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Abstract
Dynamic deployment is an important feature of an aspect-oriented language design that has many
applications, e.g. in runtime monitoring, runtime adaptation to fix bugs or add features to long running
applications, runtime update of dynamic policy changes, etc. Many recently proposed language designs
support these use cases. In previous work, researchers have demonstrated that the ability to support
unanticipated deployment enables simpler and often more efficient implementations. These works have
addressed an important subset of aspect-oriented features namely those that can be represented as the
pointcut-advice model. In this work, we describe the design, formal semantics, and implementation of our
strategy for efficiently supporting dynamic deployment of inter-type declarations, which is another important
aspect-oriented feature. Additional contributions of this work are: a detailed real world case study that
demonstrates the need for supporting dynamic deployment of inter-type declaration for online update of long
running applications, and a prototype based on the Jikes Virtual Machine that supports these features. We
evaluate our prototype via a rigorous performance analysis, which shows that flexible, dynamic deployment of
inter-type declarations can be efficiently supported in a JVM.
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Abstract
Dynamic deployment is an important feature of an aspect-
oriented language design that has many applications, e.g.
in runtime monitoring, runtime adaptation to fix bugs or
add features to long running applications, runtime update of
dynamic policy changes, etc. Many recently proposed lan-
guage designs support these use cases. In previous work,
researchers have demonstrated that the ability to support
unanticipated deployment enables simpler and often more
efficient implementations. These works have addressed an
important subset of aspect-oriented features namely those
that can be represented as the pointcut-advice model. In this
work, we describe the design, formal semantics, and imple-
mentation of our strategy for efficiently supporting dynamic
deployment of inter-type declarations, which is another im-
portant aspect-oriented feature. Additional contributions of
this work are: a detailed real world case study that demon-
strates the need for supporting dynamic deployment of inter-
type declaration for online update of long running applica-
tions, and a prototype based on the Jikes Research Virtual
Machine that supports these features. We evaluate our proto-
type via a rigorous performance analysis, which shows that
flexible, dynamic deployment of inter-type declarations can
be efficiently supported in a Java virtual machine.

1. Introduction
Dynamic deployment of aspect-oriented features has many
applications, e.g. in runtime monitoring [7], runtime adap-
tation to fix bugs or add features to long running applica-
tions [48], runtime update of dynamic policy changes [38,
39], etc. Driven by these use cases, dynamic aspect-oriented
constructs [3, 48] have received significant attention in re-
cent aspect-oriented literature [2, 5, 8, 12, 17, 20, 38, 45].

[Copyright notice will appear here once ’preprint’ option is removed.]

Driven by the popularity of dynamic aspect-oriented
features, we set out to study the effectiveness of aspect-
orientation in enabling dynamic deployment of features in
long-running applications. For such applications, disruption
can be a cause of major customer annoyance and/or large
business loss [30, 36, 37]. Thus, we believe that such a use
case could be a killer application of aspect-oriented software
development (AOSD). As we discuss in Section 4, our belief
turned out to be quite true. Our challenge was to update the
Apache’s Xerces XML parser [50] library version from 1.2.3
to 1.3.1. Being able to update without taking down the web
server appeared to be a lucrative proposition for this long
running application. We wanted to express the changes be-
tween versions as aspects and apply them dynamically as
modular units of software update.

During the course of our study, however, we met with a
roadblock. Much of the existing work on dynamic deploy-
ment so far (including our own [12]) has focused only on
the pointcut-advice (PCA) model [32]. For our use case,
more often than not we found ourselves expressing changes
as inter-type declarations (ITDs). Emulating inter-type dec-
larations using pointcut advice model is feasible, but such
emulation adds unnecessary design and runtime complexity.
Haupt and Schippers’s delegation-based model [17, 45] and
Kuhn and Nierstrasz’s object-fragment model [27] seemed
capable of expressing these features, however, efficient im-
plementation of neither approaches has been demonstrated
as of this writing. Efficiency was of paramount importance
for our use case. A web-server capable of dynamically up-
dating itself, but running an order of magnitude slower
would not be a pragmatic proposition.

Driven by this important use case for AOSD, we set out
to develop efficient support for flexible, dynamic deploy-
ment of ITDs. For dynamic updating, it is equally impor-
tant to preserve the correctness of the long-running applica-
tion. To that end, we developed a formal foundation for our
approach of supporting dynamic deployment. Two benefits
accrued from that. First, formal modeling allowed us to sys-
tematically determine the changes that would be needed in
the runtime representation of the application in a virtual ma-
chine, and second, it allowed us to identify the precise condi-
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tions on safe updating of runtime applications using dynam-
ically deployed inter-type declarations that are independent
of a specific virtual machine design. This formalization pre-
sented in Section 2 also helps us illustrate the key ideas and
the intended basic semantics.

We then developed an efficient implementation for dy-
namic deployment of ITDs in the JikesRVM [22], which we
describe in Section 3. The prototype enabled us to express
the desired update of the Xerces XML parser as a total of
46 features, where only five features can not be modeled as
inter-type declaration or pointcut advice aspects (Section 4).
We also measured the performance of our prototype using
DaCapo and SPECjvm98 benchmarks, which shows negligi-
ble steady-state performance overhead and acceptable over-
heads during deployment of aspect-oriented features for the
flexibility that it provides (Section 5). In summary, we con-
tribute:

• A formal description of the deployment process of an
inter-type declaration;

• A prototype of our approach in JikesRVM;
• A relatively large-scale case study that shows its utility

towards dynamic updating; and
• A rigorous performance evaluation of our prototype.

The rest of this paper describes our approach for dynamic
deployment of ITDs.

2. On Dynamic Introductions
We first present our main ideas for supporting dynamic inter-
type declarations via a core object-oriented calculus, which
helps elucidate the major challenges in the design of its se-
mantics. Readers not interested in formal details and sound-
ness proof may skip Sections 2.3-2.5.

Our formalization of dynamically deployed inter-type
declarations helps us distinguish between safe and unsafe
ordering of dynamic deployment of inter-type declarations.
Our soundness result in that regard is that for every statically
well-typed inter-type declaration, there exists a safe ordering
for its dynamic deployment.

2.1 Basics: Abstract Syntax
To illustrate key ideas in the semantics of our strategy
for supporting dynamic inter-type declarations, we abstract
away from the details of a typically very complex VM
structure and full-fledged Java bytecode language [16]. In-
stead, we choose to describe our ideas using an OO calculus
from Clifton’s work[10] that is similar to Classic Java [14]
and Featherweight Java [21]. Unlike Haupt and Schippers’s
model [17, 45], which needs support for delegation in the
program configuration and thus uses the δ calculus [1], an
OO calculus suffices for our runtime model. Our calculus has
classes, objects, inheritance, and subtyping, but it does not
have super, interfaces, exception handling, built-in value
types, privacy modifiers, or abstract methods. As we show in

Section 3, omission of these features does not affect our dis-
cussion primarily because the challenges in supporting dy-
namic inter-type declarations are in updating classes, their
fields and methods. These core features are present in our
calculus. In addition, we explicitly do not model aspect-
oriented constructs such as advice and pointcuts primarily
because dynamic deployment of these features is already
discussed elsewhere, e.g. [5, 12]. The abstract syntax of the
calculus is shown in Figure 1.

Abstract Syntax:

prog ::= decl e
decl ::= class c extends d { field meth }
field ::= t f;
meth ::= t m ( form ){ e }
t ::= c
form ::= t var, where var 6=this
e ::= new c() | var | null | e.m(e)
| e.f | e.f = e | cast c e | e ; e

where
c, d ∈ C, the set of class names
f ∈ F, the set of field names
m ∈ M, the set of method names

var ∈ {this} ∪ V,V is
the set of variable names

Figure 1. Abstract Syntax.

The technical description of this calculus builds on our
previous work [42] and other work on OO calculus [10,
14, 21]. It contains a single top-level form for classes
and common expressions for the construction of an ob-
ject (new c()), variable dereference (var, including this),
field dereference (e.f ), null, cast (cast t e), assignment
to a field (e1.f = e2), and sequencing (e1; e2). Their seman-
tics and typing is fairly standard [10, 14, 21]. A program
consists of a sequence of declarations (decl) followed by an
expression. This expression is like the “main” method. The
overline notation is used throughout this paper to represent
sequences. All declarations in a program are formed into a
fixed list CT (i.e. Class Table), which is then used in giving
semantics of expressions [14].

2.2 Basics: Inter-type Declarations
With the basic ideas for a core object-oriented language in
place, we now turn to a small extension necessary to syn-
tactically define inter-type declarations. As mentioned pre-
viously, we omit the pointcut-advice model in this work as
they have been extensively covered elsewhere [5, 6, 11].
There is no novelty in the syntax, rather it is a straightfor-
ward adaptation from other AO languages [23, 44]. These
extensions are presented in Figure 2. Inter-type declarations
can be used to make many type of changes to the struc-
ture of a program. Among these most common changes are
adding a field to an existing class, adding a method to an
existing class and adding a parent to an existing class to
add an additional interface. There are other features that lan-
guages like AspectJ [23] support, which allow developers
to encode statically-checked constraints into their program,
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e.g. the declare error construct. However, such fea-
tures are useful only during compilation, thus, there are no
reasons to support them in a dynamic deployment system for
inter-type declarations.

decl ::= . . . | itd i { asuper afield ameth }
asuper ::= c extends d;
afield ::= t c . f;
ameth ::= t c . m ( form ){ e }

where
i ∈ I, the set of ITD names

Figure 2. Abstract Syntax of Inter-type Declarations (itd).

The syntax is self-explanatory and provides support for
extending the class hierarchy by adding a superclass, adding
a field to a class and adding a method to a class. The non-
terminals not defined in this figure are the same as in Fig-
ure 1. We require that fully-qualified names of added fields
are distinct and that asuper, afield, and ameth declarations
appear in this order inside inter-type declarations. An exam-
ple appears below that adds two fields and two methods to
the Node class. These help keep track of the number of sent
and received packets.

class Node extends Object {
Integer address;
Integer receive(Packet p){...}
Integer Packet send(){...}

}

itd Statistics{
Integer Node.numSent; Integer Node.numRcvd;
Integer Node.incSent(){numSent.incr()}
Integer Node.incRcvd(){numRcvd.incr()}

}

A static deployment model for inter-type declarations
would merge these declarations into object-oriented decla-
rations to produce a pure object-oriented program expressed
in terms of the abstract syntax shown in Figure 1. So the
fields and methods declared in the Statistics inter-type
declaration will be directly inserted in the class Node. In
a dynamic deployment model, however, we would like to
keep these two representations separate. To that end, we can
produce an operational representation from the declarative
representation expressed using the rules in Figure 2. This
could be thought of as the intermediate representation of the
inter-type declarations, which would be run by the dynamic
deployment infrastructure to modify the program’s structure
at runtime.

te ::= addf(c, t, f)
| addm(c, t, m, form, e )
| addp(c, d )
| replm(c, t, m, form, e )

Figure 3. Dynamic Deployment Expressions.

We have identified that most inter-type declarations
could be expressed using four expressions shown in Fig-
ure 3. The non-terminals not defined in this figure are

the same as in Figure 1. The addf(c, t, f) expres-
sion adds a field f of type t to the class named c. The
addm(c, t, m, t1 var1, . . . , tn varn, e) expression adds a
method with return type t, body e and formal parameters
t1 var1, . . . , tn varn to the class named c. The addp(c, d)
expression adds an existing class d as the super class of the
class named c. The replm(c, t, m, t1 var1, . . . , tn varn,
e) expression replaces the body of the method with re-
turn type t and arguments t1 var1, . . . , tn varn in the class
named c with e. This distinction between adding and replac-
ing a method is to simplify treatment of the ameth declara-
tions in the semantics.

2.3 Type Checking of Inter-type Declarations
We state the type checking rules using a fixed class table
(list of declarations CT ) [10, 42]. The class table can be
thought of as an implicit inherited attribute used by the rules
and auxiliary functions. We require that top-level names in
the program are distinct and that the inheritance relation on
classes is acyclic. The typing rules for expressions use a sim-
ple type environment, Π, which is a finite partial mapping
from locations loc or variable names var to a type. The no-
tation ν′ <: ν means ν′ is a subtype of ν. It is the reflexive-
transitive closure of the declared subclass relationships.

We then define the rules for transformation from the
declarative representation to an operational representation as
type checking rules (Figure 4). These rules check the cor-
rectness of the inter-type declaration with respect to the pro-
gram’s current list of declarations CT and produce a se-
quence of deployment expressions represented as te. The
judgment takes the form of CT ` l : te; te where l is the
declarative ITD list presenting parent, field and method ad-
ditions declared inside the itd. The term te; te represents
the list of deployment expression where te is the expression
corresponding to the declaration expression being checked.
We use the x :: y notation to describe concatenation of ele-
ments inside l. In these rules, asuper denotes a sequence of
asuper declarations and te a sequence of dynamic deploy-
ment expressions defined in Figure 3.

The rules for adding parent, field, and method check the
standard correctness conditions for addition of the inter-type
declaration to the existing program. These rules recursively
compute deployment expression, where CT2 is used as the
context for checking remaining declaration expressions. For
example, the rule (T-ASUPER) used to generate the deploy-
ment expression addp(c, d) checks whether c and d are
existing classes in the program, and that adding d as the su-
perclass of c will not create an inheritance cycle by stating
that d should not be a subtype of c. The next line in rule
(T-ASUPER) checks whether the fields and methods of d do
not conflict with existing fields and methods of c and its sub-
classes. If these conditions are satisfied, then we construct
a new class table (CT2) by changing the mapping between
class c and its definition in the original class table (CT1) to
a definition where class d is the parent of c. The new class
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(T-ITD)
CT1 ` asuper1 :: . . . :: asuperp :: afield1 :: . . . :: afieldq :: ameth1 :: . . . :: amethr : te

CT1 ` itd{asuper1, . . . , asuperp, afield1, . . . , afieldq, ameth1, . . . , amethr} : te

(T-ASUPER)
CT1(c) = class c extends Object{field,meth} d ∈ dom(CT1) d <:/ c

∀c′ ∈ {c′ | c′ ∈ dom(CT1) ∧ c′ <: c} · (dom(fieldsOf (c
′
)) ∩ dom(fieldsOf (d)) = ∅ ∧

∀meth ∈ methodsOf (c
′
) · override(meth, d)) CT2 = CT1 ⊕ {c 7→ class c extends d{ . . . }} CT2 ` asuper :: afield :: ameth : te

CT1 ` c extends d :: asuper :: afield :: ameth : addp(c, d); te

(T-AFIELD)
CT1(c) = class c extends d{t1 f1, . . . , tn fn,meth} ∀c′ ∈ {c′ | c′ ∈ dom(CT1) ∧ c′ <: c} · f /∈ dom(fieldsOf (c

′
))

t ∈ dom(CT1) CT2 = CT1 ⊕ {c 7→ class c extends d{t f, t1 f1, . . . , tn fn,meth}} CT2 ` afield :: ameth : te

CT1 ` t c . f :: afield :: ameth : addf(c, t, f); te

(T-AMETHOD-NEW)
CT1(c) = class c extends d{field,meth1, . . . ,methn} • = lookup(c,m) meth = t m (t1 var1, . . . , tn varn){e}
CT2 = CT1 ⊕ {c 7→ class c extends d{field,meth1, . . . ,methn,meth} CT2 ` meth : OK in c CT2 ` ameth : te

CT1 ` t c.m(t1 var1, . . . , tn varn){e} :: ameth : addm(c, t,m, t1 var1 . . . tn varn, e); te

(T-AMETHOD-OVERRIDE)
CT1(c) = class c extends d{field,meth1, . . . ,methn}

(c
′
, t m(t1 var1, . . . , tn varn){e′}) = lookup(c,m) c

′ 6= c meth = t m (t1 var1, . . . , tn varn){e}
CT2 = CT1 ⊕ {c 7→ class c extends d{field,meth1, . . . ,methn,meth} CT2 ` meth : OK in c CT2 ` ameth : te

CT1 ` t c.m(t1 var1, . . . , tn varn){e} :: ameth : addm(c, t,m, t1 var1 . . . tn varn, e); te

(T-AMETHOD-REPLACE)
CT1(c) = class c extends d{field,meth1, . . . , t m (t m(t1 var1, . . . , tn varn){e′}, . . . ,methn} meth = t m (t1 var1, . . . , tn varn){e}

CT2 = CT1 ⊕ {c 7→ class c extends d{field,meth1, . . . ,meth, . . . ,methn}} CT2 ` meth : OK in c CT2 ` ameth : te

CT1 ` t c.m(t1 var1, . . . , tn varn){e} :: ameth : replm(c, t,m, t1 var1 . . . tn varn, e); te

Figure 4. Type-checking rules for inter-type declarations.

table CT2 is used to check the reminder of the inter-type
declaration. Note that this rule assumes the class c did not
have a parent except the top type Object. A refined ver-
sion that allows strengthening of parent is also possible with
few modifications to this rule. In cases where class c has a
parent d, a deployment expression of the form addp(c, d’)
can type-check by adding the condition that d′ <: d.

There are three rules corresponding to ameth that apply
depending on whether the method being added does not exist
in the class or its superclass (T-AMETHOD-NEW), it exists in
the superclass (T-AMETHOD-OVERRIDE), or whether it exists
in the current class (T-AMETHOD-REPLACE). Finally, the rule
(T-ITD) establishes an ordering on the output deployment
expressions and constraints on the type environments used
for type-checking various parts of the inter-type declarations
expressed in the rule’s hypothesis.

2.4 Dynamic Deployment as Configuration and Class
Table Transformation

Dynamic deployment of inter-type declarations transform
the runtime state of an object-oriented program. We model
this state as configuration in an OO small step operational
semantics. Programs semantics is provided by giving a se-
mantics of expressions. In the expression semantics we also
rely on an expression: loc, which represents locations in the
store.

The small steps taken in the semantics are defined as tran-
sitions from one configuration to another. These configura-
tions are shown in Figure 5. A configuration consists of the
current expression e and the store µ. The store is a mapping
from locations to object records. An object record (o) is the
representation of an object in the store. First, the class name
(c) is kept around, so that we may be able to look up the class
representation from the class table (CT ). Second, the value
of each field is kept as map (F ) from the field name to its
value. The object record allows us to call methods with that
object as a receiver and to access the fields of the object and
modify their values. These steps are not crucial to the fol-
lowing discussion, but presented in Section A for complete-
ness along with the type checking rules for OO expressions.

Domains:

Γ ::= 〈e, µ〉 “Configurations”
µ ::= {lock 7→ ok}k∈K , “Stores”

whereK is finite
v ::= loc | null “Values”
o ::= [c.F ] “Object Records”
F ::= {fk 7→ vk}k∈K , “Field Maps”

whereK is finite

Figure 5. Domains [10, 14, 21, 42].

Given a statically valid inter-type declaration and the cur-
rent class table CT1, the type-checking rules (that can also
be thought of as compilation rules) in Figure 4 produce a
safe sequence of dynamic deployment expressions (te). Note
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Transformation relation:
˙
CT1, te :: te, γ

¸
 

˙
CT2, te, γ

′¸
(ADD PARENT)

CT1(c) = class c extends Object{field,meth} CT2 = CT1 ⊕ {c 7→ class c extends d{ . . . }} γ = 〈e, µ〉
F
′

= {f 7→ null | f ∈ fieldsOf (d)} µ
′

= µ⊕ {loc 7→ [c
′.F ⊕ F ′] | loc ∈ dom(µ) ∧ µ(loc) = [c

′.F ] ∧ c′ <: c} γ
′

=
˙
e, µ

′¸˙
CT1, addp(c, d);te, γ

¸
 

˙
CT2, te, γ

′¸
(ADD FIELD)
CT1(c) = class c extends d{t1 f1, . . . , tn fn,meth} CT2 = CT1 ⊕ {c 7→ class c extends d{t f, t1 f1, . . . , tn fn,meth}}

γ = 〈e, µ〉 µ
′′

= {loc 7→ [c
′.F ⊕ {f 7→ null}] | [c′.F ] = µ(loc) ∧ c′ <: c} µ

′
= µ⊕ µ′′ γ

′
=

˙
e, µ

′¸˙
CT1, addf(c, t, f);te, γ

¸
 

˙
CT2, te, γ

′¸
(ADD METHOD)

CT1(c) = class c extends d{field,meth1, . . . ,methn}
meth = t m (t1 var1, . . . , tn varn){e} CT2 = CT1 ⊕ {c 7→ class c extends d{field,meth1, . . . ,methn,meth}}˙

CT1, addm(c, t,m, t1 var1, . . . , tn varn, e);te, γ
¸
 

˙
CT2, te, γ

¸
(REPLACE METHOD BODY)

CT1(c) = class c extends d{field,meth1, . . . , t m ( form ){e′}, . . . ,methn}
meth = t m (t1 var1, . . . , tn varn){e} CT2 = CT1 ⊕ {c 7→ class c extends d{field,meth1, . . . ,meth, . . . ,methn}}˙

CT1, replm(c, t,m, t1 var1, . . . , tn varn, e);te, γ
¸
 

˙
CT2, te, γ

¸
Figure 6. Rules for Transforming the class table CT and configuration γ for each deployment expression in Figure 3.

that the deployment of this sequence is valid if and only if
the current class table of the running program is CT1 and
the expressions in the deployment sequence are applied in
exactly that order. The deployment is then defined as the
transformation relation  as shown in Figure 6 that given
a transformation configuration

〈
CT1, te;te, γ

〉
produces a

new transformation configuration
〈
CT2, te, γ

′〉. Here, CT1

is the program’s current list of declarations, γ its current run-
time configuration, CT2 the new list of declarations, and γ′

the new configuration. The final deployment configuration
is 〈CT1, •, γ〉. These rules depend on the static type rules
stated previously to check correctness conditions.

The rule (ADD FIELD) says to first find the class c in the
current class table and construct a new class table, where
the class definition is extended with the new field f . Fur-
thermore, a new store µ′ is constructed in which the object
record for each object of type c or its subtypes is extended to
include a field f , which is initially assigned value null. The
rule (ADD METHOD) simply looks up the class in the current
class table and produces a new class table, where the class
definition is extended with the new method.

The rule (ADD PARENT) creates a new class table which
contains the modified class definition. A new store µ′ is also
constructed, where the object records for each object of type
c or c′, where c′ is subtype of c is extended to add the new
fields from d. These new fields are assigned value null.
Note that due to the requirement of having a statically valid
inter-type declaration, we can avoid having multiple parents
to the same class. Finally, the rule (REPLACE METHOD BODY)
constructs a new class table, where the original method body
is replaced by the new body. This is needed to represent ITDs
that add methods already existing in the target class.

2.5 Soundness of Dynamic Deployment
The proof of soundness of object-oriented type-system and
semantics uses a standard preservation and progress argu-
ment [21, 49]. The details are adapted from [10, 42]. The
key definition of environment-store consistency follows:

DEFINITION 2.1. [Environment-Store Consistency.] Let Π
be a type environment and µ a store. Then µ is consistent
with Π, written µ ≈Π, if and only if all the following hold:

1. For all loc such that µ(loc) = [t.F ], loc has type t
in Π and dom(F ) = dom(fieldsOf(t)), and for all
loc in rng(F ) either loc is in store µ or loc is null,
and for all f ∈ dom(F ) such that F (f) = loc′ and
fieldsOf(t)(f) = u and µ(loc′) = [t′.F ′] implies t′ <: u.

2. Every loc that is in dom(Π) is also in dom(µ) and
dom(µ) ⊆ dom(Π).

With the key defenition of consistency in place, Theo-
rem 2.2 states our main soundness result. It says that given
an inter-type declaration (itd i {. . .}) and the current class
table (CT1), if i is well-typed then that inter-type declara-
tion type checks to a safe sequence of deployment expres-
sions (te). We show that for each deployment expression,
the resulting class table and configuration are consistent. The
soundness of the inter-type declaration follows from the con-
sistency of intermediate configurations.

THEOREM 2.2. [Safe Deployment.] Let 〈e, µ〉 be a pro-
gram configuration where CT1 is the class table for that
program, e is a well-typed expression and µ is a store.
Let Π be a type environment where each declaration in
CT1 type checks and that µ ≈ Π according to the Defini-
tion 2.1. Let itd i {. . .} be an inter-type declaration such
that CT1 `itd i {. . .} : te :: te and

〈
CT1, te :: te, γ

〉
 

〈
CT2, te, γ

′〉, where γ is 〈e, µ〉, γ′ is 〈e, µ′〉, CT2 is
CT1 ⊕ CT ′, and CT ′ is the set of modified classes by
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te, and let Π′ be a type environment where each declara-
tion in CT2 type checks and that for all loc ∈ dom(Π),
Π′(loc) = Π(loc). Then µ′ ≈ Π′.

Proof Sketch: The theorem trivially holds for an empty
inter-type declaration. For non-empty i notice that an inter-
type declaration can have finite number of asuper, afield,
and ameth declarations and that type-checking rules for
inter-type declaration produce one deployment expression
for each asuper, afield, and ameth declaration accord-
ing to rules in Figure 4. Thus, te is finite. Let te be
te0; . . . ; tek−1; tek; . . . ; ten. The rest of the proof is by in-
duction on the cases of tek.

Case addf: If tek is addf(c, t, f), then by the hy-
pothesis of the rule (ADD FIELD) in Figure 6, we have
that CT2 = CT1⊕ {c 7→ class c extends d
{t f, t1 f1, . . . , tn fn,meth}} and for every c′ <: c and for
each loc ∈ dom(µ) such that µ(loc) = [c′.F ], µ′(loc) =
[c′.F ⊕ {f 7→ null}]. Since each declaration in CT2

type checks in Π′, CT2(c) type checks correctly. Since type
checking of t is part of c’s type checking, we know that t
must be a valid type. Also, for all such object records pointed
to by loc, f 7→ null. By rule (T-NULL) for type-checking
OO expressions we can take null to be of type t, all con-
sistency conditions for such loc are met. By the definition
of⊕ and the induction hypothesis, consistency conditions in
Definition 2.1 holds for other locations in the store.

Case addm, replm: If tek is addm(c, t,m, form, e),
then by the rule of (ADD METHOD), we have CT1 `
addm(c, t,m, form, e), γ  γ,CT2. The rule does not af-
fect γ and therefore does not affect the store (µ). Therefore,
we have Π′ = Π and since Π is consistent, we conclude that
Π′ is consistent. Case replm is similar.

Case addp: If tek is addp(c, d), then for class c, oper-
ation tek can be translated into a series of addf and addm
operations to class c. Since both addf and addm are type
safe, we conclude that addp is type safe and consistent with
Π′

In summary, our soundness result shows that provided the
correct ordering of deployment expressions is enforced, and
the semantics of deployment expressions shown in Figure 6
is maintained in the implementation, dynamic deployment of
a well-typed ITD will maintain the type safety of the running
code.

3. JVM Support for Dynamically Deployed
Inter-type Declarations

Our formalization helps illustrate the key ideas, basic se-
mantics, and requirements for supporting dynamic deploy-
ment of inter-type declarations in a virtual machine. We
now turn to the implementation of these requirements in the
JikesRVM [22]. Although the discussion in this section is
geared towards JikesRVM, the presented modifications can
be adapted to extend other JVMs. The requirements for VM

support essentially boils down to the transformation rules de-
fined in Figure 6.

The type checking rules for ITDs require minor adapta-
tion to account for privacy modifiers in Java and exceptions.
To account for exceptions in replacing a method we add a
constraint that the new method’s exception list is a subset
of original method’s exception list to avoid surprising the
clients of the method. Interfaces are handled by type check-
ing them as classes with no fields and empty method bodies
and super is checked by consistent method renaming.

To deploy a safe sequence of transformation rules, we
first stop the program, modify the class structures (VM
equivalent of a class table) and then if necessary trigger a
modified garbage collection phase that updates the objects
as necessary to model modifications in the store. Since an
ITD can introduce new fields, we need to visit each instance
of modified classes. Considering that a typical garbage col-
lector already performs this task, extending GC seems like
the most natural and least intrusive way to modify JVM to
support object layout update.

We have modified the BaseBase configuration of the
JikesRVM and extended the SemiSpace and Generational
MarkSweep collectors in JikesRVM to support instance up-
dates. The BaseBase configuration does not optimize the
running program but rather replaces bytecodes with equiv-
alent machine code. Optimizations complicate dynamic
method replacement since replaced methods might be in-
lined within other methods. Therefore, supporting dynamic
replacement under optimization requires additional steps
that greatly depend on the JVM implementation. We note
that the implementation of Steamloom [6] uses the same
JVM under the FastAdaptive configuration to support
dynamic point-cut advices. This configuration emits opti-
mized code when compiling methods. Therefore, several
ideas might be adopted from Steamloom when porting our
implementation to use the FastAdaptive configuration.
However, we do not consider this to be a threat to the ba-
sic ideas discussed in this section. This section describes our
implementation starting with a mapping from abstract terms
in the semantics to concrete VM structures. Given a set of
statically valid ITD declarations, and based on the transfor-
mations described by the operational semantics from the pre-
vious section, we will show how these transformations relate
to JVM internals and how to extend the JVM to perform such
transformations.

3.1 Mapping Class Table (CT ) and Configuration (γ)
to VM Structures

As expected of an operational semantics, our domain (shown
in Figure 5) maps well to VM data structures. The fixed
list of program’s declaration CT maps to a special area in
JikesRVM that stores the class information. Each class holds
an array of members where each array element, points to
the object representing a field or a method. The code for
a method is stored within the virtual machine in two for-
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mats: in bytecodes and in native machine code. Bytecodes
are loaded from the class files. The Just-In-Time (JIT) com-
piler in the BaseBase configuration scans the method’s
bytecodes and translates them to native machine code. Refer-
ences to other methods and fields are encoded into the gen-
erated machine code. JIT finds the name of other methods
and fields by consulting the class constant pool, which con-
tains the mapping between entity names and their IDs used
in the bytecodes. Our transformation rules modify the class
constant pool.

3.2 Deployment Transformations in JikesVM
We start by discussing the technical challenges associated
with reading bytecodes for the sequence of deployment ex-
pressions (te). We then show the implementation of these
deployment expressions, which modifies the constant pool
and the heap.

Loading Deployment Expression Sequence
Our JikesRVM extension is implemented as a thread, which
is initially idle. Upon users’ request, the thread wakes up
and searches for the deployment expressions to be applied.
The thread takes bytecodes from the expressions compiled
as self-contained class files (from here on called the donat-
ing classes) and integrates them into the classes of the run-
ning application (from here on called receiving classes). The
modifier thread has two duties: (i) to change the class struc-
tures (e.g., method tables and constant pool) at runtime, and
(ii) to change the bytecodes of the new methods.

As described previously, step (i) is needed for adding new
methods in existing classes. Step (ii) is needed because the
bytecodes of new methods are coming from donating classes
that might have a different constant pool than the receiving
classes. Using different constant pools can create syntactic
and semantic errors. To ensure that the new bytecodes refer
to the correct entities in the receiving classes, the modifier
changes the entity IDs used by the method to match the IDs
used in the receiving classes.

3.2.1 Implementing Deployment Expressions
The rest of the section describes how we supported our dy-
namic deployment expressions within JikesRVM. We show
field addition (addf), method addition (addm), method re-
placement (replm) and parent addition (addp) expres-
sions. The implementation of these is based on the rules de-
scribed in Figure 6.
Field addition. The formal definition of this operation
showed how the class table is affected and showed that the
new field is propagated to sub-classes. Within the JVM, each
class instance (i.e. object) contains values for the class’s
fields. By adding a field to the class definition, the object lay-
out should be updated to accommodate the new field. To add
a non-static field, the modifier (i) changes the class structure
by adding the new field to the fields list in the class defini-
tion. (ii) propagates the field to sub-classes. (iii) Allocates

heap space for the new field. (iv) recompiles methods that
access the class’s fields. The last two steps are specific to the
VM’s treatment of object record representation.

Steps (i) and (ii) are performed by extending the list of
fields for the target class and its sub-classes. For step (iii),
objects are manipulated to allocate the required space. To
achieve this task, we relied on the JVM Garbage Collector
(GC). This design decision is distinct from previous work
on supporting changes in Java classes primarily because of a
different emphasis on distribution of overhead. Malabarba et
al. [31] support change in Java classes by extending the Java
class loader functionality. However, their scheme requires
monitoring accesses to the instances of modified classes,
which has perpetual overhead, even after the class update.
On the other hand, we favored a one-time overhead to de-
ploy ITDs over a constant monitoring overhead after the de-
ployment is finished.

To transform instances of modified classes, the updater
thread forces a garbage collection after the addition of fields.
We have extended GC to recognize objects of modified
classes. When the garbage collector encounters an object in-
stantiated from a class that has an added field, it increases
the object size by the new field’s size. However, increasing
the object size requires copying it to another memory loca-
tion. In this case, GC ensures that references to the moved
objects are updated as part of its objects traversal. For the
last step, since field offsets in an object might change af-
ter field addition, we need to recompile methods that access
modified classes. Further discussion of this step appears as
part of the implementation of the replm expression. Fur-
thermore, since field additions are processed before method
additions and replacements (Rule (T-ITD) in Figure 4), we
can guarantee that no method will refer to non-existing field.

Handling static fields is straightforward. There is only
one copy of such fields for each class stored by the JVM
in a special region. Therefore, the modifier adds a static field
by inserting a new entry in the list of static fields.

In our semantics, we only had reference types. In the
full Java language however, fields can also have value types
in addition to reference types (recently added enum types
can be desugared to the value type final static int).
We assign new fields their default values based on their
types as defined by the Java language specification. It is
the responsibility of the programmer to add code in new
methods that accounts for this default value semantics. An
alternate semantics is possible for value types, for which
we could allow a default value to be specified. However,
for reference types initializing the field may require running
constructors from other classes, which may in turn call other
methods. Adding this complexity to the deployment process
did not seem to have a corresponding return, thus we omitted
it. Furthermore, it is intuitive to see that the existing methods
would not use these new fields, since they did not exist when
these methods were written.
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Figure 7. The effect of the deployment expression replm
on the call stack. mi is the method entry. B is the method
body. PC is the program counter.

Method Addition. As the semantics of deployment ex-
pressions suggests, the bytecode for the new method are
added to the method table of the receiving class. As noted be-
fore, one of the modifier thread tasks is to change the method
bytecodes to accommodate the differences between the con-
stant pools. Each reference to the constant pool in the new
method is replaced with an equivalent reference in the re-
ceiving class constant pool. If no matching entry is found,
the modifier creates the needed entry in the receiving class
constant pool. Now the method can use the receiving class
constant. Next, the modifier instructs the JIT compiler to
translate the bytecodes into machine code. These steps are
in-line with those defined formally in the addm rule. The
key implementation challenge was in the translation of the
constant pool.
Method Replacement. The semantics of replm states
that new method lookups return the new method body, while
active invocations (i.e. on stack) are not affected. Figure 7(a)
shows a call stack before and after the operation. Initially,
the method entry mi points to the current method body B1

(1). The new method implementation B2 is linked to the
method entry (2). Now, any call to that method will use
the new version (3). The old code will remain in memory
until all references to it from the call stack are removed
(e.g. by return statements). The procedure described in
Figure 7(a) allows for two versions of the method to exist.

For method replacements caused by field addition, the
new and old method bodies have the same bytecode se-
quence. However, the new body has the correct field offsets
within the object. Therefore, these methods have to be fully
replaced even if they are on the call stack (Figure 7(b)). This
is equivalent to α-renaming, which preserves type-safety.
Initially, the call stack entry points to the current method
body B1 and the current location within the method (1). The
modifier changes the call stack entry to point to the new
implementation B′1 (2). When the control is returned to the
method, it will continue the execution using the new imple-

mentation. Field additions are done at GC time, at which the
application methods are stopped. After GC, replaced meth-
ods will use the new objects and method bodies during the
rest of its execution.

An alternate design would wait for a method to complete
all its activations on the stack before replacing it. Such de-
sign would have the advantage that recursive invocation of
a method will all use the same code, however, a disadvan-
tage of such design is that for long running methods, the
deployment may be delayed indefinitely which may defeat
the purpose of investing in dynamic deployment. Moreover,
a hybrid of these two strategies for method replacement is
also possible, which selectively replaces a method based on
annotations from programmers, but we haven’t explored that
in this paper.

Adding Parents. If a class d is added as a parent to class
c, all of class d members should be inherited by class c. The
addp operation is similar to a sequence of field/method ad-
ditions. To complete this operation, our VM extension recog-
nizes class d as a parent to class c and records this informa-
tion in class c, d structures. This step is needed to ensure the
correct operation of cast expressions. Like adding field and
adding methods, correctness of this operation is also checked
during static type-checking of inter-type declarations.

To summarize, we found that our implementation re-
mained faithful to our semantics barring a few inert and stat-
ically checked changes, e.g. privacy modifiers, exceptional
behavior, default value of value types, static fields, constant
pool translation.

3.3 Choice of Garbage Collector
A major component in our scheme is supporting field addi-
tion by extending GC. Another possible choice would con-
sist of updating objects at first access. The details for this
approach is presented in Malabarba et al. [31]. However,
monitoring object accesses has a high, long running, per-
formance overhead, as each object access to modified types
should be instrumented. Furthermore, once an object is up-
dated and moved to a different location, references to this
object should be updated reflecting its new location. In Mal-
abarba et al. [31], this is accomplished by using object han-
dles. For obvious reasons, object handles are avoided in
modern JVMs. For these reasons, we have decided on ex-
tending GC to perform instance updates. As an added ben-
efit, forced GC by our approach might negate the need for
one regular GC down the road by eliminating dead objects.

Several GC algorithms exists, some of which are easier to
extend than others. However, easier implementation does not
necessary yield to better performance. When we started this
work we extended the Semi-Space collector in JikesRVM.
The semi-space collector divides the memory space into two
segments. At each collection, live objects are copied from
the “from” space to the “to” space. Only one space is used
for allocations. This collector is easy to extend since all
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objects are copied at GC time. Therefore, only minimum
extension to copying logic is needed.

However, the semi-space collector has several disadvan-
tages that prohibits its use in production-grade JVMs. The
use of two spaces means that half of the memory is idle
at any time. Therefore, applications need a heap twice as
large as their live volume. Second, copying all live objects at
runtime is expensive. Due to these limitations, other collec-
tion schemes are used such as generational collectors. Gen-
erational collectors are faster and consume less space than
copying collectors. With generational collectors, objects re-
siding in mature space are not moved. Therefore, supporting
object update requires extending the collector with the abil-
ity to possibly move objects residing in the mature space
along with necessary reference modification. In this paper
we also present a modification to the generational mark-
sweep collector in JikesRVM to enable field addition.

During a major collection in a generation collector, GC
traverses objects in the heap and marks live ones in the ma-
ture space. After the mark phase, it sweeps the mature space
and reclaim the space of dead objects. In our extension, when
GC tries to mark an object that needs to be modified, it
checks whether the new object layout fits in the same place
as the old instance. The mature space in JikesRVM uses a
freelist allocator that segregate objects based on their size
class. Each size class is allocated from a separate list. This
means that allocations proceed by an increment equal to the
size class. As a result, some objects can have few free words
equal to the difference between the object size and its size
class. If the new fields size fit in the free space, we install
the new object in place of the old one. Otherwise, a copy is
needed since the object now belongs to a different size class.
If the object is copied to a different location, we need to in-
stall a forwarding pointer in place of the old object. During
the sweep phase, when GC examines a reference fields in
an object, we check whether the reference field points to a
forwarded object. In this case the forwarding pointer is read
and stored in the reference field.

4. Case Study: Dynamically Deployed ITDs
for Dynamic Updating

Armed with a virtual machine capable of dynamically de-
ploying inter-type declarations, we set out to address what
had been our goal all along, “to study the effectiveness of
aspect-orientation in enabling dynamic deployment of fea-
tures in long-running applications", where feature changes
are expressed as aspects and applied dynamically as modu-
lar units of software update. This section describes our ob-
servations, which may we add, were very positive.

4.1 Background: Dynamic Updating Systems
During the life cycle of an application, many bugs are dis-
covered that require immediate solution. Also, users might
request new features as their requirements grow. Typically,

supplying users with a new feature requires a service shut-
down. For example, changes in daylight saving rules requires
a JRE update and restart1. The disadvantage of a discon-
tinued service ranges from user annoyance, to multi-million
dollars of loss [36, 37].

For mission critical applications like transaction process-
ing servers in business systems, being available 24/7 is
equivalent to staying in business. A study found that 75% of
nearly 6000 outages of high-availability applications were
planned for hardware and software maintenance [30]. The
causes of software updating include security patches, bug
fixes or changes in policy. Solutions to maintain availability
while updating requires redundancy (e.g. cluster rolling up-
grade). However, such approaches are usually too expensive
to be adopted by all users and slow down the upgrade pro-
cess. Furthermore, software updating is not limited to large
server applications. The increasing interest in adopting Java
applications for mobile platforms (e.g. the Android platform
by Google that runs on a JVM) where redundancy is absent
presents a new challenge to application availability. There-
fore, it is crucial to be able to update these applications with-
out restarting them.

Due to the previous reasons, many researchers have inves-
tigated dynamic updating systems, where applications are
updated amid their execution. Dynamic updating systems
provide a low-interruption solution to the update problem.
A more complete review of previously proposed systems is
available in Section 6.

Our goal was to update Apache’s XML parser
(Xerces) [50] library version from 1.2.3 to 1.3.1. Xerces is
used to read, parse and validate XML documents. For this
case study, we considered two release cycles of Xerces. Each
cycle represents the difference between two consecutive ver-
sions and consists of a series of features added to implement
the new version. The first cycle is between versions 1.2.3-
1.3.0, which was 2 months long, the second between ver-
sions 1.3.0-1.3.1 and lasted for six weeks.

4.2 Expressing Xerces Changes Modularly
To that end, our first goal was to study the difference be-
tween the two versions of Xerces and represent these differ-
ences using pointcut-advice and/or inter-type declarations.
The changes between the versions of Xerces are summarized
in Figure 8. We note however, that we are not concerned with
comparing ITD vs. pointcut-advice (PCA), but rather with
showing why support for dynamic ITD can be beneficial for
situations such as software updating.

Each row shows the changes needed to implement all
features that constitute the release in a serialized manner. In
other words, each feature is applied after the previous one.
Therefore, the number shown represents the occurrence of
changes summed for all features. For example, two changes
to the same class are counted twice.

1 http://java.sun.com/javase/timezones/index.html
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Changes 1.2.3-1.3.0 1.3.0-1.3.1

Classes
Added 15 1
Changed 82 56

Methods

Added 62 33
Changed(PCA) 32 28
Changed(ITD) 68 95

Fields
Add(Primitive) 28 18
Add(Reference) 9 25
Rename 7 5

Inner Classes Added 9 1

Figure 8. Summary of features added to each version.

The row for fields shows the different types of added
fields. The types are grouped into two categories: Primitive
and Reference. The Primitive shows added fields of basic
types besides reference. The reason for this distinction is
that this type of fields can be easily introduced dynamically.
However, for the second type (Reference), the initial value is
unknown. Therefore, the developer needs to adapt the aspect
to include special initialization code for these fields.

The changes between the versions of Xerces were an-
alyzed and grouped into related changes that together im-
plement a feature. This is similar to the work of Previtali
and Gross [40, 41] who have proposed the use of aspects
to model code evolution. They illustrated their hypothesis
using the evolution data of a small client-server application
and discussed possible implementation schemes. Our objec-
tive is to take the notion of software evolution even further
to enable dynamic software updating using aspects.

Example Changes ITDClass Method Field
Sec. 4.2.1 4 7 1

√

Sec. 4.2.2 1 2 1
√

Sec. 4.2.3 15 16 7 X
Sec. 4.2.4 4 10 0

√

Figure 9. Changes required to implement the example fea-
tures presented. The table also shows whether these features
can be implemented as an inter-type declaration. Non of
these features can be implemented as a pointcut-advice.

We present several examples of added features that range
from performance enhancement to new functionality. The
changes required to implement each feature is presented in
Figure 9. The figure shows the required modifications, in
terms of number of classes, methods and fields changed or
added, required to implement each of the four features. We
also show whether the feature can be implemented as an
inter-type declaration. In general, we found that using inter-
type declarations allowed us to model more features than
just pointcut-advice model. Although it is possible to em-
ulate many ITD cases with certain PCA patterns such as
delegation-based model [17, 45] or object-fragment mode,
using ITD lends itself to better and easier design. Further-
more, such patterns can clearly affect long-running perfor-
mance since it adds a level of indirection to added field ac-
cesses. Thus, it appears to be the case that software updating

of such applications would benefit from our VM-based ap-
proach that supports dynamic deployment of inter-type dec-
larations.

4.2.1 Feature: Optimizing XML Normalization
Normalization refers to the process by which whitespaces
are removed from text nodes in XML documents. This pro-
cess facilitates node comparisons and lookups. This feature
was already implemented in Xerces 1.2.3, when normaliza-
tion is requested, Xerces 1.2.3 traverses the XML node tree
and normalize nodes. However, the traversal time can be re-
duced if nodes can indicate whether their children are nor-
malized. In this case, the traversal process can skip whole
sub-trees.

Adding this feature requires several changes to Xerces
1.2.3. By looking at the code of Xerces 1.3.0 (for which
the performance enhancement was implemented), we ex-
tracted the following code changes: Class AttrImpl:
two methods are added to check whether inserted nodes
are normalized and whether nodes remain normalized af-
ter a removal. Class AttrMap: two methods are modi-
fied to check whether changed node’s attributes are normal-
ized. Class ElementImpl, the method normalize now
checks whether the node is normalized, if not, it will tra-
verse the sub-tree rooted at that node. Class NodeImpl:
two methods and one field are added. These methods check
whether a node is normalized, while the new field holds the
unnormalized flag value.

This performance enhancement feature can be imple-
mented as an inter-type declaration that will add neces-
sary methods, fields and replace modified methods. The
inter-type declaration adds the new methods in classes
AttrImpl,NodeImpl and adds the new field to class
NodeImpl. To fully describe these changes using aspects,
an aspect containing an around advice will also be needed
to replace the calls to the old methods with the modified
version that support the feature. The new version of each
method is implemented as an inter-type declaration method.
The around advice directs calls to older version to added
methods.

4.2.2 Feature: XML Notations
An XML notation element provides a mechanism to per-
form external validation on XML elements. The notation
consists of several attributes that directs the XML validator
to external validation resources. To support this functional-
ity, the class TraverseSchema was modified to support
notations. A new field is added (fNotationRegistry)
to store notation elements. Also, the traversal method
(doTraverseSchema) is modified to call a new method
(traverseNotationDecl) when it encounters a nota-
tion element.
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4.2.3 Feature: Identity Constraints
Certain items in an XML documents can carry special at-
tributes that relate to their uniqueness or references through-
out the document. These attributes are referred to as iden-
tity constraints. For example, the “unique” identity con-
straint is used to indicate that values of a certain element are
unique (e.g. can be used as an index key in an XML-based
database).

This feature was implemented by modifying 5 classes
and adding a package containing ten classes that represent
the constraints. All modified classes had fields and methods
added to their implementation. Furthermore, an inner class
was added to one of the modified classes. Due to the type
of code changes, this feature can only be partially modeled
using inter-type declarations. Pointcut-advice (PCA) model
cannot handle method and field additions. While inter-type
declarations can add these class members, the introduction
of the inner class can not be expressed in our current model
.

4.2.4 Feature: Build Time Optimization
When processing new documents, Xerces (as will other
XML parsers) converts the document into a Determinis-
tic Finite Automata (DFA). The DFA is constructed from
supplied XML schema files and used to enhance the per-
formance of queries over XML documents. A feature was
added to Xerces that enhanced the speed of building the DFA
by a factor of two. The feature affected four classes and re-
quired modifications to ten methods. For at least one class
(DFAContentModel) the changes to methods were inva-
sive and can not be represented by an around, before
or after advice alone. Even if the advice body contained
the new method implementation, advices can not call pri-
vate methods or use private fields. Therefore, the changes
required introducing new methods that has the modified im-
plementation.

4.3 Characteristics of Update Aspects

Changes 1.2.3-1.3.0 1.3.0-1.3.1

Aspects
PCA 3 1
ITD 15 22
None 4 1

Features 22 24

Figure 10. Summary of features added to each version.

Figure 10 presents the number of ITD and PCA aspects
needed to update Xerces. The breakdown of these aspects
is presented in Figure 12. The first observation is that most
changes can only be represented as inter-type declarations.
Although the PCA model can be used to implement few fea-
tures, the majority of features introduce changes that can not
be modeled efficiently or cleanly as pointcut-advices only.
We also note that some features can not be modeled using
our model (or by using ITDs in AspectJ). These features re-

Tag
Classes Method Fields Inner Aspect

new mod new PCA ITD safe Ref class PCD ITD None

708 1 4 4
√

710 1 1
√

714 1 1
√

716 1 1
√

721 1 1
√

722 1 1
√

727 5 1 2 3
√

729 10 3 1 6 2
√

736 1 1
√

742 1 1
√

773 4 1
√

776 9 18 2 7 2
√

777 1 7 1 1
√

778 1 1
√

779 1 5
√

789 12 6 7 5 2 3 1
√

793 1 2 4
√

796 9 10 8
√

797 1 1 1 1 4 1
√

804 5 6 2 9
√

817 1 18 13 8 15 2 6
√

829 2
√

Avg. 0.68 3.73 2.82 1.45 3.09 0 0.41 0.41

Figure 11. Summary of 22 features added (v.1.2.3-1.3.0.)

Tag
Classes Method Fields Inner Aspect

new mod new PCA ITD safe Ref class PCD ITD None

852 13 4 10 24 1
√

853 4 11 1 1 2
√

861 1 6 4 11 9 6
√

872 1 1 4 5
√

908 6 3 1 9 1
√

914 2 4 4 1
√

928 2 2
√

930 1 1
√

946 2 12
√

949 2 1 3 1
√

950 1 2 2 1
√

951 1 1
√

952 1 2 1
√

953 3 3 4 2
√

955 1 1
√

956 1 2 8 4 1
√

957 1 1
√

958 1 1
√

962 1 1
√

963 1 1 1
√

967 1 1
√

977 1 3
√

980 2 2 1
√

981 1 1
√

Avg. 0.04 2.29 1.38 1.13 3.96 0.08 1.04 0.04

Figure 12. Summary of 24 features added (v.1.3.0-1.3.1.)

quire code changes that are unsupported by AspectJ such as
introducing inner-classes that reference and are referenced
by the owner class.

5. Performance Evaluation
As mentioned previously, a pragmatic dynamic updating so-
lution must have a near negligible steady-state overhead and
acceptable overhead during the updating process. This sec-
tion presents the results of a performance evaluation, which
analyzes our VM extension for these desirable properties.

All experiments shown were conducted on a machine
with AMD Athlon X2 Dual Core 3.0GHz processor and
2GB RAM. Results reported are the average of 11 runs after
excluding the maximum and minimum readings.
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5.1 Steady-State Overhead
In this experiment, we measured the steady-state overhead
of using of our extended Java virtual machine compared to
the unmodified JikesRVM. This experiment reflects the cost
of having the option to dynamically update long-running ap-
plications. We executed several applications using the ex-
tended JVM and using the unmodified JVM, then compared
their execution time. The extended JVM was not presented
with a dynamic deployment sequence (te). Therefore, the
difference in execution time reflects the overhead of support-
ing dynamic deployment of inter-type declarations. For this
experiment, we used SPECJVM98 and Dacapo [4] bench-
marks, which represents a variety of Java applications. These
results are shown in Table 13.

Application Exec time Application Exec time
compress 1.01 eclipse 1.01
jess 1.0 fop 1.03
db 1.02 Hsqldb 1.05
javac 1.01 jython 1.06
mpegaudio 1.01 luindex 1.02
Mtrt 1.04 lusearch 1.05
jack 1.03 PMD 1.06
Geometric Mean 1.016 1.06

Figure 13. Overhead in extended JVM

Figure 13 shows the normalized execution time for the
extended JVM compared to the unmodified JVM. Results
higher than one means that the extended JVM is slower
than the unmodified JVM. In general, our platform has low
overhead compared to the unmodified JVM. Furthermore,
since the same VM code is executed before and after an
update (e.g. no indirection), the results also represent the
after-update steady state overhead.

5.2 Deployment Overhead
Our extended JVM shows a low steady-state overhead
for dynamically deploy ITDs. However, beside steady-state
overhead, we are also concerned with deployment time and
its effect on performance. We will show that our approach
has acceptable performance degradation for the short dura-
tion of the deployment process. The period of time required
to apply changes is directly related to the number and type
of required modifications. For example, adding fields require
more time than adding methods since a garbage collection
is required. We present three experiments to measure the
dynamic weaving overhead. First, we selected few features
from the Xerces case study and measured the time required
to apply each feature. Second, since adding fields to a class
is associated with a garbage collection, we present an ex-
periment using a synthetic benchmark to evaluate the effect
of adding fields on GC performance. Finally, we measured
the performance before, while and after performing a dy-
namic deployment. This experiment helps in evaluating per-
formance degradation during deployment.

5.2.1 Dynamic Deployment Overhead.
In this experiment we measured the dynamic deployment
time and studied the different phases of the deployment
process. We selected seven aspects representing features/bug
fixes that were added to Xerces V1.2.3.

Figure 14 shows the duration of each deployment phase.
The table shows time consumed in loading (reading byte-
codes) from file, compiling (compiling bytecodes into ma-
chine code) and applying the aspect (changing class struc-
ture). We note that deployment time is dominated by loading
the bytecodes of new and modified methods. As for com-
pilation time, it is affected by the type and size of added
bytecodes. Lastly, updating the class structure has negligible
time compared to the other phases in the weaving process.

Tag Load (ms) Compile (ms) Apply (ms)
708 131.18 6.09 2.55
710 81.09 1.91 0.18
714 34.09 4.91 0.18
716 81.73 2.45 0.09
721 31.55 0.18 0.82
722 32 0.73 0.18
727 159.09 18.45 1.82

Figure 14. Dynamic Deployment Performance

5.2.2 Garbage Collection Performance.
In the previous experiment, the amount of work performed
by GC depends on the number of live objects when the up-
date is applied. To better understand the overhead of instance
updating through GC, this section presents an experiments to
evaluate the performance of our instance updating approach.

Adding fields to a class requires modifying all of the
class instances. We carry this transformation by extending
the functionality of garbage collection. After modifying the
class structure to recognize the new field, GC is invoked to
complete the update and to inspect and transform all of the
class’s instances.

In this experiment we measure the effect of object trans-
formation on GC time. Our target application is a synthetic
benchmark where we can control the number of objects af-
fected by field addition. The benchmark consists of a pay-
load class composed of three integer fields and a reference
field. The payload class instances are connected in a linked
list using the reference field. The application allocates a pre-
defined number of payload objects and connects them. Then,
the application traverses the list and touches all elements.

We compared the GC time between three scenarios. In
all scenarios GC copies objects from one space to another.
The difference in these scenarios is in the size of copied
objects. In the first scenario, the GC runs normally (i.e. base
case). It copies the object without modification and thus
the size remains the same (4 words). The second scenario
represents the additional cost needed to update instances.
Objects are extended to accommodate an additional integer
field. Therefore, the object size is increased by one word
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(4 -> 5). The final scenario represents the GC operation
after the update. The GC in the third scenario will copy
the larger objects (5 -> 5) without inspection. The results
in Figure 15 were obtained using the SemiSpace collector.
We note that the Generational MarkSweep collector showed
similar results for the instance update case (second scenario).
The object sizes of four and five words belong to different
size classes. Therefore, the Generational collector needs to
copy the whole object similar to the SemiSpace collector.

# of Objects GC time (s)
4->4 4->5 5->5

10K 0.29 0.35 0.3
100K 0.49 0.78 0.5
1M 2.77 4.66 2.77
10M 23.00 46.28 22.99
11M 25.37 51.26 25.42
12M 27.52 55.59 27.56
13M 29.79 59.80 29.81

Figure 15. Garbage Collection Performance

Figure 15 shows the GC timing for the three scenarios.
We ran seven experiments and varied the number of instanti-
ated payload objects. The maximum number of objects in
this experiment (13M) is higher than what is expected in
regular applications. For example, the largest live volume
from Dacapo benchmarks is 72MB (hsqldb) corresponding
to about 3.2M objects. The use of large number of objects
in this experiment helps in understanding the overhead of
object modification in relation to copying costs.

We note that with higher number of modified objects, the
cost of adding fields dominates and reduces GC efficiency.
GC time is affected due to two factors. First, the additional
cost of updating objects. Second, due to additional requests
for additional memory space. Note that the first and third
scenarios have similar performance although the object size
is different. This indicates that the extra time in the second
scenario is not attributed directly with the increase in object
size, but rather to the additional checks and space requests.

5.2.3 Relative Performance.
The last experiments investigates whether applying fea-
tures dynamically can affect their performance. This ex-
periment helps in evaluating performance degradation dur-
ing the weaving process. For this experiment, we measured
how many files a test code can process per second. Fig-
ure 16 shows the performance when we dynamically up-
graded Xerces to tag 708. This update adds a feature (CR
schema support) to Xerces. The figure shows the drop in
performance during deployment. The deployment duration
includes the time needed for GC. We also note that there is
no drop in performance after the upgrade.

6. Related Work
The closest related work is by Malbarba et al. [31]. The sim-
ilarity is that this work also allows runtime updating of ob-
ject instances in a long-running application. However, there
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Figure 16. Performance before, while and after deployment

are several differences between techniques used by this work
(and other work that are similar in spirit) and our approach.
First, this method of object instance update relies on ob-
ject handle in JDK 1.2, so they only need to update handles,
which makes updates easier [31, Section-3.1,pp-349]. How-
ever, supporting object handles in modern JVMs can have
severe performance penalties so neither JikesRVM nor mod-
ern Hotspot supports these. Second, this method of instance
updating requires access instrumentation and locking [31,
Section-3.2,pp-352]. Object access instrumentation can have
prohibitive long-running overhead. On the other hand, our
approach avoids long-running overhead by forcing GC at
update time. The forced GC has the additional advantage
of eliminating dead objects in heap and delay future GC in
long-running application.

In the rest of this section, we discuss other closely related
ideas: run-time weaving, load-time weaving, VM support for
dynamic adaptation, and online updating.
Run- and Load-Time Weaving. There are several ap-
proaches for runtime weaving such as PROSE [39], Handi-
Wrap [3], Eos [43], etc. A typical approach to runtime weav-
ing is to attach hooks at all join points in the program at
compile-time. The aspects can then use these hooks to at-
tach and detach advice at run-time. A load-time weaving
approach delays weaving of crosscutting concerns until the
class loader loads the class file and defines it to the VM [29].
Load-time weaving approaches typically provide weaving
information in the form of XML directives or annotations.
The aspect weaver then revises the assemblies or classes ac-
cording to weaving directives at load-time. A custom class
loader is often needed for this approach. There are load-
time weaving approaches for both Java and the .NET frame-
work. For example, AspectJ [23] has load-time weaving sup-
port. Weave.NET [28] uses a similar approach for the .NET
framework. The JMangler framework can also be used for
load-time weaving [26]. It provides mechanisms to plug-in
class-loaders into the JVM. However, neither runtime nor
load-time weaving approaches support dynamic deployment
of inter-type declarations, where the primary challenge is in
efficient runtime updating of instances.
Virtual-Machine Support for Dynamic Weaving. Adap-
tation of a running object-oriented program has been ap-
proached from different directions by several projects in
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past. We are aware of three projects that have sought to
support aspects at the virtual machine level. Steamloom [6],
PROSE2 [38], and Nu[12]. Our work is similar to Steam-
loom in that it also extends the Jikes Research VM, an open
source Java VM [22], however, it also supports dynami-
cally deployed inter-type declarations. On the other hand,
PROSE2 proposes an enhanced implementation for the orig-
inal PROSE approach, by incorporating an execution mon-
itor for join points into the virtual machine. This execu-
tion monitor is responsible for notifying the AOP engine
which in turn executes the corresponding advice. This model
is suitable for implementing pointcut-advice model; how-
ever, it cannot be used to model dynamically deployed inter-
type declarations. Golbeck et al. propose lightweight sup-
port in virtual machines for AspectJ [15], however, they do
not support dynamic deployment of inter-type declarations,
whereas we do. Our own previous work on the Nu virtual
machine [12] is also limited in that sense. It only supports
the pointcut-advice model [12].

Haupt and Schippers’s delegation-based model [17, 45]
and Kuhn and Nierstrasz’s object-fragment model [27] are
capable of expressing dynamic deployment of inter-type
declarations, however, efficient implementation of neither
approaches has been demonstrated as of this writing. Our
work could be seen as a potential stepping stone for demon-
strating efficient implementations of these models.

Our work is also related to ideas that allow object rep-
resentations to be adapted at runtime such as Nielsen and
Ernst’s proposal on VM support for virtual classes [35] in
the gbeta language [13] and similar support in CeasarJ [33]
and ObjectTeams [18]. In these work runtime adaptation of
objects and classes is often part of the language semantics
in the form of mixin-like composition. Our work is similar
to CeasarJ [33] and ObjectTeams [18] in that we also aim
to provide support in a Java language environment although
unlike these approaches, our work tackles use cases where
a class definition may not be computed statically (primarily
because the rest of the class definition may not have been
conceived at the time of compilation). The main difference
from the gbeta VM is due to the host VMs.

Online Update. Our case study in similar in spirit to many
of the dynamic updating approaches such as Ginseng [34]
and POLUS [9] that provide facilities for dynamic software
updating for C programs. Malabarba et al. [31], Kim et
al. [24, 25] and Subramanian et al. [47] provide similar facil-
ity for managed languages. However, unlike many of these
approaches that express upgrades in the form of a changed
code, class, or methods our main emphasis in the case study
was on enabling a modular units of software upgrade in the
form of aspects that describe only the changes made due
to an upgrade and a declarative representation of where the
change ought to be applied. Moreover, the mechanisms that
we have developed are not limited to dynamic software up-

dating only, rather updating is presented as a use case for a
more general support for dynamic deployment of ITDs.

Similar to Hicks et al. [19] and Stoyle et al. [46]’s work
we have also developed conditions for safe deployment of
an ITD. The main difference is that Hicks et al. [19] and
Stoyle et al. [46]’s work is in the context of the C language,
whereas our work is in the context of an OO calculus.

A large body of work related to dynamic updating exists
under SmallTalk VMs. Although they share many of the up-
dating constructs presented here and in other dynamic updat-
ing literature, SmallTalk-based updating is program-guided.
Updates are specified and controlled by the running pro-
gram. In our case, the updates are controlled by the VM. Us-
ing the VM to control the update process presents the chal-
lenges of correctly ordering and loading external updates.

7. Conclusion and Future Work
Dynamic aspect deployment is an important feature of an
aspect-oriented language design that has many applications,
such as runtime monitoring [7], runtime adaptation to fix
bugs or add features to long running applications [48],
runtime update of dynamic policy changes [38]. Current
dynamic aspect weaving schemes support pointcut-advice
model of Masuhara and Kiczales. In this work, we described
the design and implementation for efficient support of dy-
namic deployment of inter-type declarations.

Several schemes have been proposed to support dynamic
deployment of aspects. Steamloom [6], PROSE2 [38] and Nu
[12] present an aspect-aware Java VM. Steamloom moves
weaving into the VM, which allows preserving the origi-
nal structure of the code after compilation and shows per-
formance improvements of 2.4 to 4 times when compared
to AspectJ. PROSE2 incorporates an execution monitor for
join points into the virtual machine. Nu presents an efficient
JVM support for pointcut-advice aspects by extending Sun’s
HotSpot JVM. These schemes support dynamic weaving of
pointcut-advice. However, we have seen that pointcut-advice
aspects can not be used to express certain type of code fea-
tures. For example, only ITDs can be used to add fields or
methods to classes.

In this work, we described the design and implementa-
tion of our strategy for efficiently supporting dynamic de-
ployment of inter-type declarations in JVM. We presented
the usefulness of supporting dynamic ITD through a detailed
real world case study. The case study demonstrated how ITD
can be used to describe software features. Therefore, sup-
porting dynamic deployment of inter-type declaration serves
as an approach for online update of running applications.

Our scheme presents several advantages over dynamic
pointcut-advice weaving schemes. By extending the JVM,
we are able to support not only pointcut-advice aspects, but
ITD aspects as well. Our implementation shows negligible
overhead before deploying aspects and can apply aspects in
relatively short time.
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Future work includes extending our implementation in
several directions. First, we will examine dynamic deploy-
ment mechanism when optimizing compilers are used within
the JVM. This will facilitate the task of supporting dynamic
aspects without sacrificing performance. Another direction
where we envision future work is to study dynamic weav-
ing to active methods. Our current implementation does not
support replacing active method bodies.
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A. Omitted Details of the Object-oriented
Core Calculus

This section gives the small step semantics and the type
system for the object-oriented calculus used in Section 2.1.
Following earlier work [49], we define the calculus as a
set of evaluation contexts E (shown below) and a one-step
reduction relation that acts on the position in the overall
expression identified by the evaluation context.

E ::= − | E .m(e . . .) | v.m(v . . .E e . . .)
| cast t E | E .f | E .f=e
| v.f=E | t var=E; e| E; e

This avoids the need for writing out standard congru-
ence rules and clearly presents the order of evaluation. The
language uses a strict leftmost, innermost evaluation policy,
which uses call-by-value. The rules for standard OO expres-
sions are given in Figure 17. We omit the treatment for stan-
dard exceptional conditions. In the semantics, the auxiliary

method lookup (not shown) is used to look up the body of
the method.
Evaluation relation: ↪→: Γ→ Γ

(NEW)
loc /∈ dom(µ)

µ
′

= µ⊕ {loc 7→ [c.{f 7→ null | f ∈ fieldsOf (c)}]}
〈E[new c()], µ〉 ↪→

˙
E[loc], µ

′¸

(SEQUENCE)
〈E[v; e], µ〉
↪→ 〈E[e], µ〉

(CALL)
loc ∈ dom(µ) [c.F ] = µ(loc)

(c
′
,m(t1 var1, . . . , tn varn){e}) = lookup(c,m)
c <: c

′
e
′

= e[v1/var1, . . . , vn/varn]

〈E[loc.m(v1, . . . , vn)], µ〉 ↪→
˙
E[e

′
], µ

¸
(SET)

loc ∈ dom(µ) [c.F ] = µ(loc)
µ
′

= µ⊕ {loc 7→ [c.F ⊕ (f 7→ v)]}
〈E[loc.f = v], µ〉 ↪→

˙
E[v], µ

′¸
(CAST)
loc ∈ dom(µ) [c

′.F ] = µ(loc)
c
′
<: c

〈E[cast c loc], µ〉 ↪→ 〈E[loc], µ〉

(GET)
loc ∈ dom(µ) [c.F ] = µ(loc) v = F (f)

〈E[loc.f ], µ〉 ↪→ 〈E[v], µ〉

Figure 17. Semantics, based on [10, 42]. (Uses the overrid-
ing operator ⊕ for µ and σ in some rules).

The (NEW) rule says that the store is updated to map a
fresh location to an object of the given class that has each
of its fields set to null. These rules use ⊕ as an overriding
operator for finite functions. That is, if µ′ = µ⊕ (loc 7→ v),
then µ′(loc′) = v if loc′ = loc and otherwise µ′(loc′) =
µ(loc′). The fieldsOf function uses the class table (CT ) to
determine the list of field declarations for a given class (and
its superclasses), considered as a mapping from field names
to their types. Other rules are also standard.

(T-NEW)
isClass(c)

Π ` new c() : c

(T-LOC)
Π(loc) = t

Π ` loc : t

(T-GET)
Π ` e : c fieldsOf (c)(f) = t

Π ` e.f : t

(T-VAR)
Π(var) = t

Π ` var : t

(T-NULL)
isClass(c)

Π ` null : c

(T-CAST)
isType(t) Π ` e : u

Π ` cast t e : t

(T-SEQUENCE)
Π ` e1 : t1 Π ` e2 : t2

Π ` e1; e2 : t2

(T-SET)
Π ` e : c fieldsOf (c)(f) = t

Π ` e′ : t
′

t
′
<: t

Π ` e.f = e
′

: t
′

(T-CALL)
∀ i ∈ {1..n}.Π ` ei : ui ∀ i ∈ {1..n}.ui <: ti Π ` e : c

(c
′
, t m(t1 var1, . . . , tn varn){e}) = lookup(c,m)

Π ` e.m(e1, . . . , en) : t

Figure 18. Type-checking rules for expressions based on
[10, 42].

The type checking rules for OO expressions are shown in
Figures 18. The rules for top-level declarations such as class,
methods, fields, are fairly standard (thus omitted).

17 2010/3/31


	3-31-2010
	Towards Efficient Java Virtual Machine Support for Dynamic Deployment of Inter-type Declarations
	Bashar Gharaibeh
	Hridesh Rajan
	J. Morris Chang
	Recommended Citation

	Towards Efficient Java Virtual Machine Support for Dynamic Deployment of Inter-type Declarations
	Abstract
	Keywords
	Disciplines
	Comments


	tmp.1398892325.pdf.Fk6nb

