An Ab Initio Study of the Reaction Mechanism of Co++NH3

Thumbnail Image
Date
1997-05-01
Authors
Taketsugu, Tetsuya
Gordon, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

To investigate the mechanism for N–H bond activation by a transition metal, the reactions of Co+(3F,5F) with NH3 have been studied with complete active space self-consistent field (CASSCF), multireference configuration interaction (MR-SDCI), and multireference many body perturbation theory (MRMP) wave functions, using both effective core potential and all-electron methods. Upon their initial approach, the reactants yield an ion–molecule complex, CoNH+3(3E,5A2,5A1), with retention of C3ν symmetry. The Co+=NH3 binding energies are estimated to be 49 (triplet) and 45 (quintet) kcal/mol. Subsequently, the N–H bond is activated, leading to an intermediate complex H–Co–NH+2 (C2ν symmetry), through a three-center transition state with an energy barrier of 56–60 (triplet) and 70–73 (quintet) kcal/mol. The energy of H–Co–NH+2, relative to that of CoNH+3, is estimated to be 60 to 61 (triplet) and 44 (quintet) kcal/mol. However, the highest levels of theory employed here (including dynamic correlation corrections) suggest that the triplet intermediate HCoNH+2 may not exist as a minimum on the potential energy surface. Following Co–N or H–Co bond cleavage, the complexH–Co–NH+2 leads to HCo++NH2 or H+CoNH+2. Both channels (triplet and quintet) are found to be endothermic by 54–64 kcal/mol.

Comments

The following article appeared in Journal of Chemical Physics 106 (1997): 8504, and may be found at doi:10.1063/1.474058.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Wed Jan 01 00:00:00 UTC 1997
Collections