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Inmany applications of networked information systems, the need to share information often has to be
balanced against the need to protect secret information from unintended disclosure, e.g., due to copyright,
privacy, security, or commercial considerations. We study the problem of secrecy-preserving reasoning, that is,
answering queries using secret information, whenever it is possible to do so, without compromising secret
information. In the case of a knowledge base that is queried by a single querying agent, we introduce the
notion of a secrecy envelope. This is a superset of the secret part of the knowledge base that needs to be
concealed from the querying agent in order to ensure that the secret information is not compromised. We
establish several important properties of secrecy envelopes and present an algorithm for computing minimal
secrecy envelopes. We extend our analysis of secrecy preserving reasoning to the setting where different parts
of the knowledge base need to be protected from different querying agents that are subject to certain
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Secrecy-Preserving Reasoning using Secrecy Envelopes

Giora Slutzki, George Voutsadakis and Vasant Honavar
Department of Computer Science

Iowa State University
Ames, IA 50011, USA

Abstract

In many applications of networked information sys-
tems, the need to share information often has to be
balanced against the need to protect secret informa-
tion from unintended disclosure, e.g., due to copy-
right, privacy, security, or commercial considera-
tions. We study the problem ofsecrecy-preserving
reasoning, that is, answering queries using secret
information, whenever it is possible to do so, with-
out compromising secret information. In the case
of a knowledge base that is queried by a single
querying agent, we introduce the notion of a se-
crecy envelope. This is a superset of the secret
part of the knowledge base that needs to be con-
cealed from the querying agent in order to ensure
that the secret information is not compromised. We
establish several important properties of secrecy
envelopes and present an algorithm for computing
minimal secrecy envelopes. We extend our anal-
ysis of secrecy preserving reasoning to the setting
where different parts of the knowledge base need
to be protected from different querying agents that
are subject to certain restrictions on the sharing of
answers supplied to them by the knowledge base.

1 Introduction
The rapid expansion of the Internet and the widespread adop-
tion and use of distributed databases and networked informa-
tion systems offer unprecedented opportunities for produc-
tive interaction and collaboration among autonomous indi-
viduals and across organizations in virtually every area of
human endeavor. However, the need to share information
(e.g., advance warning of an impending terrorist attack pro-
vided by FBI to a friendly nation) often has to be balanced
against the need to protect sensitive or confidential informa-
tion (e.g., the particular pieces of intelligence used to infer
the likelihood of an attack on a specific target, the likely at-
tackers, or the specific sources that were relied on to gather
such information) from unintended disclosure. One can en-
vision similar need for selective sharing of information aris-
ing from privacy, security, or commercial considerations in
scenarios that involve interactions among different govern-
mental agencies (e.g., intelligence, law enforcement, public

policy), or independent nations acting on matters of global
concern (e.g., counter-terrorism, international finance), and
participants in business transactions (e.g., healthcare,insur-
ance). Consequently, problems of trust, privacy and security
in information systems in general, and networked information
systems (e.g., the web), in particular, are topics of significant
current interest.

Early work on information protection focused on access
control mechanisms (see[Bertinoet al., 2006] for a survey).
For, instance, work onpolicy languagesfor the web[Bonatti
et al., 2006; Kolovskiet al., 2007; Kagalet al., 2006] in-
volves specifying syntax-based restrictions on access to spe-
cific resources or operations on the web. Giereth[Giereth,
2005] has studied the hiding of a fragment of an RDF doc-
ument by encrypting it while the rest of the document re-
mains publicly readable. Farkas et al.[Farkaset al., 2006;
Jain and Farkas, 2006] have proposed aprivacy information
flow modelto prevent unwanted inferences in data reposito-
ries. Jain and Farkas[Jain and Farkas, 2006] have proposed
an RDF authorization model that can selectively control ac-
cess to stored RDF triples using a pre-specified set ofsyn-
tactic rules. In a recent paper[Cuenca Grau and Horrocks,
2008] Grau and Horrocks have introduced a framework that
combines logic and probabilistic approaches to guarantee pri-
vacy preservation. A growing body of work on data linkage
[O’Keefeet al., 2004] addresses the problem of disclosure of
personal data from aggregate information or from separately
released, non-confidential information about an individual.
Recent research on privacy preserving data mining[Clifton
et al., 2002] addresses the design of algorithms for construct-
ing predictive models that describe shared characteristics of
groups of individuals, e.g., patients in a clinical trial, without
revealing information about specific individuals, e.g., clinical
records of individual participants in the clinical trial.

Most of the existing methods for the protection of secret
information rely on forbidding access to the sensitive parts of
a knowledge base. Such approaches can be overly restrictive
in scenarios where it is possible, and may be desirable, for
a knowledge base to use secret knowledge to answer queries
without risking disclosure of the secret knowledge[Baoet al.,
2007]. This calls for algorithms forsecrecy-preserving rea-
soning, that is, answering queries using secret information,
whenever it is possible to do so, without compromising se-
cret information. Against this background, we introduce the



notion of a secrecy envelope, that is, a superset of the secret
part of the knowledge base that needs to be concealed by the
knowledge base from the querying agent in order to ensure
that the secret information is not compromised. We establish
several important properties of secrecy envelopes and present
an algorithm for computing minimal secrecy envelopes. We
extend our analysis of secrecy preserving reasoning to the set-
ting where different parts of the knowledge base need to be
protected from different querying agents that are subject to
certain restrictions on the sharing of answers supplied to them
by the knowledge base.

2 The General Setting: Knowledge Bases and
Reasoners

Let E = 〈X,R〉 be an entailment system[Voutsadakiset al.,
2008], e.g. a description logic, with consequence relation⊢E .
We denote byZ+ = {x ∈ X : Z ⊢E x}, theE-deductive
closure ofZ ⊆ X . E will be assumed fixed in what follows
and, even though many of the concepts encountered will be
relative toE , this fact will not always be made explicit.

A knowledge base K = 〈K, B, Q, A〉 over E consists of

1. A finite setK ⊆ X , which represents the knowledge
contained inK;

2. A finite subsetB of K, representing thebrowsable
knowledge that the querying agent has unrestricted ac-
cess to;

3. A query setQ ⊆ X ;

4. An answer setA, which is, usually either{Y, U} or
{Y, N, U}, for YES, NO and UNKNOWN.

Additionally, K has a subsetS ⊆ K+, the secret or se-
crecy set, which the knowledge base needs to keep secret
from the querying agent. We assume that the querying agent
has available a reasoner for the entailment systemE . Thus,
since the agent can browseB, S has to satisfy the condition
B+ ∩ S = ∅.

Let K = 〈K, B, Q, A〉 be a knowledge base over an en-
tailment systemE = 〈X,⊢E〉. Given a functionR : Q →
{Y, N, U}, we use the following notational conventions:

QY = {x ∈ Q : R(x) = Y }

and, similarly, forQU (and forQN , in case the language has
negation). A computable functionR : Q → {Y, N, U} is a
reasoner for K = 〈K, B, Q, A〉 if it satisfies

1. Interderivability Axiom: If x ⊢E y andy ⊢E x, then
R(x) = R(y), for all x, y ∈ X ;

2. Yes-Axiom: B+ ⊆ QY ⊆ K+;

3. No-Axiom: QN = {¬x : x ∈ QY }, in caseX is a
language that includes a logical negation.

A reasonerR for K is asecrecy-preserving reasoner if

Q+

Y ∩ S = ∅. (1)

The Interderivability Axiom ensures that twoE-equivalent
queries are always answered the same way. The Yes-Axiom
requires that all consequences of the browsable part in the
knowledge baseK are answered positively to the querying

agent and that every positively answered query is a conse-
quence of the information contained in the knowledge set
K. On the other hand, the No-Axiom asserts that all nega-
tions of queries with positive answers have negative answers
and, therefore, all negations of queries with negative answers
have positive answers. Finally, Condition (1) asserts thatthe
querying agent cannot discover information in its secret set
given information in the set of queries with positive answers
(including browsable sets, by the Yes-Axiom).

3 Security Envelopes
LetK = 〈K, B, Q, A〉 be a knowledge base. Given anyQ′ ⊆
Q, we say thatQ′ is inferentially closed if Q′+ ∩ Q = Q′.
Note that, assumingQ = Q+, the inferential closure require-
ment reduces toQ′+ = Q′. A K-reasonerR is inferentially
closed if QY is inferentially closed, i.e. any consequence of
a finite set ofY-queries is aY-query. If a setS ⊆ K+\B+ is
to be protected by aK-reasonerR, we must haveS ⊆ QU .
This, however, may not be enough: It is likely that knowledge
outside ofS could be elicited by the querying agent and, in
turn, be used to deduce information inS. To prevent this,
the K-reasoner must compute a possibly larger subsetES ,
S ⊆ ES ⊆ K+\B+, and this set should satisfy

Secrecy-Set Axiom: (K+\ES)+ ∩ S = ∅.

This Axiom is equivalent to Condition (1), if one takesQY =
K+\ES, i.e., every query not inES is answered positively
(which is necessarily the case whenA = {Y, U}). A reasoner
satisfying this axiom is said to be asecrecy-preserving K-
reasoner (w.r.t. the secrecy-setS). The setES , which is not
necessarily unique, is called asecurity or secrecy envelope
(or just anenvelope) of S. Envelope setsES always exist
(e.g., the setK+\B+ is one such set), but, in order for the
reasoner to be as useful, i.e., as informative, as possible,the
K-reasoner should rather aim to haveES as small as possible.

We say that an envelopeES is atight envelope if it is irre-
dundant in the sense that removing any query fromES (i.e.,
answering it withY instead ofU (and adapting theN answers
accordingly, if the language has negation), would compro-
mise the secrecy ofS. In other words, tight envelopes must
satisfy the following condition:

• TightEnvelopeProperty:

(∀α ∈ ES)(∃F ⊆f K+\ES)[(F ∪ {α})+ ∩ S 6= ∅],

where⊆f denotes “finite subset”.

Clearly, tight envelopes are precisely those that are mini-
mal with respect to set inclusion. A tight envelopeES of S
is said to beoptimal if it has the smallest cardinality among
all tight envelopes ofS. If the smallest possible (and hence
optimal) envelope for a setS is S itself (which, of course, is
not always the case), thenS satisfies

• Strong Secrecy−SetAxiom: (K+\S)+ ∩ S = ∅.

Given a knowledge baseK, let FK be the collection of all
sets that satisfy the strong secrecy-set axiom, namely

FK = {S ⊆ K+\B+ : (K+\S)+ ∩ S = ∅}

and note that∅, K+\B+ ∈ FK. The following proposition
gives a precise characterization ofFK.
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Proposition 1 S ∈ FK iff K+\S is inferentially closed.

Proof: First suppose thatK+\S is inferentially closed i.e.
(K+\S)+ = K+\S. Then,

∅ = (K+\S) ∩ S = (K+\S)+ ∩ S

implying S ∈ FK. Conversely, suppose thatS ∈ FK, i.e.
(K+\S)+∩S = ∅, and letα ∈ (K+\S)+. We need to show
thatα ∈ K+\S. Since clearlyα ∈ K+, it suffices to show
thatα 6∈ S. But α ∈ (K+\S)+, so membership inS would
lead to a contradiction. �

The following observation is interesting and easy to prove.

Lemma 2 FK is closed under arbitrary unions.

Proof: Let Ai ∈ ⊆ FK, i ∈ I. Then(K+\Ai)
+∩Ai = ∅,

for all i ∈ I. Therefore

(K+\
⋃

i∈I

Ai)
+ ∩

⋃

i∈I

Ai

=
⋃

i∈I [(K
+\

⋃

i∈I Ai)
+ ∩Ai]

⊆
⋃

i∈I((K
+\Ai)

+ ∩Ai)
= ∅,

whence
⋃

i∈I Ai ∈ FK. �

The next lemma reveals a connection between tight en-
velopes andFK. Note, however, that everyS ∈ FK is its
own, and hence optimal, envelope.

Lemma 3 If S ⊆ ES ⊆ K+\B+ is a tight envelope ofS,
thenES ∈ FK.

Proof: By definition, the hypothesis implies(K+\ES)+∩
S = ∅. Our task is to show that(K+\ES)+ ∩ ES = ∅.
Suppose there is anα ∈ X which satisfies (i)α ∈ ES\S
and (ii) α ∈ (K+\ES)+. From (ii) it follows that there is a
subsetF ⊆f K+\ES such thatα ∈ F+. On the other hand,
sinceES is a tight envelope, there is a subsetG ⊆f K+\ES

such that for someβ ∈ S andβ ∈ (G ∪ {α})+. Define the
setH = F ∪ G. ThenH ⊆f K+\ES and we haveβ ∈
(G ∪ {α})+ ⊆ H+ ⊆ (K+\ES)+ which contradicts our
hypothesis. �

4 Computing Security Envelopes
There are some important computational problems related to
envelopes of secrecy-sets. Given a knowledge baseK =
〈K, B, Q, A〉 andS ⊆f K+, aK-reasoner has to calculate a
security envelope forS, preferably a tight one or even opti-
mal. Some questions relevant to these computational tasks are
the following (all in the context of a fixed and given knowl-
edge baseK and secrecy setS): DoesS satisfy the Strong
Secrecy-Set Axiom? Is a givenK-reasoner secrecy preserv-
ing? Is a givenF ⊆ K+ a tight envelope? One of the more
interesting questions is how to efficiently compute tight secu-
rity envelopes for given secrecy sets, especially in restricted
types of knowledge bases, e.g. hierarchical (i.e., partialorder)
or propositional knowledge bases.

Below we give a general “lazy” approach that aK-reasoner
R may adopt: wait for the queries and when one comes along,
figure out how to answer it so that no information about the

secrecy setS is revealed, taking into accountR’s answers
to the queries asked up to this point. This is the greedy
heuristic with the greediness criterion being the local con-
cern of making sure that the secrecy set is not compromised
at this point of time, without giving any consideration as to
how the current response may constrainR’s answers to future
queries. Clearly, this approach produces a history-dependent
K-reasoner, i.e., different query histories may yield differ-
entK-reasoners. We concentrate on the construction of the
Y, N, U answer sets and the envelopeES of S rather than on
the equivalent task of providing the responsesR(α) for an
incoming queryα.

1. Lazy Reasoner Algorithm (LRA)

2. input S

3. XY ← B+; XU ← ES ← S; XN ← ¬XY

4. while TRUEdo

5. input α

6. if α /∈ Q then ERROR & ignore α

7. else

8. if α /∈ XY ∪XU ∪XN then

9. if α ∈ K+ then

10. if (XY ∪ {α})+ ∩ S 6= ∅

11. then XU ← XU ∪ {α,¬α}; ES ← ES ∪ {α}

12. else XY ← XY ∪ {α}; XN ← XN ∪ {¬α}

13. else

14. if α /∈ ¬K+ then XU ← XU ∪ {α,¬α}

15. else XY ← XY ∪ {¬α}; XN ← XN ∪ {α}

It should be clear that LRA defines aK-reasoner in that all
relevant axioms are upheld at all times during the execu-
tion. The algorithm is equivalent to an algorithm presented
in [Voutsadakiset al., 2008], whose execution is guided by a
fixed ordering of the set of queries. It was proved in[Vout-
sadakiset al., 2008] that the algorithm produces a secrecy-
preservingK-reasoner forS, which is also maximally infor-
mative. This means that it provides a tight envelopeES for
S. This algorithm will be generalized in Section 5 to deal
with the case of multiple agents querying a single knowledge
base. Each agent has, in general, a different browsable set
and a difference secrecy set from those of other agents.

4.1 Security Envelopes in Hierarchical Knowledge
Bases

We now focus on the task of computing tight (or optimal)
envelopes in the restricted, yet practically important case of
hierarchical (i.e., partial order) knowledge bases. In this con-
text the knowledge base is a finite directed (acyclic) graph
G = (V, E), where the vertex setV represents the elements
of the given poset and the arcs inE represent a partial order.
Of particular interest are hierarchical knowledge bases that
are also transitive, i.e., transitive DAGs (TDAGs), e.g., the
familiar “is-a” and “part-of” hierarchies.

The inferential closure of the given ontologyG is its tran-
sitive closureG+ = (V, E+). The set of queries isQ =
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V × V and the browsable part ofG is empty. Finally, the
answer space isA = {Y, U} because the underlying lan-
guage does not have negation. A secrecy-set is a subset of
edgesS ⊆ E+ and our goal is to find a tight security en-
velope: S ⊆ ES ⊆ E+ satisfying(E+\ES)+ ∩ S = ∅.
Graph theoretically, this amounts to the following: Suppose
S = {(s1, t1), (s2, t2), . . . , (sk, tk)} are the secret edges in
E+. The goal is to find a superset ofS, as small as possi-
ble, whose removal will disrupt all the paths fromsi to ti,
for i = 1, 2, . . . , k. In the graph theory literature this problem
is often referred to as themulticut problem. The decision
version of this problem is the following

Directed Multicut

Instance: Directed graphG = (V, E), list S = {(s1, t1),
. . . , (sk, tk)} ⊆ V × V and an integerM ≥ 0.

Question: Is thereF ⊆ E, of at mostM edges, whose re-
moval disconnects all the pairs inS?

Unfortunately, it turns out that this problem is NP-complete
even for acyclic graphs[Calinescuet al., 2003; Bentz, 2008]
and, even worse, its optimization version of finding the small-
est multicut is hard to approximate[Leighton and Rao, 1999;
Garget al., 1997; Chawlaet al., 2005; Cheriyanet al., 2001;
Chuzhoy and Khanna, 2006]. The question as to whether
there exists a polynomial time algorithm for computing an
optimal security envelope for TDAG-structured knowledge
bases remains open.

We give two simple heuristics, the first based on a Max
Flow-Min Cut algorithm and the second on computing reach-
ability.

Example 1: Let G = (V, E) be a DAG and suppose that the
set of secret edges isS = {(s1, t1), (s2, t2), . . . , (sk, tk)} ⊆
E+. We first present an algorithms based on computing min-
imum cuts. The algorithm does compute a multicut, but it is
not guaranteed to output a tight multicut.

1. Simple MultiCut Algorithm (SMC)

2. H←G

3. for i = 1 to k do

4. Ci ←Min-Cut(H,si,ti)

5. H←H\Ci

6. C ← C1 ∪ C2 ∪ . . . ∪ Ck

Clearly, the algorithm runs in polynomial time andH = G\C
at termination. It is also easy to see that the setC com-
puted by the SMC algorithm is a multicut ofG with respect
to S. I.e., in the graphH (at termination) there is no path
from si to ti, i = 1, 2, ..., k. Thus,C is a security envelope
of S. Unfortunately, the envelopeC need not be tight; this
is essentially because later cuts may have edges that make
edges in previous cuts redundant. For instance, in the graph
G = ({s1, s2, t1, t2}, {(s1, s2), (s2, t2), (t2, t1)}), the first
cut could beC1 = {(s1, s2)} whereas the second cut must
then beC2 = {(s2, t2)}. As a result, we obtain the multicut
C = C1∪C2 = {(s1, s2), (s2, t2)} which clearly is not tight.

Consider next the transitive closure ofG. In this case,
the first min-cutC1 will definitely not include the edge

(s2, t2) and will have to have three edges (either all
those leavings1 or all those enteringt1), say C1 =
{(s1, t1), (s1, s2), (s1, t2)}. The second cut will still have to
beC2 = {(s2, t2)}. The union of these two cuts is, in fact, a
tight envelope; indeed, it is optimal. �

Example 2: The second algorithm is based on repeatedly
computing the reachability sets for the verticessi within the
given directed (acyclic) graph:

1. Simple Reachability Algorithm (SRA)

2. H ← G

3. for i = 1 to k do

4. Ri ← {(u, ti) ∈ E | u ∈ V is reachable fromsi}

5. H ← H\Ri

6. R← R1 ∪R2 ∪ . . . ∪Rk

I.e., for each vertexu reachable fromsi we remove the
edge (u, ti) from the graph and place it inR (only if it
does exist in the graphH). The setR resulting at termi-
nation is an envelope ofS. Applying SRA to the graph
G from the previous example results in the envelope
R = {(t2, t1), (s2, t2)} which is not tight. On the other
hand, applying SRA to the transitive closure ofG yields
the envelopeR = {(s1, t1), (s2, t1), (t2, t1), (s2, t2)}
which actually is optimal. The SRA algorithm is not
guaranteed to produce an optimal envelope in the case of
TDAG-structured knowledge bases. To see this letG =
({s1, s2, t1, t2}, {(s1, s2), (s1, t1), (s1, t2), (s2, t1), (s2, t2),
(t1, t2)}). The algorithm will output the edges entering the
terminals: R1 = {(s1, t1), (s2, t1)} and R2 = {(s2, t2),
(t1, t2)}. The union of these two cuts is not tight because the
edge(t1, t2) is redundant. �

5 Multi-Agent Secrecy-Preserving Reasoning
The discussion so far has focused on the restricted case of a
knowledge base that is queried by a single querying agent.
We now extend our analysis to a knowledge base that can be
queried by multiple querying agents. We first note that when

(a) the agents are forbidden from sharing with each other
the answers supplied to them by the knowledge base, or

(b) the secrecy sets for all querying agents are identical, or

(c) the querying agents are allowed to freely share the an-
swers supplied to them by the knowledge base,

the setting with multiple querying agents poses no new chal-
lenges beyond those encountered in the setting with a sin-
gle querying agent. Hence, we assume that the knowledge
base can have different secrecy sets for different querying
agents, and that the querying agents are subject to some re-
strictions on the sharing of the answers supplied to them by
the knowledge base. This is intended to model practical sce-
narios where there are legal restrictions on sharing of infor-
mation across different organizations. The main idea behind
our approach in this section will be to assume that there is no
externalcommunication between the querying agents at all,
but that a “communication graph” isinternally stored in the
knowledge base and theK-reasoner shares answers to queries

4



between the agents “depending on the edges” of the commu-
nication graph.

Let G = 〈V, E〉 be a directed graph, called thecommuni-
cation graph, whose nodes represent the querying agents and
whose edges represent “a way” in which answers to queries
are to be passed (or shared) between the querying agents.
Let K = 〈K, {Bv}v∈V , Q, A〉 be a knowledge base with a
secrecy setSv, for eachv ∈ V . Consider a correspond-
ing knowledge baseKv = 〈K, Bv, Q, A〉 and a reasoner
Rv : Q → A, with a security envelopeEv for Sv, as dis-
cussed in Sections 2 and 3. We use the following notation:
Qv

Y = R−1
v (Y ) = K+\Ev; this is precisely the set of all

Y-queries of theKv-reasonerRv.

The goal of theK-reasoner in a multiple querying-agent
environment is to preventu from figuring out formulas inSu,
for all u ∈ V ; however, it is quite possible, depending on the
protocol being used, thatu might figure out formulas inEv,
for v 6= u. Whenever this presents a hindrance in an actual
application, such a protocol should not be used.

All the queries toK will take the form(u, x, D) where the
u indicates that the query is initiated by agentu, x ∈ Q is
the actual query, andD ⊆ V indicates the subset of agents
with whom the answer to the query should be shared (paren-
theses will be omitted for singletons). As hinted above, one
can devise several ways in which, given a communication
graphG, the actual communication protocol can be carried
out. Some of these ways are listed and discussed below. The
list is not intended to be exhaustive, but rather an initial indi-
cation of protocols that may prove useful in some particular
applications. In fact, we consider the variety of communica-
tion regimes between the querying agents to be an important,
application-dependent, research question, open to futureex-
ploration.

In the remainder of the section, we assume that for a query
q = (u, x, D), eachv ∈ D ∪ {u} will receive the answer
(Y, N or U ) as well as the initiatoru and the queryx. In
particular, two distinct agents inD are not made aware of
each others’ membership inD. We consider two very simple
models of communication between the querying agents.

1. Edge-queries: Here the set of queries isQe =
{(u, x, v) | (u, v) ∈ E ∧ x ∈ Q}; a queryq = (u, x, v)
is initiated byu and the answerRe(q) is submitted to
bothu andv (and nobody else).

2. Partial-neighborhood-queries: Here the query set repre-
sents a generalization of the previous two casesQn =
{(u, x, D) | u ∈ V ∧x ∈ Q∧D ⊆ Adj(u)}; the query
q = (u, x, D) is initiated byu and the answerRn(q)
is shared with the subsetD of neighbors of vertices ad-
jacent tou. A full-neighborhood-queryis one in which
D = Adj(u).

Even though the edge-queries represent the simplest kind of
communication, through its analysis we will be able to get
the basic idea of our approach to the core problem of sharing
the answers to queries while protecting the required secret
information.

5.1 Edge queries
We shall first consider the edge-queries protocol. Consider
a single edge(u, v) ∈ E and a corresponding queryq =
(u, x, v). What shouldRe(q) be, given that its goal is to dis-
close neither

1. x ∈ Su to u, nor

2. x ∈ Sv to v?

Define the functionRe : Qe → A by settingRe(q) to beU , if
Ru(x) = U or Rv(x) = U , andY , otherwise. I.e.,Re(q) =
Y iff x ∈ K+\(Eu ∪ Ev) = Qu

Y ∩Qv
Y . As usual, we define

Re((u, x, v)) = N if, and only if, Re((u,¬x, v)) = Y , in
case the underlying language has negation. It is easy to see
thatRe satisfies conditions 1 and 2.

Example 3: We want to illustrate a situation in which a
querying agent may learn about the membership of a query
in another agent’s envelope. Suppose(u, v), (v, w) ∈ E,
u poses the queryq = (u, x, v) and v poses the query
q′ = (v, x, w). Here are the four possibilities of answers:

1. Re(q) = Re(q
′) = Y ; in this caseu learns thatx ∈

Qu
Y ∩Qv

Y = K+\(Eu ∪ Ev), w learns thatx ∈ Qv
Y ∩

Qw
Y = K+\(Ev∪Ew) andv learns thatx ∈ Qu

Y ∩Qv
Y ∩

Qw
Y = K+\(Eu ∪ Ev ∪ Ew).

2. Re(q) = Y & Re(q
′) = U ; in this caseu learns thatx ∈

Qu
Y ∩Qv

Y = K+\(Eu∪Ev), w learns thatx ∈ Ev∪Ew

andv learns thatx ∈ Ew\(Eu ∪ Ev).

3. Re(q) = U & Re(q
′) = Y ; in this caseu learns thatx ∈

Eu∪Ev , w learns thatx ∈ Qv
Y ∩Qw

Y = K+\(Ev∪Ew)
andv learns thatx ∈ Eu\(Ev ∪Ew).

4. Re(q) = Re(q
′) = U ; in this caseu learns thatx ∈

Eu ∪ Ev, w learns thatx ∈ Ev ∪ Ew andv learns that
x ∈ Ev ∪ (Eu ∩ Ew).

5.2 Neighborhood queries
Consider now the queryq = (u, x, D), initiated byu, whose
answer is to be shared with those of its neighbors that happen
to belong to the subsetD ⊆ Adj(u). In definingRn(q),
the overall goal of being as informative as possible should
be balanced against preserving secrecy. ThusRn must not
disclose either

1. x ∈ Su to u, or

2. x ∈ Sv to v, for anyv ∈ D.

Define the functionRn : Qn → A by settingRn(q) to
be U , if Ru(x) = U or Rv(x) = U , for somev ∈ D,
and Y , otherwise. In other words,Rn(q) = Y iff x ∈
K+\

(

Eu ∪ (
⋃

v∈D Ev)
)

= Qu
Y ∩

(
⋂

v∈D Qv
Y

)

. It follows
that Rn will answer U to every queryq = (u, x, D) with
x ∈ Eu ∪ (

⋃

v∈D Ev). Again, we defineRn(u, x, D) = N
if, and only if, Rn((u,¬x, D)) = Y , in case the logical lan-
guage has negation. Again, it can be easily verified that 1 and
2 are satisfied.

Summary
The widespread adoption of, and reliance on networked in-
formation systems call for methods for balancing the need to
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share information against the need to protect sensitive or se-
cret information. Most of the existing methods for the protec-
tion of secret information rely on forbidding access to the sen-
sitive parts of a knowledge base. However, many applications
call for a more flexible approach that allows the knowledge
base to use secret information to answer queries whenever it
is possible to do so without risking the disclosure of secret
information. In this paper, we have: formalized this problem
of secrecy-preserving reasoning; introduced the notion ofa
secrecy envelope, i.e., a superset of secret information that
should be protected in order to ensure that the secret infor-
mation is protected, and analyzed some of its key properties;
defined the notions of tight and optimal secrecy envelopes
that yield maximally informative secrecy-preserving reason-
ers; presented an algorithm for computing a tight secrecy en-
velope (depending on the order of the incoming queries). We
have also introduced a simple model to facilitate the analysis
of secrecy-preserving reasoning in the case of a knowledge
base that answers queries from multiple querying agents with
different secrecy sets, with the possibility of sharing thean-
swers supplied to them with each other (specified by some
“answer sharing” protocols). Work in progress is aimed at
the design and implementation of secrecy-preserving reason-
ers for a broad class of knowledge bases of interest in practi-
cal applications, including, in particular, hierarchical, propo-
sitional, RDF, and computationally tractable subclasses of de-
scription logic knowledge bases.
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