Effect Concretization Overhead
One may argue that concretization of open effects at runtime
may not be efficient enough especially for deeply-nested
data structures such as trees, mainly because setting an open
field could cause updating various other open effects depen-
dent on that field, as discussed in §3.2. However, this may
not always be the case, especially when the benefits of the
open effects outweigh its overheads. To investigate, we im-
plemented a Fibonacci algorithm, adapted from OpenJDK’s
fork/join framework [1], using both open effects and tech-
niques in Figure 9. To compute the n-th Fibonacci number
Fib(n), the algorithm uses a binary tree in which right and
left subtrees represent Fib(n− 1) and Fib(n− 2), and the
root adds them together to compute Fib(n) = Fib(n− 1)+
Fib(n−2). This algorithm has two phases of (i) construction
of the tree and (ii) computation of the Fibonacci numbers for
the nodes. We ran experiments on trees of depths from 6 to
14, with up to 214-1 nodes, and the same number of open
effects’ concretizations, to compute Fib(45).

Figure 11 shows the time each technique takes to compute
the Fibonacci numbers, for the construction and computation
phases as well as their total. It shows that for nested objects,
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Application Serial Manual RR[20] Deuce[2] Multiverse[3] OpenEffectJ Pattern
time(s) time time time time time overhead % speedup annotation

Hash 0.13 0.12 0.85 44.11 8.57 0.12 0.3 1.07 1 Forall
Heavy 1.31 0.39 1.12 34.87 12.43 0.39 0.1 3.39 1 Forall
Prefix 0.12 × × × × 0.12 1.6 0.98 1 Forall

Alignment 2.44 1.86 21.50 14.91 8.34 1.93 4.1 1.26 1 Forall
MonteCarlo 3.87 1.22 2.04 10.52 1.33 1.25 2.7 3.10 1 Forall

Pipeline 2.25 2.11 3.48 ↑ 2.21 2.12 0.6 1.06 1 Pipeline
MergeSort 2.71 1.32 3.39 9.61 16.00 1.34 1.7 2.02 1 Recursive

DFS 18.83 9.20 17.88 9.79 12.23 9.23 0.3 2.04 2 Recursive
MapReduce 7.03 1.94 3.81 5.25 10.76 1.91 -1.5 3.68 2 Recursive

Integrate 2.13 0.59 1.53 1.46 2.42 0.61 2.4 3.50 1 Recursive

Figure 9. Performance Experiments. × indicates result discrepancies because of sequential inconsistencies and ↑ shows
running out of memory after a considerably long time.
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Figure 11. Building Fibonacci tree and computation of n-th
Fibonacci number.

open effects does almost as well as the manually tuned con-
current version and better than other concurrent approaches,
which is consistent with the results in Figure 9. This is de-
spite the fact that the construction of the Fibonacci trees may
take more time compared to other techniques, because of the
concretization of open effects. However, benefits of open ef-
fects in the computation phase outweigh this overhead.

4.3 Disjointness Checks
Open effects decide the disjointness of effects dynamically
only if it could not be decided statically. This divides the

responsibility of deciding the disjointness between static and
dynamic parts of our hybrid type-and-effect system.

Figure 12 shows the number of disjointness checks de-
cided statically and dynamically for our evaluation applica-
tions. Unlike the performance evaluation where inputs of the
evaluation applications are large, i.e. an array of 100 mil-
lion for the MapReduce application, to measure the number
of checks, the input of our evaluation applications are set in
a way that they only decide the disjointness of two expres-
sions. The number of checks are proportional to the size of
the input in each application.
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Figure 12. Statically vs dynamically decided disjointness
checks.

In Figure 12 more than a quarter, i.e. about 28.5%, of
the total number of disjointness checks across all evaluation
applications are decided statically and the rest are decided
dynamically. The number of statically versus dynamically
decided checks varies from one application to another, with
Alignment and MapReduce with the most number of stati-
cally decided checks and Pipeline and MonteCarlo with the
least number of statically decided checks.

5. Related Work
In this section, we compare open effects with related works
on reasoning about effects of programs, in three categories
of hybrid, static and dynamic techniques.

Hybrid Open effects is closest in spirit to the ideas of
gradual typing [45] and hybrid type checking [28] that blend
advantages of static and dynamic type checking. Similarly,
open effects blends the advantages of static and dynamic ef-
fect systems. Similar to Open Type Switch (Mach7) [48],
which allows users to choose between type hierarchy open-
ness and efficiency, open effects lets programmer choose the
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openness of the effects of dynamically dispatched method
invocations. Synchronization via scheduling (SVS) [8] com-
putes effects of concurrent tasks as their reachable object
graph, for programs written in a simple C-like language,
with no dynamic dispatch. However, open effects support a
full OO language with the support for overriding and dy-
namic dispatch, which makes accurate effect computation
more challenging [49], and use smaller effect sets compared
to reachability graphs for effect computations. Legion [51]
and TWEJava [27] let the programmer specify the effect of
each task and have a scheduler that coordinates these con-
current tasks. However, open effects require only open an-
notations, compared to task specifications. Chugh et al.[15]
present a hybrid framework to check statically generated se-
curity constraints in JavaScript. In concurrent revisions [13],
programmers annotate shared objects tasks could conflict on
and provide their merge functions, and each task keeps a lo-
cal copy of these objects to avoid data races, using copy-
on-write. In contrast, open effects check for effect conflicts
before the execution, either statically or at runtime.

Static Boyapati et al.[12] propose an ownership type sys-
tem for deadlock and data race detection, Gordon et al.[24]
use uniqueness and reference immutability to provide safe
parallelism, Deterministic Parallel Java (DPJ) [10] provides
determinism for parallel programs using effect parameters
and effect constraints, such as effect containment. There are
also other works on effect systems [25] for sequential pro-
grams such as data groups [31], ownership type systems [14]
and heap representation techniques [14]. However, open ef-
fects is a hybrid technique that combines static and dynamic
type-and-effect to better handle invocation of dynamically
dispatched methods, without restrictions of effect contain-
ment between a type and its subtypes.

Dynamic FastTrack [18], Goldilocks [17], Pacer [11],
IFRit [? ], HAWKEYE [? ], LEAN [? ], and the work of
Smaragdakis et al.[46] are data race detection techniques
which monitor memory accesses. Transactional memory
techniques [7, 16, 26, 33, 35, 43, 44, 52? ? ] optimistically
execute tasks concurrently, while also monitoring memory
accesses, and rollback whenever effects of the tasks conflict.
These techniques monitor memory footprints of a program,
for all of its references. However, open effects only monitors
open references and decide before execution of tasks, either
statically or dynamically, if they need to be executed se-
quentially, because of conflicting effects, and thus do not roll
back. In Galois [29], user provided commutativity specifica-
tions for methods are checked dynamically at runtime and
the execution is rolled back if they are violated. However,
open effects does not need commutativity specifications and
does not roll back the execution.

6. Conclusion and Future Work
We proposed open effects, a trust-but-verify hybrid type-
and-effect system to safely expose concurrency opportuni-

ties in invocations of dynamically dispatched methods in
concurrent programs with an open world assumption and no
effect specifications. We showed integration of a static alias
analysis and effect specifications into open effects. We also
showed that our prototype implementation of open effects
could be quite efficient in exposing concurrency, by com-
bining static and dynamic analyses, and performed as well
as manually tuned concurrency, with negligible overhead of
only 0.1 – 4.1%. Since open effects is complementary to pre-
vious static and dynamic analyses, we believe this overhead
could be decreased even more by integrating more sophis-
ticated static and dynamic analyses, which is one venue for
future work. Another direction for future work, is to explore
a logical extreme, in which all references are implicitly open
and a static analysis systematically eliminates ones causing
unacceptable overheads.
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V. Sarkar. Delegated isolation. In OOPSLA ’11.

[36] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. In POPL ’88.

[37] R. Milner. A theory of type polymorphism in programming.
Journal of Computer And System Sciences ’78, (17).

[38] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis. Contex-
tual effects for version-consistent dynamic software updating
and safe concurrent programming. In POPL ’08.

[39] R. Reiter. On closed world data bases. Springer, 1978.

[40] M. C. Rinard and M. S. Lam. The design, implementation,
and evaluation of Jade. TOPLAS, 20, 1998.

[41] S. Ru and M. Rinard. Purity and side effect analysis for Java
programs. In VMCAI ’05.

[42] R. Rugina and M. Rinard. Automatic parallelization of divide
and conquer algorithms. In PPoPP ’99.

[43] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95.

[44] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. Hudson, K. Moore, and B. Saha. Enforcing
isolation and ordering in STM. In PLDI ’07.

[45] J. Siek and W. Taha. Gradual typing for objects. In ECOOP
’07.

[46] Y. Smaragdakis, J. M. Evans, C. Sadowski, Y. Jaeheon, and
C. Flanagan. Sound predictive race detection in polynomial
time. In POPL ’12.

[47] L. Smith, J. Bull, and J. Obdrizalek. A parallel Java Grande
benchmark suite. In SC ’01.

[48] Y. Solodkyy, G. Dos Reis, and B. Stroustrup. Open and
efficient type switch for C++. In OOPSLA ’12.

[49] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and
effect inference. JFP ’92, 2(3), .

[50] J.-P. Talpin and P. Jouvelot. The type and effect discipline.
Inf. Comput. ’94, 111, .

[51] S. Treichler, M. Bauer, and A. Aiken. Language support for
dynamic, hierarchical data partitioning. In OOPSLA ’13.

[52] A. Welc, S. Jagannathan, and A. Hosking. Safe Futures for
Java. In OOPSLA ’05.

14 2014/4/3



A. Open Parameters and Local Variables
So far, open effects have been discussed only in terms of
open fields. However, open effects are not limited to open
fields and can support open parameters and open local vari-
ables as well, especially when object fields flow into param-
eters or local variables, as illustrated in Figure 13. In this fig-
ure, the method Apply, has an open parameter g, used as the
receiver for the invocation of the method op. This causes the
effects of the method Apply to be open(g op γ). Later this
open effect is concretized to open(f op γ), lines 5–7 where
this.f is passed to Apply as the parameter g. For the open
variable var, line 10, the open effect open(var op γ) is gen-
erated for each method invocation on lines 12 and 13 which
is concretized to open(par op γ) later because the local vari-
able var is set to the parameter par, on line 10.

1 private final int Apply (@open Op g, int x) {
2 g.op(x)
3 }
4 int apply() {
5 // f and g are aliases.
6 fst = Apply(this.f, fst);
7 snd = Apply(this.f, snd)
8 }

9 int apply(Op par) {
10 @open Op var = par;
11 fork {
12 var.op(1),
13 var.op(2)
14 }
15 }

Figure 13. Open parameter g, and open variable var.

B. OpenEffectJ’s Semantics
Figure 14 shows the rest of the OpenEffectJ’s typing rules
omitted from §2. The rule (T-PROGRAM) says that a pro-
gram type checks if all its declarations type check. The rule
(T-CLASS) says that a class declaration type checks if all
the newly declared fields are not fields of its super class,
checked by the auxiliary function validF, its super class d
is defined in the class table CT , checked by the auxiliary
function isClass; and finally, all its declared methods type
check. The typing rules in Figure 14 are mostly standard.

Figure 15 shows the auxiliary functions used in the typing
rules. The auxiliary function override, used in (T-METHOD)
requires that an overriding and overriden method in a sub-
type and its supertype have compatible types for their pa-
rameters and return values. The operation u computes the
intersection of two aliasing environments, i.e. A1 u A2 re-
turns a map containing the aliasing information that exists in
both A1 and A2.

Figure 16 shows the dynamic semantics rules that were
omitted from §3 along with their auxiliary functions in Fig-
ure 17. The evaluation relation Σ

η

↪→ Σ′ says that during the

(T-PROGRAM)
∀decl ∈ decl. ` decl decl′ : OK ` e e′ : (t,σ ,A)

` decl e decl′ e′ : (t,σ ,A)

(T-CLASS)
∀[@open] t f ∈ f ield. validF( f ,d) isClass(d)
∀meth ∈ meth. ` meth meth′ : (t ′,σ ,A) in c

` class c extends d { f ield meth } 
class c extends d { f ield meth′ } : OK

(T-GET)
Π,A ` this : c

typeOf ( f ) = (d, [@open] t) c <: d
Π,A ` this. f  this. f : (t,rd(f ),A)

(T-NULL)
isClass(t)

Π,A ` null : t

(T-BINARY)
Π,A ` x1 : int
Π,A ` x2 : int

Π,A ` x1 ◦ x2 : int

(T-VAR)
(x : t) ∈Π

Π,A ` x : t

(T-BOOL)
Π,A ` b : int

(T-NUM)
Π,A ` n : int

(T-NEW)
isClass(c)

Π,A ` new c() : c

(T-LOC)
(loc : t) ∈Π

Π,A ` loc : t

(T-CONDITION)
Π,A ` x : bool

Π,A ` e1 e′1 : (t,σ ,A1) Π,A ` e2 e′2 : (t,σ ′,A2)

Π,A ` if x then e1 else e2 
if x then e′1 else e′2 : (t,σ ∪σ

′,A1uA2)

Figure 14. OpenEffectJ’s omitted type-and-effect rules

evaluation, a configuration Σ transitions to another config-
uration Σ′ producing the runtime memory read and write
effects of η . The field and object sensitive runtime effect
read(loc, f ) repesents reading the field f of an object loc
whereas write(loc, f ) shows writing into the field. The transi-
tion relation Σ ↪→ Σ′ represents a transition with no memory
effects.

C. Soundness
C.1 Effect Refinement
To prove the type-and-effect system of OpenEffectJ sound,
we should prove that the dynamic runtime effects of a pro-
gram refine its static effects, that are computed by the typing
rules. We prove this using two theorems which say that:

(i) concretized effects are a sound approximation of stati-
cally computed effects, Theorem 3.1; and

(ii) concretized effects soundly approximate runtime effects,
Theorem 3.2.
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CT (c) = class c extends d { f ield meth }
@meth ∈ meth. meth = t σ m(v var){e}

override(m,d, t→ t)
(d,m) /∈ dom(ST)∨ (θc = ST(c,m)∧θd = ST(d,m)∧θc ⊆ θd)

override(m,c, t→ t)

(d, t,m(t var){e},σ) = findMeth(c,m)
(d,m) /∈ dom(ST)∨ (θc = ST(c,m)∧θd = ST(d,m)∧θc ⊆ θd)

override(m,c, t→ t)

override(m,Ob ject, t→ t)

CT (c) = class c extends d { f ield meth }
∃meth ∈ meth . meth = (t,σ ,m(t var){e})

findMeth(c,m) = (c, t,m(t var){e},σ)

CT (c) = class c extends d { f ield meth }
@meth ∈ meth . meth = (t,σ ,m(t var){e})

findMeth(d,m) = l
findMeth(c,m) = l

CT (c) = class c extends d { f ield meth }
@ f ield ∈ f ield . f ield = [@open] t f validF( f ,d)

validF( f ,c)

validF( f ,Ob ject)

class c extends d { f ield meth } ∈CT
isClass(c)

isClass(t)∨ (t = int)∨ (t = bool)
isType(t)

class c extends d{ field meth } ∈ CT
∃[@open] t f ∈ field

typeOf ( f ) = (c, [@open] t)

A1uA2 = {x = e | (A1 ` x = e)∧ (A2 ` x = e)}

Figure 15. Rest of OpenEffectJ’s auxiliary functions.

C.1.1 Preliminary Definitions
We first present some definitions used in the proofs of The-
orem 3.1 and Theorem 3.2.

DEFINITION C.1. (Dynamic trace) A dynamic trace η for
an execution of a program is the sequence of dynamic effects
η happening during its execution, where η can be a read
effect read(loc, f ) for field f of the object loc, or a write effect
write(loc, f ).

Evaluation relation:
η

↪→: Σ
η

99K Σ

(SET)
[c.F.E] = µ(loc) µ0 = µ⊕ (loc 7→ [c.(F⊕ ( f 7→ v)).E])

µ
′ = update(µ0, loc, f ,v)

〈E[loc. f = v],µ〉
write(loc,f )
↪−−−−→

〈
E[v],µ ′

〉
(GET)
µ(loc) = [c.F.E] v = F( f )

〈E[loc. f ],µ〉
read(loc,f )
↪−−−−→ 〈E[v],µ〉

(CALL)
(c′, t,m(t var){e},σ) = findMeth(c,m)

[c.F.E] = µ(loc) e′ = [loc/this,v/var]e
〈E[loc.m(v)],µ〉 ↪→

〈
E[e′],µ

〉
(BINARY)

v = v1 ◦ v2

〈E[v1 ◦ v2],µ〉 ↪→ 〈E[v],µ〉

(DEFINE)
〈E[t var = v;e],µ〉 ↪→ 〈E[[v/var]e],µ〉

(CONDITION-TRUE)〈
E[if true then e else e′],µ

〉
↪→ 〈E[e],µ〉

(CONDITION-FALSE)〈
E[if false then e else e′],µ

〉
↪→
〈
E[e′],µ

〉
Figure 16. OpenEffectJ’s dynamic semantics rules.

CT (c) = class c extends d { field meth }
methods(c) = methods(d)∪{m | (t,σ ,m(t var){e} ∈ meth}

CT (c) = class c extends d { field meth }
fields(c) = fields(d)∪{ f | ([@open]t f ) ∈ field}

typeOf ( f ) = (d, [@open] int)
default( f ) = 0

typeOf ( f ) = (d, [@open] bool)
default( f ) = false

typeOf ( f ) = (d, [@open] c)
default( f ) = null

Figure 17. Rest of OpenEffectJ’s auxiliary functions its dy-
namic semantics.
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DEFINITION C.2. (Static effect inclusion) A static effect ε is
included in an effect set σ , which may contain open effects,
written as ε∈σ , if:

• either ε ∈ ↓C (σ);
• or ∃ open(f m σ ′) ∈ ↓O (σ) ∧ ε ∈ σ ′.

DEFINITION C.3. (Dynamic effect refines static effect) A
dynamic runtime effect η refines a static effect ε , written as
η ∝ε , if:

• either η = read(loc, f )∧ ε ∈ {rd(f ),wr(f )};
• or η = write(loc, f )∧ ε = wr(f ).

In this definition, a write effect covers a read effect [9].

DEFINITION C.4. (Static effect refinement) An effect set σ ′

refines another effect set σ if σ ′⊆σ .

DEFINITION C.5. (Effect equivalent stores) Two stores µ

and µ ′ are effect equivalent, written as µ ∼= µ ′, if:

• dom(µ)⊆ dom(µ ′); and
• ∀loc ∈ µ,µ(loc) = [c.F.E] ⇒ µ ′(loc) = [c.F ′.E], for

some F ′.

DEFINITION C.6. (Well-formed object) An object record
o = [c.F.E] is a well-formed in µ , written as µ ` o, if for
all open effects open(f m σ0)∈σ ∈rng(E):

• either (F( f )=loc)∧(µ(loc)=[c′.F ′.E ′])∧(E ′(m)⊆σ0);
• or (F( f )=null)∧ (σ0= /0);
• or (typeOf ( f ) = (c, int));
• or (typeOf ( f ) = (c,bool)).

DEFINITION C.7. (Well-formed location) A location loc is
well-formed in the store µ , written µ ` loc, if:

• either µ(loc)=[c.F.E], ∀m∈dom(E) . findMeth(c,m) =
(c′, t,m(t var){e},σ ′) ∧ (µ, /0) ` [loc/this]e : (σ ,A),
then σ⊆E(m);

• or µ(loc)=null.

DEFINITION C.8. (Well-formed store) A store µ is well-
formed, written as µ ` �, if ∀o ∈ rng(µ) . µ ` o and
∀loc ∈ dom(µ) . µ ` loc.

Effect Concretization Figure 18 shows the rules for com-
putation of concretized effects for OpenEffectJ’s expressions.
In this figure, the effect judgement (µ,A)` e : (σ ,A′) says
that the expression e in a runtime configuration 〈µ,e〉 with
store µ and the aliasing environment A, has the concretized
effect σ . The rule (E-CALL-OPEN) uses the concretize auxil-
iary function in Figure 8 for concretization of effects of a dy-
namically dispatched method invocation x0.m(x). The rules
(E-GET) and (E-SET) assign a concretized effect read(loc, f )
and write(loc, f ) to the field read and write expressions. For
other expressions, e.g. (T-DEFINE), their effects is the union
of the concretized effects of their subexpressions.

Theorem 3.1: (Concretized effects refine static effects)
Given an expression e with statically computed effects σs,

which could contain open effects, and its dynamic con-
cretization σc, i.e. σc = concretize(σs), if Π,A ` e  e′ :
(t,σs,A′) holds statically and (µ,A) ` e′ : (σc,A′) dynami-
cally for the runtime configuration 〈e′,µ〉, then σc ⊆ σs.

Proof: The proof is by a straightforward structural in-
duction on the derivation of Π,A ` e  e′ : (t,σ ,A′) and
(µ,A) ` e′ : (σ ′,A′).

1. For the base cases (GET), (SET), (SET-OPEN), (VAR),
(NULL), (BOOL), (NUM), (NEW), (LOC), (BINARY), (CALL),
(CALL-PURE), with no subexpressions, it is obvious that
the effects are the same in the typing rules, §2 and Fig-
ure 14, and the effect judgment rules, Figure 18.

The remaining cases cover the induction step. The induc-
tion hypothesis (IH) is that the claim of the lemma holds for
all sub-derivations of the derivation being considered.

2. (IF).

Π,A ` x x : (bool, /0,A)
Π,A ` e0 e′0 : (t,σ0,A0)
Π,A ` e1 e′1 : (t,σ1,A1)

Π,A ` if x then e0 else e1 
if x then e′0 else e′1 : (t,σ0∪σ1,A0uA1)

(µ,A) ` x : ( /0,A)
(µ,A) ` e′0 : (σ ′0,A0) (µ,A) ` e′1 : (σ ′1,A1)

(µ,A) ` if x then e′0 else e′1 : (σ ′0∪σ
′
1,A0uA1)

By IH, σ0 ⊆ σ ′0 and σ1 ⊆ σ ′1. Therefore (σ ′ = σ ′0∪σ ′1)⊆
(σ0∪σ1 = σ ).

3. (DEFINE).

Π,A ` e1 e′1 : (t1,σ1,A1)
Π;x : t,A1;x = e′1 ` e2 e′2 : (t2,σ2,A2) t1 <: t
Π,A ` t x = e1;e2 t x = e′1;e′2 : (t2,σ1∪σ2,A2)

(µ,A) ` e′1 : (σ ′1,A1) (µ,A1;x = e′1) ` e′2 : (σ ′2,A2)
(µ,A) ` t x = e′1;e′2 : (σ ′1∪σ

′
2,A2)

By IH, σ ′1 ⊆ σ1 and σ ′2 ⊆ σ2. Therefore (σ ′ = σ ′1∪σ ′2)⊆
(σ1∪σ2 = σ ).

Theorem 3.2: (Dynamic effects refine concretized ef-
fects) 7 For two configurations Σ= 〈e,µ〉 and Σ′= 〈e′,µ ′〉, if

Σ transitions to Σ′ producing runtime effect η , i.e. Σ
η

↪→ Σ′, if
the store µ is well-formed, i.e. µ ` �, and concretized effects
of e is σc, i.e. (µ,A) ` e : (σc,A′), then there is a concretized
effect σ ′c such that:

(a) (µ ′,A1) ` e′ : (σ ′c,A
′
1) and σ ′c ⊆ σc;

(b) η ∝ σc

We first state few lemmas which are used in the proof of
the theorem.
7 The theorem in §3 is the simplified version of the theorem presented here.
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(E-CALL-OPEN)
A ` x = loc. f open(f m σ) = concretize(µ, loc,open(f m γ)) typeOf ( f ) = (d,@open c0)

(µ,A) ` x.m(x) : (σ , /0)

(E-CALL-LOC)
µ(loc) = [c.F.E] E(m) = σ

(µ,A) ` loc.m(x) : (σ , /0)

(E-CALL)
(µ,A) ` x.m(x) : (>, /0)

(E-GET)
(µ,A) ` x. f : (rd(f ),A)

(E-GET-LOC)
(µ,A) ` loc. f : (rd(f ),A)

(E-SET-OPEN)
typeOf ( f ) = (c,@open c0) A′ = A\ f ∪{x = this. f}

(µ,A) ` x. f = x′ : (>,A′)

(E-SET-OPEN-LOC)
typeOf ( f ) = (c,@open c0) A′ = A\ f ∪{x = this. f}

(µ,A) ` loc. f = loc′ : (>,A′)

(E-SET)
typeOf ( f ) = (c, t) A′ = A\ f ∪{x′ = x. f}

(µ,A) ` x. f = x′ : (wr(f ),A′)

(E-SET-LOC)
typeOf ( f ) = (c, t) A′ = A\ f ∪{x = loc. f}

(µ,A) ` loc. f = loc′ : (wr(f ),A′)

(E-NEW)
(µ,A) ` new c() : ( /0,A)

(E-VAR)
(µ,A) ` var : ( /0,A)

(E-NULL)
(µ,A) ` null : ( /0,A)

(E-LOC)
(µ,A) ` loc : ( /0,A)

(E-DEFINE)
(µ,A) ` e1 : (σ1,A1) (µ,A1;x = e1) ` e2 : (σ2,A2)

(µ,A) ` t x = e1;e2 : (σ1∪σ2,A2)

(E-BINARY)
(µ,A) ` x1 ◦ x2 : ( /0,A)

(E-BINARY-LOC)
(µ,A) ` v1 ◦ v2 : ( /0,A)

(E-NUMBER)
(µ,A) ` n : ( /0,A)

(E-BOOL)
(µ,A) ` b : ( /0,A)

(E-CONDITION)
(µ,A) ` e0 : (σ0,A0) (µ,A) ` e1 : (σ1,A1)

(µ,A) ` if x then e0 else e1 : (σ0∪σ1,A0uA1)

Figure 18. OpenEffectJ’s effect concretization rules.

LEMMA C.9. (Store preservation) Let the initial configura-
tion of a program with a main expression e be Σ?= 〈e,•〉. If

〈e,•〉
η

↪→
∗
〈e′,µ ′〉, then µ ′ ` �.

Proof: The proof is by cases on the reduction step. In
each case we show that µ ` � implies that µ ′ ` �.

1. The cases (CONDITION-TRUE), (CONDITION-FALSE), (GET),
(CALL), (BINARY) and (DEFINE), are trivial, because they
do not change the store, i.e., µ ′ = µ .

For all the remaining cases, to see µ ′ ` loc, consider
the definition of initE. It returns the effects computed by
the static type-and-effect system, while the effect judg-
ment is more accurate (Figure 18), i.e., by observation if
((var : t,this : c), /0)` e : (u,σ ,A) and (µ, /0)`[loc/this]e:
(σ ′,A), then σ ′⊆ σ , therefore µ ′ ` loc. Therefore, it suffices
to show all the objects o are well-formed, i.e., µ ′ ` o.

2. (NEW). Here e = E[new c()], e′ = E[loc], where loc /∈
dom(µ), µ ′ = µ ⊕ {loc 7→ [c.{ f 7→ default( f ) | f ∈
fields(c)}.{m 7→ σ ∈ initE(c)}]}. The only change to the
store µ is the new object o created: [c.{ f 7→ default( f ) |
f ∈ fields(c)}.{m 7→ σ ∈ initE(c)}]. All the fields are
initiated to the default values, i.e., { f 7→ default( f ) | f ∈

fields(c)}. By the definition of initE (§3.2), all the open
effects are initiated to null. Therefore, µ ′ ` o.

3. (SET). Here e = E[loc. f = v], e′ = E[v], µ ′= µ⊕(loc 7→
o), and o = [u.F⊕( f 7→v).E], where µ(loc)=[u.F.E] and
typeOf ( f ) = (c, t) for some c and t. The field f is not an
open field, and by the function update, it does not update
any effect, and µ ′ ` o.

4. (SET OPEN), Here e=E[loc. f = v], e′=E[v], where µ0 =
µ⊕(loc 7→ [c.(F⊕( f 7→ v)).E]), and µ ′= update(µ0, loc,
f ,v). The proof is by observation/construction of the
update function. Each time it updates an object, it copied
the corresponding effects of updated object and put it in
the open effect (see the concretize function Figure 8).

LEMMA C.10. (Stationary effect) Let e be an expression,
and µ and µ ′ two effect equivalent stores, i.e. µ ∼= µ ′, then
e has the same effects in the two stores µ and µ ′. In other
words if (µ,A) ` e : (σ ,A′), then (µ ′,A) ` e : (σ ,A′).

Proof: The proof is by induction on the structure of the
expression e.

18 2014/4/3



1. Cases of (NEW), (NULL), (LOC), (NUMBER), (BOOL),
(BINARY) and (VAR) are trivial, since in these cases,
σ ′ = σ = /0.

For the remaining steps, the induction hypothesis (IH) says
that the claim of the lemma holds for all sub-derivations of
the derivation being considered.

2. The cases for (CONDITION), (DEFINE), (GET) and (SET)
follow directly from IH.

3. (IF).

(µ,A) ` x : ( /0,A)
(µ,A) ` e0 : (σ0,A0) (µ,A) ` e1 : (σ1,A1)

(µ,A) ` if x then e0 else e1 : (σ0∪σ1,A0uA1)

(µ ′,A) ` x : ( /0,A)
(µ ′,A) ` e0 : (σ ′0,A0) (µ ′,A) ` e1 : (σ ′1,A1)

(µ ′,A) ` if x then e0 else e1 : (σ ′0∪σ
′
1,A0uA1)

By IH, σ ′0 = σ0 and σ ′1 = σ1. Therefore (σ ′ = σ ′0∪σ ′1) =
(σ = σ0∪σ1).

4. (DEFINE)

(µ,A) ` e1 : (σ1,A1) (µ,A1;x = e1) ` e2 : (σ2,A2)
(µ,A) ` t var = e1;e2 : (σ1∪σ2,A2)

(µ ′,A) ` e1 : (σ ′1,A1) (µ ′,A1;x = e1) ` e2 : (σ ′2,A2)
(µ ′,A) ` t var = e1;e2 : (σ ′1∪σ

′
2,A2)

By IH, σ ′1 = σ1 and σ ′2 = σ2. Therefore (σ ′ = σ ′1∪σ ′2) =
(σ = σ1∪σ2).

5. (GET)

(µ,A) ` loc. f : (rd(f ),A) (µ ′,A) ` loc. f : (rd(f ),A)

Therefore σ ′ = σ = rd(f ).

6. (SET)

(µ,A) ` x : ( /0,A)
typeOf ( f ) = (c, t) A′ = A\ f ∪{x = loc. f}}

(µ,A) ` loc. f = x : (wr(f ),A′)

(µ ′,A) ` x : ( /0,A)
typeOf ( f ) = (c, t) A′ = A\ f ∪{x = loc. f}}

(µ ′,A) ` loc. f = x : (wr(f ),A′)

Thus σ ′ = σ = wr(f ).

7. (SET-OPEN)

typeOf ( f ) = (c,@open t)
A′ = A\ f ∪{x = loc. f}}
(µ,A) ` e0. f = e1 : (>,A′)

typeOf ( f ) = (c,@open t)
A′ = A\ f ∪{x = loc. f}}

(µ ′,A) ` e0. f = e1 : (>,A′)

Thus σ ′ = σ =>.

8. (CALL-OPEN)

A ` x = loc. f
open(f m σ

′
0) = concretize(µ, loc,open(f m γ))

typeOf ( f ) = (d,@open c0)

(µ,A) ` x.m(x) : (σ ′0, /0)

A ` x = loc. f
open(f m σ

′
1) = concretize(µ ′, loc,open(f m γ))

typeOf ( f ) = (d,@open c0)

(µ ′,A) ` x.m(x) : (σ ′1, /0)

By IH, (σ ′ = σ ′0) = (σ = σ ′1).

9. (CALL-LOC)

µ(loc) = [c.F.E]
E(m) = σ0

(µ,A) ` loc.m(x) : (σ0, /0)

µ
′(loc) = [c.F.E]

E(m) = σ
′
0

(µ ′,A) ` loc.m(x) : (σ ′0, /0)

Since µ ∼= µ ′, the effect maps E are the same and σ0 =
σ ′0. Thus (σ ′ = σ ′0) = (σ = σ0).

10. (CALL)

(µ,A) ` x.m(x) : (>, /0) (µ ′,A) ` x.m(x) : (>, /0)

Thus σ ′ = σ =>.

LEMMA C.11. (Replacement with subeffect)
If µ ` �, Σ

η

↪→ Σ′, Σ = 〈E[e],µ〉, Σ′ = 〈E[e′],µ ′〉, (µ,A) `
E[e] : (σ ,A′), (µ,A) ` e : (σ0,A′0), (µ,A) ` e′ : (σ1,A′0),
µ ∼= µ ′, and σ1 ⊆ σ0, then (µ,A) ` E[e′] : (σ ′,A′) ∧ σ ′ ⊆ σ .

For two expression e and e′, in the configurations Σ =

〈E[e],µ〉 and Σ′ = 〈E[e′],µ ′〉 such that Σ
η

↪→ Σ′, if the store µ

is well-formed, i.e. µ ` �, and the expression e has the effects
σ0, i.e. (µ,A) ` e : (σ0,A′0) and E[e] has the concrete effects
σ , i.e. (µ,A) ` E[e] : (σ ,A′), and µ ∼= µ ′, and σ1 ⊆ σ0, then
(µ,A) ` E[e′] : (σ ′,A′) ∧ σ ′ ⊆ σ .

Lemma C.11 says that given two effect equivalent stores,
and the same evaluation context, if the effect of the subse-
quent expression e′ refines the original expression e, then
the effect of the entire subsequent expression E[e′] refines
the entire original expression E[e].

Proof: The proof is by induction on the size of the
evaluation context E. The size of the E is the number of
recursive applications of the syntactic rules necessary to
create E.

1. For the base case E = −, the size of E is zero , and
(σ ′ = σ1)⊆ (σ = σ0).

For the induction step we divide the evaluation context
into two parts such that E[e1] = E1[E2[e2]], and E2 has
the size one. The induction hypothesis (IH) says that the
lemma holds for all evaluation contexts, which their sizes
are smaller than the one (E1) considered in the induction
step. We prove it case by case on the rule used to generate
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E2. In each case we show that (µ,A) `E2[e] : (σ ,A′) implies
that (µ ′,A) ` E2[e′] : (σ ′,A′), for some σ ′ ⊆ σ , and thus the
claim holds by the IH.

2. For (E-DEFINE), (E-GET) and (E-SET) the proof follows
directly from the IH.

3. (E-SET-OPEN) holds because in this case σ =>.

LEMMA C.12. (Substitution effect) If (µ,A) ` e : (σ ,A′),
then there is some σ ′, such that (µ,A) ` [v/var]e : (σ ′,A′),
for all values v in v and free variables var in var, and σ ′⊆σ .

Proof: The proof is by structural induction on the derivation
of (µ,A)` e : (σ ,A′) and by cases, based on the last step in
that derivation.

1. Proof for (E-NEW), (E-NULL), (E-LOC) is trivial, since e
has no variables, σ ′=σ = /0.

2. For (E-VAR), (µ,A)`v :( /0,A) and (µ,A)`var=( /0,A).

The remaining cases cover the induction step. The induc-
tion hypothesis (IH) is that the claim of the lemma holds for
all sub-derivations of the derivation being considered.

3. For (E-CONDITION), (E-BINARY), (E-GET) and (E-DEFINE)
the proof follows directly from the IH.

4. The case for (E-SET-OPEN) and (E-CALL) hold because in
these cases > ∈ σ . The effect of e is > and every effect
refines >.

5. (E-CALL-OPEN)

A ` x = loc. f
open(f m σ) = concretize(µ, loc,open(f m γ))

typeOf ( f ) = (d,@open c0)

(µ,A) ` x.m(x) : (σ , /0)

Let e′i = [v/var]xi for i∈ {1..n}, [v/var]e= x.m(e′). They
result in the same effect by (E-CALL-OPEN).

6. (E-CALL-LOC)

µ(loc) = [c.F.E] E(m) = σ

(µ,A) ` loc.m(x) : (σ , /0)

Let e′i = [v/var]xi for i∈{1..n}, then [v/var]e= loc.m(v).
Clearly (µ,A) ` [v/var]e : (σ ,A).

7. (E-SET)

typeOf ( f ) = (c, t) A′ = A\ f ∪{x = loc. f}
(µ,A) ` loc. f = x : (wr(f ),A′)

Now [v/var]e= (loc. f = [v/x]x). (µ,A)` [v/x]x : ( /0,A).
By the definition of typeOf , the result of typeOf ( f ) re-
mains unchanged, i.e. typeOf ( f )=(c, t).

LEMMA C.13. (Subexpression effect containment) If (µ,A)`
e :(σ ,A0) and (µ,A)`E[e] :(σ ′,A′0), then σ⊆σ ′.

Proof: By the effect rule for each expression, the effect of
any direct subexpression is a subset of the entire expression.

C.2 Proof of Theorem 3.2
Using Lemma C.10 and Lemma C.11 To prove Theo-
rem 3.2, in each reduction case, let e = E[e0], e′ = E[e1],
(µ,A)`e0 : (σ0,A′) and (µ ′,A)`e1 : (σ1,A′). Given that (a)
µ ∼= µ ′, by Lemma C.11 and Lemma C.10, to prove (b), it
suffices to prove σ1 ⊆ σ0. We divide the cases into 3 cat-
egories: in the first category, some variables (var) will be
replaced by actual values (v); the cases, in the second cat-
egory, access the store; and the other cases are listed right
below. Here the rule leaves no dynamic trace, and (c) holds.

• (NEW) Here e = E[new c()], e′ = E[loc], where loc /∈
dom(µ), µ ′ = µ ⊕ {loc 7→ [c.{ f 7→ default( f ) | f ∈
fields(c)}.{m 7→ σ ∈ initE(c)}]}. Because this rule does
not change any object, µ ∼= µ ′. Also (µ,A) ` new c() :
( /0,A) and (µ,A) ` loc : ( /0,A), and (b) holds.

• (BINARY) Here e=E[v1 ◦v2], e′=E[v], where v= v1 ◦v2,
µ ′ = µ . It is trivial to see that (b) holds.

Using Lemma C.12 We now present the case for method
call and local declaration.

• (CALL) Here e=E[loc.m(v)], (u′, tm,m(t var){e2},σm)=
findMeth(u,m), e′=E[e1], e1=[loc/this,v/var]e2, µ(loc)=
[u.F.E]. Let (µ,A)` loc.m(v) : (σ0,A), i.e., E(m)=σ0.
Let e3 =[loc/this]e2, (µ,A)` e3 : (σ3,A3) and (µ,A)`
e1 : (σ1,A1). By Lemma C.12, σ1⊆σ3. By µ `�, Defini-
tion C.7 and Definition C.8, σ3⊆σ0, thus σ1⊆σ0.

• (DEFINE) Here e = E[t var = v;e1], and e′ = E[e′1], where
e′1 = [v/var]e1. Let (µ,A) ` e1 : (σ0,A0), by (E-DEFINE),
(µ,A) ` t var = v;e1 : (σ0,A0). (µ,A) ` [v/var]e1 :
(σ1,A0), for some σ1 ⊆ σ0, by Lemma C.12.

Using Lemma C.13 We prove cases for field accesses:

• (GET) Here e = E[loc. f ], e′ = E[v], where µ(loc) =
[u.F.E], F( f ) = v, µ ′ = µ and µ ∼= µ ′. Because (µ,A) `
loc. f : (rd(f ),A), and (µ ′,A) ` v : ( /0,A), (b) holds. Fi-
nally, η =(read(loc, f )), and η ∝ rd(f )⊆σ , by Lemma C.13.

• (SET) Here e=E[loc. f = v], e′=E[v], µ ′= µ⊕(loc 7→o),
and o = [u.F⊕( f 7→ v).E], where µ(loc) = [u.F.E] and
typeOf ( f ) = (c, t) for some t and c. The field is not an
open field, and by the function update, it does not update
any effect, and µ ∼= µ ′. To see (µ,A) ` E[v] : (σ ′,A′)
and σ ′ ⊆ σ , we have (µ,A) ` loc. f = v : (wr(f ),A), and
(µ,A)`v:( /0,A), thus σ ′⊆σ . Finally, η =(write(loc, f )),
and η ∝ wr(f )⊆ σ , by Lemma C.13.

• (SET OPEN) Here e=E[loc. f = v], e′=E[v], where µ0 =
µ⊕(loc 7→ [c.(F⊕( f 7→ v)).E]), and µ ′= update(µ0, loc, f ,v).
The effect of e is > and every effect refines >.
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