Pharmacological Characterization of a Tyramine Receptor from the Southern Cattle Tick, Rhipicephalus (Boophilus) microplus

Thumbnail Image
Date
2015-08-01
Authors
Temeyer, Kevin
Pérez de León, Adalberto
Kimber, Michael
Coats, Joel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kimber, Michael
Department Chair
Person
Coats, Joel
Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Biomedical Sciences

The Department of Biomedical Sciences aims to provide knowledge of anatomy and physiology in order to understand the mechanisms and treatment of animal diseases. Additionally, it seeks to teach the understanding of drug-action for rational drug-therapy, as well as toxicology, pharmacodynamics, and clinical drug administration.

History
The Department of Biomedical Sciences was formed in 1999 as a merger of the Department of Veterinary Anatomy and the Department of Veterinary Physiology and Pharmacology.

Dates of Existence
1999–present

Related Units

  • College of Veterinary Medicine (parent college)
  • Department of Veterinary Anatomy (predecessor, 1997)
  • Department of Veterinary Physiology and Pharmacology (predecessor, 1997)

Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Biomedical SciencesEntomology
Abstract

The southern cattle tick (Rhipicephalus (Boophilus) microplus) is a hematophagous external parasite that vectors the causative agents of bovine babesiosis or cattle tick fever, Babesia bovis and B. bigemina, and anaplasmosis, Anaplasma marginale. The southern cattle tick is a threat to the livestock industry in many locations throughout the world. Control methods include the use of chemical acaricides including amitraz, a formamidine insecticide, which is proposed to activate octopamine receptors. Previous studies have identified a putative octopamine receptor from the southern cattle tick in Australia and the Americas. Furthermore, this putative octopamine receptor could play a role in acaricide resistance to amitraz. Recently, sequence data indicated that this putative octopamine receptor is probably a type-1 tyramine receptor (TAR1). In this study, the putative TAR1 was heterologously expressed in Chinese hamster ovary (CHO-K1) cells, and the expressed receptor resulted in a 39-fold higher potency for tyramine compared to octopamine. Furthermore, the expressed receptor was strongly antagonized by yohimbine and cyproheptadine, and mildly antagonized by mianserin and phentolamine. Tolazoline and naphazoline had agonistic or modulatory activity against the expressed receptor, as did the amitraz metabolite, BTS-27271; however, this was only observed in the presence of tyramine. The southern cattle tick's tyramine receptor may serve as a target for the development of anti-parasitic compounds, in addition to being a likely target of formamidine insecticides.

Comments

This article is from Insect Biochemistry and Molecular Biology 63 (2015): 47, doi:10.1016/j.ibmb.2015.04.008.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections