The dynamics of liquids in moving containers: Numerical models for viscous unsteady free surface flows

Thumbnail Image
Date
1997
Authors
Kassinos, Adonis
Major Professor
Advisor
Joseph M. Prusa
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Department
Mechanical Engineering
Abstract

The transportation and control of liquid masses poses a problem of immense practical interest. Slosh forces generated by the motion of the liquid can easily interfere with the safe operation of the vehicle. The successful design and execution of such operations depends upon not only the understanding, but also the ability to predict the dynamic behavior of liquids in moving containers;The numerical simulation of liquid sloshing in moving containers is considered in this study. Numerical models are developed and applied to both two and three dimensional flows. The motion of the vehicle can be quite general, given by the superposition of several rectilinear and angular time varying accelerations. The Navier-Stokes equations are recast in a non-inertial coordinate frame which follows the motion of the container. Singularities produced by the onset of sudden motions are removed from the formulation using an asymptotic analysis. A Poisson equation is used for the pressure calculation. The position of the free surface is determined by a kinematic condition. An implicit second order accurate finite difference method is used for the solution of the governing equations;A method that simplifies the coupling of the dynamics of the liquid with those of the moving vehicle is introduced. It relies on the concept of an apparent mass for the liquid, which is formulated in a manner that measures the resistance of the liquid mass to sudden changes in the acceleration of the vehicle. It enables the solution of the solid and liquid equations based on a simple explicit, rather than an implicit, coupling scheme which significantly reduces the computational requirements;Cases of liquid sloshing in containers of rectangular, cylindrical, and spherical geometry are considered. Detailed information on the flowfield and the free surface position is given for several representative cases. Effects due to the forcing conditions, liquid viscosity, surface tension, and liquid geometry, are considered in a parametric study. Information on sloshing frequencies and damping rates is included. An excellent comparison of the present numerical result is demonstrated, where possible, with previous analytical and experimental works.

Comments
Description
Keywords
Citation
Source
Copyright
Wed Jan 01 00:00:00 UTC 1997