Chemically Mediated Quantum Criticality in NbFe2

Aftab Alam
Ames Laboratory

Duane D. Johnson
Iowa State University, ddj@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_pubs
Part of the Condensed Matter Physics Commons, Engineering Physics Commons, and the Materials Science and Engineering Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ameslab_pubs/284. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Chemically Mediated Quantum Criticality in NbFe2

Aftab Alam1,2,* and D. D. Johnson1,2,†

1Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011, USA
2Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA

(Received 9 February 2011; revised manuscript received 13 September 2011; published 9 November 2011)

Laves-phase Nb1+xFe2−x is a rare itinerant intermetallic compound exhibiting magnetic quantum criticality at \(c_\text{cr} \sim 1.5\%\)Nb excess; its origin, and how alloying mediates it, remains an enigma. For NbFe2, we show that an unconventional band critical point above the Fermi level \(E_F \) explains most observations and that chemical alloying mediates access to this unconventional band critical point by an increase in \(E_F \) with decreasing electrons (increasing \%Nb), counter to rigid-band concepts. We calculate that \(E_F \) enters the unconventional band critical point region for \(c_\text{cr} > 1.5\%\)Nb and by 1.74%Nb there is no Nb site-occupation preference between symmetry-distinct Fe sites, i.e., no electron-hopping disorder, making resistivity near constant as observed. At larger Nb (Fe) excess, the ferromagnetic Stoner criterion is satisfied.

Quantum criticality emerges from collective low-energy excitations leading to a second-order phase transition at zero temperature (\(T \)) [1]. In the study of correlated-electron materials, e.g., high-\(T \) superconductors and heavy-fermion compounds, understanding such a critical phenomenon remains a principal challenge, and locating any existing quantum critical points (QCPs) is difficult. Near these QCPs, quantum fluctuations (rather than thermal fluctuations) are observed to give rise to exotic effects, e.g., non-Fermi-liquid behavior [2]. In intermetallic compounds, the situation appears simpler, where, by varying nonthermal order parameters, such as applied pressure, external magnetic field, or chemical doping, various phases near a QCP can be accessed, i.e., ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic states. Importantly, strong electron-electron interactions are not required for an alloy to show correlated behavior, as now confirmed in Fe-As compounds [3]. The Laves phase of Nb1+xFe2−x is one important example and featured in recent reviews of quantum criticality in weak magnets [4]. At stoichiometry the susceptibility exhibits Curie-Weiss behavior down to a spin-density wave (SDW) transition at \(T_{\text{sdw}} \approx 10 \text{ K} \), whereas at \(\sim 1.5\%\)Nb excess a QCP is observed where the SDW collapses and non-Fermi-liquid behavior occurs [5,6]. For larger Nb excess (\(c > 0 \), hole doping) or Fe excess (\(c < 0 \), electron doping), a FM transition is always observed [5,6]. Indeed, the sensitivity of the magnetic state to Nb deficiency has long been known [7,8].

Although well characterized experimentally, our understanding of the properties of Nb1+xFe2−x is lacking, especially how chemical disorder affects the magnetic transitions and QCP (and the FM onset at larger dopings). Recent theoretical work studied the electronic properties of NbFe2 [9] but did not address the critical chemical effects. Of course, including properly the effects of disorder in this class of systems, specifically at such a small doping (\(c \)), is a considerable challenge. Attempting to address doping, recent studies use the virtual crystal approximation [10] or supercells (ordered array of dopants) [11], having severe shortcomings, as we discuss.

In metals low-energy excitations lie at or near the Fermi surface (FS), and, thus, some unique spectral feature at or near \(E_F \) is typically required to drive a transition, as with FS nesting [12,13] or van Hove band critical points [14] types of ordering [15,16]. Such FS features have been rarely identified as the origin of quantum criticality. We detail how an unconventional band critical point (UBCP), i.e., an accidental saddle-point dispersion, above \(E_F \) is responsible for the QC behavior in metallic Nb1+xFe2−x. We show that chemical disorder mediates, via \(d\)-state hybridization, access to this UBCP even with fewer electrons for increasing \%Nb, which the rigid-band or virtual crystal approximation cannot describe, effects well known in alloy theory.

We use an all-electron, Korringa-Kohn-Rostoker (Green’s function) electronic-structure method and the coherent-potential approximation [17] to calculate the electronic dispersion, density of states, total energies, and doping site preferences in Nb1+xFe2−x. See Ref. [18] for details and examples for (disordered) alloys. In agreement with experiment, we calculated \(c_\text{cr} \) “onset” at 1.5%Nb, and, at 1.74%Nb, when \(E_F \) lies exactly at the UBCP, we find that Nb has no site-occupation preference between the two symmetry-distinct Fe sites, favoring a homogeneous solute distribution and no electron-hopping disorder, suggesting a near constant resistivity. We find competing FM and AFM states, as observed, that are associated with the competing wave vectors from the UBCP. We show that the FM Stoner criterion in Nb1+xFe2−x is obeyed for larger Nb (or Fe) excess. If the UBCPs are removed from consideration, none of these results hold. We conclude that the QCP
To understand chemical disorder effects, we first need to appreciate the structure of NbFe$_2$, which crystallizes in a C14 hexagonal Laves phase with space group P6$_3$/mmc (no. 194). In terms of crystallography, NbFe$_2$ ≡ Nb$_4$Fe$_2$ (2a) Fe$_6$ (with a 12-atom unit cell): Fe$^{(6h)}$ sites form two kagome networks (⊥ to the c axis) separated by Fe$^{(2a)}$ sites in a hexagonal sublattice, and Nb atoms occupy the interstices; see Figs. 1(a) and 1(b). The Wykoff positions (without inversion) are Nb at 4$f(\frac{1}{3}, \frac{2}{3}, x)$, Fe$^{(2a)}$ at 2$a(0, 0, 0)$, and Fe$^{(6h)}$ at 6$h(y, 2y, \frac{1}{3})$. Calculations are performed with measured [5] structural parameters $a = 4.8401$ Å and $c = 7.8963$ Å and internal coordinates $x = 0.0629$ and $y = 0.1697$. Using the Korringa-Kohn-Rostoker coherent-potential approximation, we may study the effect of (in)homogeneous solute distributions. Disorder with antisite Nb on one or both Fe sublattices is written as Nb$_4$(Fe$_{1-c}$Fe$_c$)$_2$ Fe$_6$ (c), or Nb$_4$(Fe$_{1-c}$Fe$_c$)$_2$ Fe$_6$ for the homogeneous case.

To identify critical electronic features and chemical disorder effects, we detail the dispersion $\epsilon(k; E)$ and density of states (DOS). Korringa-Kohn-Rostoker uses constant-E matrix inversion to get $\epsilon(k; E)$, rather than constant-k diagonalization to get eigenvalues $\epsilon(k; E)$. To handle (dis)ordered cases, we calculate the Bloch spectral function [13] $A_B(k; E)$ on a grid of $32 \times 32 \times 24$ k points to project the dispersion. For ordered cases, $A_B(k; E)$ yields $\delta(E - \epsilon(k; E))$, i.e., bands; otherwise, it exhibits disorder-induced spectral broadening in E and k, related to the finite electron scattering length.

We now show that the c dependence tied to the observed quantum criticality arises from the NbFe$_2$ dispersion above E_F. Our bands in Fig. 1(c) agree with those from full-potential methods [9]. The bands crossing E_F along Γ-M arise mainly from Fe$^{(6h)}$ t_{2g} orbitals and lead to saddle-point dispersion slightly (6.6 meV) above E_F with an unusual flat dispersive region (UBCP) [Figs. 1(c) and 2(b)]. These UBCPs near E_F are not a result of symmetry but arise from accidental band crossings. Experimentally, Crook and Cywinski [19] inferred that the Fe$^{(6h)}$ t_{2g} orbitals in the kagome nets play a critical role in the competing magnetic order associated with the quantum phase transition. The Nb$_{1+c}$Fe$_2$-c phase diagram [5] shows the QCP onset at ambient pressure at $c_{cr} \sim 1.5\%$Nb (hole-doped) and extends to $c \approx 2.0\%$, with FM at larger doping. For a metal, only low-energy excitations near E_F can be relevant for such low-T transitions. By small tuning of a nonthermal order parameter, i.e., c, the unusual quantum phase transition behavior is observed and can be explained if these UBCPs are accessed.

For homogeneous doping, we find a chemical-disorder-mediated increase of $E_F(c)$ versus %Nb excess, or decreasing electron-per-atom (e/a) ratio [Fig. 2(a)]. Counter to rigid-band concepts, E_F rises to UBCP and due to Fe-Nb (bond or antibond) alloying hybridization in kagome nets Fe bands shift lower, but bands from the pure Nb layer remain unaffected [Fig. 2(a), inset]. (An ordered array of impurities exaggerates the effect—see below—showing that disorder plays a key role.) At 1.74%Nb excess, UBCP lay at E_F a 6.6 meV shift due to alloying and disorder (finite lifetime) effects; see Fig. 2(b). The 6.6 meV (or 77 K) sets the maximum temperature, as observed, for these effects to occur on stoichiometry. The dispersion and disorder-induced widths along Γ-M for $0 \leq c \leq c_{cr}$ [Fig. 2(b)] estimate the QC range. By 1.65%, E_F enters the spectral tails, giving zero-energy excitations into the anomalous dispersion; E_F is maximally aligned with the UBCP by 1.74% (giving a Lifshitz-type transition; see below) and exits by 2%, where FM is observed. We conclude that the QCP occurs from alloying or disorder-mediated access to the UBCP inherent in NbFe$_2$ dispersion above E_F, detailed more below.

![FIG. 1 (color online).](image)

(a) Laves unit cell. (b) Fe$^{(6h)}$ sites form two kagome nets, with Nb (gray), Fe$^{(2a)}$ (red), and Fe$^{(6h)}$ (blue), with higher (lower) planes shaded. (c) NbFe$_2$ bands (E_F at 0 eV). The highlighted box shows an UBCP above E_F.

![FIG. 2 (color online).](image)

(a) $\Delta E_F(c)$ shift due to %Nb excess vs e/a for Nb$_4$(Fe$_{1-c}$Nb$_c$)$_2$. E_F lies at UBCPs at $c_{cr} = 1.74\%$ but enters spectral tails at 1.65%. Inset (a) shows (und)oped $A_B^{\text{max}}(k; E)$ along Γ-M, and (b) expands around UBCPs (bars are spectral widths due to disorder broadening).
We have performed supercell calculations to illustrate how sensitive $\Delta E_F(c)$ is to approximations used to address chemical effects, which ignore disorder. Supercells are numerically costly due to large cells needed with decreasing \%Nb. We performed calculations at two concentrations with cells constructed by substituting a Nb atom for one Fe atom in a $2 \times 2 \times 1$ (6.25\%Nb excess) and a $2 \times 2 \times 2$ (3.125\%Nb excess) supercell. The supercells also yield a $\Delta E_F(c)$ increase, relative to $c = 0\%$, of 117.1 and 281.3 meV for 3.125\% and 6.25\% Nb excess, respectively. The coherent-potential approximation shifts are 65.4 and 158.1 meV, respectively, which lie on the curve in Fig. 2(a) at smaller c/a. So, supercells do not provide the correct occupancy probability nor hybridization across the kagome net, missing the key disorder effects. Nonetheless, supercell results do reinforce the fact that rigid-band or virtual crystal approximation concepts are invalid, missing the critical alloying and disorder effects.

Figure 3 compares the DOS for Nb$_{\text{t}+}$Fe$_{2-c}$ at c_{cr} to 0\%, which is similar to full-potential results [9,11]. Disorder broadening for $c > 0\%$ is evident. E_F lies near a precipice of a DOS depression, which plays a role in forming a SDW state at $c = 0\%$. $n(E_F)$ is 3.59 states (eV\times formula unit (f.u.))$^{-1}$ for NbFe$_2$. Notably, for NbFe$_2$, unlike conventional band critical points [14], the saddle-point dispersion at \mathbf{k}’s associated with the UBCP is (beyond) cubic ($\delta k^2 \propto k^1$) in one direction and quadratic in the orthogonal (k_y, k_z) plane, yielding a chemically mediated peak in $n(E_F)$ when E_F and UBCP are aligned (Fig. 3, inset). From Stoner theory with interaction parameter Γ [20], a FM instability occurs if $n(E_F)\Gamma > 1$. For pure Fe d electrons, Γ was reported [21] between 0.7 and 0.9 eV. From susceptibility data for NbFe$_2$, the Stoner factor $[1 - n(E_F)\Gamma]^{-1}$ was estimated [5] at \sim100. Our calculated Γ for Nb$_{\text{t}+}$Fe$_{2-c}$ is almost constant versus c (0.88 $\leq c \leq 0.9$), but $n(E_F)$ increases with doping, increasing $n(E_F)\Gamma$; e.g., $n(E_F)$ for 1.74\%Nb increases to 3.90 states(eV f.u.)$^{-1}$. Stoner’s criterion is satisfied beyond 2\%Nb, as observed, and discussed more below.

Lifshitz transitions are mediated by FS topology changes (e.g., collapse of the FS neck or loss of pockets). An unconventional Lifshitz transition emerging near a marginal QCP was proposed in ZrZn$_2$ [22]. Such a zero-temperature, pressure-induced transition is also associated with access to an UBCP by an increase in E_F. The FS topology changes are reflected in a maximum in $n(E_F)$ at the Lifshitz point, as we found for hole doping in NbFe$_2$ at $c_{\text{cr}} = 1.74\%$ (Fig. 3, inset). Not only the topology but the FS volume is strongly dependent on doping, in NbFe$_2$ enhanced with hole doping and also observed in a hole-doped Ba$_0.1$K$_0.7$Fe$_2$As$_2$ [23].

To explore beyond the QCP, we studied doping in the Fe- and Nb-rich parts of the phase diagram. The DOS (atom- and impurity-projected) for 3.125\% Nb- and Fe-rich Nb$_{\text{t}+}$Fe$_{2-c}$ is shown in Fig. 4. The Nb-rich (hole-doped) $n(E_F)$ increases to 4.66 states(eV f.u.)$^{-1}$. Fe-rich (electron-doped) alloys behave opposite to what is expected from rigid-band theory; i.e., with electron doping, $n(E_F)$ rises to 4.75 states(eV f.u.)$^{-1}$, which is mainly due to Fe-impurity DOS originating from Nb layers—see Fig. 4 (lower panel). These values of Nb-rich and Fe-rich $n(E_F)$ satisfy the FM Stoner criterion, as observed [5].

We have also studied how the nature of the UBCP (or QCP) is affected by inhomogeneous Nb doping on the two Fe sublattices. We find that, if only Fe$^{(6h)}$ sites are doped, the UBCP lies at E_F when $c_{\text{cr}}^{(6h)} = 2.34\%$, for an average $c_{\text{cr}}^{(6h)} = 2.34\% \times (6/8) = 1.75\%$. For the Fe$^{(6h)}$-only case, dispersion is similar to the homogeneous case as in Fig. 1(c), because mainly Fe$_{\text{t}+}^{(6h)}$ t_{2g} orbitals within the kagome sheets are involved. In contrast, if only Fe$^{(2a)}$ sites are doped, the UBCP lies at E_F when $c_{\text{cr}}^{(2a)} = 8.7\%$, i.e., $c_{\text{cr}}^{(2a)} = 8.7\% \times (2/8) = 2.02\%$. The shift of E_F relative to dispersion in this case arises due to hybridization of Fe$^{(2a)}$ states indirectly with Fe$^{(6h)}$ states. Dispersion with Fe$^{(2a)}$-only doping shows an increased slope of the UBCP compared to the other cases, changing the character and c dependence of the response.

In Fig. 5, we report Nb site-preference energy differences ($E_F^{(2a)} - E_F^{(6h)}$) versus %Nb excess in
Albeit weaker, it can occur from saddle-point topology, too. From the small caliper of the flat part of the UBCP, i.e., $0.055(2\pi/a)$, we estimate a $|q|$ of 0.07 Å$^{-1}$ close to the 0.05 Å$^{-1}$ estimated from the experiment [6].

Thus, from our direct calculations or estimated $\chi(q)\,$ features, paramagnetic, FM, and SDW (AFM) states compete near the QCP, until overwhelmed by a Stoner instability at larger $|c|$, shown above. Such competing magnetic behavior is observed [6] near the QCP, where the low-\(T\) resistivity [$\rho(T) \sim T^\nu$] exponent \(\nu\) varies between 3/2 and 5/3, giving unusual non-Fermi-liquid behavior.

Quantifying the anomalous response further requires $\chi(q, c, \omega)$, which is beyond the present scope. But the change in $\omega = 0$ susceptibility, $\Delta \chi(Q, \omega = 0)$, yields the change in the DOS at E_F, i.e., $\Delta n(E_F)$, and, if large, a FM instability. Neal, Ylvisaker, and Pickett have extended the Moriya $\chi(q, c = 0, \omega)$ theory to account for UBCPs, which yields an anomalous frequency response and competing FM and SDW states [25], agreeing with our direct calculations.

In summary, we have identified an accidental Fermi-surface (nonideal saddle-point) dispersion as the origin for observed behavior associated with the quantum criticality in Nb$_{1+c}$Fe$_{2-c}$. We find that Nb (hole) doping accesses unconventional band critical points in NbFe$_2$ that provide the necessary low-energy excitations for a (Lifshitz-type) transition. This origin explains most of the observed doping behavior in this QC intermetallic compound, specifically,

- (i) onset of c_{cr} Nb% excess for the QCP,
- (ii) almost constant resistivity versus c,
- (iii) competing magnetic states and temperature scale,
- (iv) observed SDW wave vectors, and,
- (v) the stable FM states at large hole or electron doping ($>2\%$).

To explore the nature of the QC transition further, these electronic and chemical features can be incorporated into a model Hamiltonian, but they would not have been discovered without the full dispersion and chemical alloying effects detailed here.

This work was funded by the U.S. Department of Energy BES-DMSE (DE-FG02-03ER46026) and Ames Laboratory (DE-AC02-07CH11358), operated by Iowa State University. We thank W. Pickett for suggesting this problem.

*afab@ameslab.gov
†ddj@ameslab.gov