Theory and Use of the Pseudophase Model in Gas−Liquid Chromatographic Enantiomeric Separations

Thumbnail Image
Supplemental Files
Date
2005-12-05
Authors
Pino, Veronica
Lantz, Andrew
Anderson, Jared
Berthod, Alain
Armstrong, Daniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

The theory and use of the “three-phase” model in enantioselective gas−liquid chromatography utilizing a methylated cyclodextrin/polysiloxane stationary phase is presented for the first time. Equations are derived that account for all three partition equilibria in the system, including partitioning between the gas mobile phase and both stationary-phase components and the analyte equilibrium between the polysiloxane and cyclodextrin pseudophase. The separation of the retention contributions from the achiral and chiral parts of the stationary phase can be easily accomplished. Also, it allows the direct examination of the two contributions to enantioselctivity, i.e., that which occurs completely in the liquid stationary phase versus the direct transfer of the chiral analyte in the gas phase to the dissolved chiral selector. Six compounds were studied to verify the model:  1-phenylethanol, α-ionone, 3-methyl-1-indanone, o-(chloromethyl)phenyl sulfoxide, o-(bromomethyl)phenyl sulfoxide, and ethyl p-tolylsulfonate. Generally, the cyclodextrin component of the stationary phase contributes to retention more than the bulk liquid polysiloxane. This may be an important requirement for effective GC chiral stationary phases. In addition, the roles of enthalpy and entropy toward enantiorecognition by this stationary phase were examined. While enantiomeric differences in both enthalpy and entropy provide chiral discrimination, the contribution of entropy appears to be more significant in this regard. The three-phase model may be applied to any gas−liquid chromatography stationary phase involving a pseudophase.

Comments

Reprinted (adapted) with permission from Analytical Chemistry 78 (2006): 113, doi:10.1021/ac051289b. Copyright 2006 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections